Skip to main content

The Developmental Anatomy of the Heart of the Sturgeon Acipenser naccarii

  • Chapter
Biology, Conservation and Sustainable Development of Sturgeons

Part of the book series: Fish & Fisheries Series ((FIFI,volume 29))

Abstract

We review the anatomic development of the sturgeon’s (Acipenser naccarii) heart. Attention has been focussed on the main developmental events that take place during the embryonic and early post-hatching periods. The study examines identification of the early heart tube, cardiac loop formation, and the transformation of the tubular heart into a multi-chambered organ in a temporal sequence. Also included are the development of the heart valves and that of the epicardium. Many of these processes have been followed into adulthood to illustrate the maturation of the different structures with age. On the whole, sturgeon heart formation appears to share many developmental mechanisms with other vertebrates. This indicates the conservation of the mechanisms along the phyletic scale. The development of the A. naccarii heart appears to be a very slow process in relation both to other sturgeon species and to other fish classes. This should allow detailed investigation of specific morphologic events. Many of the developmental changes experienced by the heart could well prove useful in establishing the chronology of both embryonic and juvenile specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A:

atrium

Ao:

ventral aortal

A-V:

atrioventricular canal

C:

conus

dpf:

days post-fertilization

dph:

days post-hatching

E:

endocardium

HBF:

head body fold

L:

liver

M:

myocardium

OFT:

outflow tract

OP:

olfactory placode; olfactory pit

P:

prosencephalon

PC:

developing pericardial cavity

PR:

pituitary rudiment

R:

rhombencephalon

SEM:

scanning electron microscope

SV:

sinus venosus

T:

trunk

TL:

tail

TS:

transitional segment

V:

ventricle

v:

developing valves

I, II, and III:

branchial arches

References

  • Abu-Issa R, Waldo K, Kirby ML. 2004. Heart fields: one, two or more? Dev Biol 272:281–285.

    Article  PubMed  CAS  Google Scholar 

  • Alexander J, Stainier DYR. 1999. Mutations affecting cardiac development in zebrafish. In: Harvey RP, Rosenthal N (eds.), Heart Development. Academic, San Diego, pp. 91–110.

    Chapter  Google Scholar 

  • Bemis WE, Findis EK, Grande L. 1997. An overview of Acipenseriformes. Environ Biol Fish 48:25–71.

    Article  Google Scholar 

  • Burggren WW, Farrell A, Lillywhite H. 1997. Vertebrate cardiovascular systems. In: Dantzler WH (ed.), Handbook of Physiology, Sect. 13, Comparative Physiology, vol. 1. Oxford University Press, New York, pp. 215–308.

    Google Scholar 

  • Cerra MC, Imbrogno S, Amelio D, Garofalo F, Colvee E, Tota B, Icardo JM. 2004. Cardiac morphodynamic remodelling in the growing eel (Anguilla anguilla L). J Exp Biol 207:2867–2875.

    Article  PubMed  CAS  Google Scholar 

  • Crocker CE, Farrell AP, Gamperl AK, Cech Jr JJ. 2000. Cardiorespiratory responses of white sturgeon to environmental hypercapnia. Am J Physiol Regul Integr Comp Physiol 279:R617–R628.

    PubMed  CAS  Google Scholar 

  • Dettlaff TA, Ginsburg AS, Schmalhausen OI. 1993. Sturgeon Fishes. Developmental Biology and Aquaculture. Springer-Verlag, Berlin, 300 pp.

    Google Scholar 

  • Fange R. 1986. Lymphoid organs in sturgeons (Acipenseridae). Vet Immunol Immunopathol 12:153–161.

    Article  PubMed  CAS  Google Scholar 

  • Farrell AP, Jones DR. 1992. The heart. In: Hoar WS, Randall DJ, Farrell AP (eds.), Fish Physiology, Vol. XII, The Cardiovascular System, Part A. Academic, San Diego, pp. 1–87.

    Chapter  Google Scholar 

  • Gallego A, Durán AC, de Andrés AV, Navarro P, Muñoz-Chápuli R. 1997. Anatomy and development of the sinoatrial valves in the dogfish (Scyliorhinus canicula). Anat Rec 248:224–232.

    Article  PubMed  CAS  Google Scholar 

  • Grimes AC, Stadt HA, Sheperd IT, Kirby ML. 2006. Solving an enigma: arterial pole development in the zebrafish heart. Develop Biol 290:265–276.

    Article  PubMed  CAS  Google Scholar 

  • Guerrero A, Icardo JM, Durán AC, Gallego A, Domezain A, Colvee E, Sans-Coma V. 2004. Differentiation of the cardiac outflow tract components in alevins of the sturgeon Acipenser naccarii (Osteichthyes, Acipenseriformes). Implications for heart evolution. J Morphol 260:172–183.

    Article  PubMed  Google Scholar 

  • Hamlett WC, Schwartz FJ, Schmeinda R, Cuevas E. 1996. Anatomy, histology, and development of the cardiac valvular system in elasmobranches. J Exp Zool 275:83–94.

    Article  PubMed  CAS  Google Scholar 

  • Icardo JM. 1984. The growing heart: an anatomical perspective. In: Zak R (ed.), The Growth of the Heart in Health and Disease. Raven Press, New York, pp. 41–80.

    Google Scholar 

  • Icardo JM. 1989. Changes in endocardial cell morphology during development of the endocardial cushions. Anat Embryol 179:443–448.

    Article  PubMed  CAS  Google Scholar 

  • Icardo JM. 1996. Developmental biology of the vertebrate heart. J Exp Zool 275:144–161.

    Article  PubMed  CAS  Google Scholar 

  • Icardo JM. 1997. Morphogenesis of vertebrate hearts. In: Burggren WW, Keller B (eds.), Development of Cardiovascular Systems. Molecules to Organisms. Cambridge University Press, New York, pp. 114–126.

    Google Scholar 

  • Icardo JM, Fernández-Terán MA. 1987. Morphologic study of ventricular trabeculation in the embryonic chick heart. Acta Anat 130:264–274.

    Article  PubMed  CAS  Google Scholar 

  • Icardo JM, Manasek FJ. 1991. Cardiogenesis: developmental mechanisms and embryology. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds.), The Heart and Cardiovascular Systems. Scientific Foundations. Raven Press, New York, pp. 1563–1586.

    Google Scholar 

  • Icardo JM, Colvee E, Tota B. 1996. Morphological organization of the sturgeon (Acipenser naccarii) heart with special reference to the collagenous architecture. In: VII International Symposium on Fish Physiology, Oslo, Norway, p. 93.

    Google Scholar 

  • Icardo JM, Colvee E, Cerra MC, Tota B. 2002a. Structure of the conus arteriosus of the sturgeon (Acipenser naccarii) heart. I. The conus valves and the subendocardium. Anat Rec 267: 17–27.

    Article  PubMed  Google Scholar 

  • Icardo JM, Colvee E, Cerra MC, Tota B. 2002b. The structure of the conus arteriosus of the sturgeon (Acipenser naccarii) heart. II. The myocardium, the subepicardium and the conus-aorta transition. Anat Rec 268:388–398.

    Article  PubMed  Google Scholar 

  • Icardo JM, Guerrero A, Durán AC, Domezain A, Colvee E, Sans-Coma V. 2004. The development of the sturgeon heart. Anat Embryol 208:439–449.

    Article  PubMed  Google Scholar 

  • Jiang X, Rotwitch DH, Soriano P, McMahon AP, Sucov HM. 2000. Fate of the mammalian neural crest. Development 127:1607–1616.

    PubMed  CAS  Google Scholar 

  • Khloponin PA. 1979. Morphologic aspects of cardiac myocyte differentiation in Black-sea-Sea of Azov sturgeon. Arkh Anat Gistol Embriol 77:44–51 (in Russian).

    PubMed  CAS  Google Scholar 

  • Kinsella MG, Fitzharris TP. 1980. Origin of cushion tissue in the developing chick heart: cinematographic recordings of in situ formation. Science 207:1359–1360.

    PubMed  CAS  Google Scholar 

  • Kirby ML, Gale TF, Stewart DE. 1983. Neural crest cells contribute to normal aortopulmonary septation, Science 220:1059–1061.

    Article  PubMed  CAS  Google Scholar 

  • Li YX, Zdanowicz M, Young L, Kumiski D, Leatherbury L, Kirby ML. 2003. Cardiac neural crest in zebrafish embryos contributes to myocardial cell lineage and early heart function. Dev Dyn 226:540–550.

    Article  PubMed  Google Scholar 

  • Männer J. 2004. On rotation, torsion, lateralization, and handedness of the embryonic heart loop: new insights from a simulation model for the heart loop of chick embryos. Anat Rec 278A:481–492.

    Article  Google Scholar 

  • Männer J, Pérez-Pomares JM, Macías D, Muñoz-Chapuli R. 2001. The origin, formation and developmental significance of the epicardium: a review. Cell Tissue Organ 169:89–103.

    Article  Google Scholar 

  • Markwald RR, Fitzharris TP, Manasek FJ. 1977. Structural development of endocardial cushions. Am J Anat 148:85–120.

    Article  PubMed  CAS  Google Scholar 

  • Maxime V, Nonnotte G, Peyraud C, Williot P, Truchot JP. 1995. Circulatory and respiratory effects of an hypoxic stress in the Siberian sturgeon. Resp Physiol 100:203–212.

    Article  CAS  Google Scholar 

  • Maxime V, Nonnotte G, Williot P. 1998. Adaptations respiratoires et circulatoires de l’sturgeon sibérien à une hypoxie environnementale. Bull Er Pêche Piscic 351:377–391.

    Article  Google Scholar 

  • Mykeblust R, Kryvi H. 1979. Ultrastructure of the heart of the sturgeon Acipenser stellatus (Chondrostei). Cell Tissue Res 202:431–43.

    Google Scholar 

  • Nakamura A, Manasek FJ. 1978. Experimental studies of the shape and structure of isolated cardiac jelly. J Embryol Exp Morphol 43:167–183.

    PubMed  CAS  Google Scholar 

  • Patten BM. 1922. The formation of the cardiac loop in the chick. Am J Anat 30:373–397.

    Article  Google Scholar 

  • Romenskii O. 1978. Blood supply of the compact and spongy myocardium of fish, amphibians and reptiles. Arkh Anat Gistol Embriol 75:91–95 (in Russian).

    PubMed  Google Scholar 

  • Santer RM. 1985. Morphology and innervation of the fish heart. Adv Anat Embryol 89:1–102.

    CAS  Google Scholar 

  • Sato M, Yost HJ. 2003. Cardiac neural crest contributes to cardiomyogenesis in zebrafish. Dev Biol 257:127–139.

    Article  PubMed  CAS  Google Scholar 

  • Scatizzi I. 1933. L’organo linfomieloide dello sturione. Arch Zool Ital 18:1–26.

    Google Scholar 

  • Stöhr P. 1876. Ueber den Klappenapparat im Conus arteriosus der Selachier und Ganoiden. Morph Jb 2:197–228.

    Google Scholar 

  • Weber KT. 1989. Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 13:1637–1652.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Icardo, J.M., Guerrero, A., Durán, A.C., Colvee, E., Domezain, A., Sans-Coma, V. (2009). The Developmental Anatomy of the Heart of the Sturgeon Acipenser naccarii . In: Carmona, R., Domezain, A., García-Gallego, M., Hernando, J.A., Rodríguez, F., Ruiz-Rejón, M. (eds) Biology, Conservation and Sustainable Development of Sturgeons. Fish & Fisheries Series, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8437-9_8

Download citation

Publish with us

Policies and ethics