Advertisement

Plants without arbuscular mycorrhizae

  • Carroll P. Vance
Part of the Plant Ecophysiology book series (KLEC, volume 7)

Although mycorrhizal symbioses (described elsewhere in this volume) are the most important adaptation for angiosperms to acquire scarce phosphorus (P), many plant families contain species that either do not form or rarely form this pivotal association (Skene 1998; Miller et al. 1999; Cripps and Eddington 2005; Miller 2005). This review will address adaptations and mechanisms for acquisition and use of scarce P in plants lacking effective mycorrhizal symbioses. The primary focus will be on root adaptations in species that develop specialized-complex roots (cluster and dauciform) in response to P deficiency. Although not producing cluster or dauciform roots in response to P deficiency, Arabidopsis will also be considered because it does not form mycorrhizal symbiosis and is a model species for evaluating plant adaptation to P deficiency.

Plants have evolved two broad strategies for improved P acquisition and use in nutrient-limiting environments: (1) those aimed at conservation of use; and (2) those directed toward enhanced acquisition or uptake (Vance et al. 2003; Ticconi and Abel 2004; Misson et al. 2005; Morcuende et al. 2007). Processes that conserve the use of P involve decreased growth rate, increased growth per unit of P uptake, remobilization of internal P, modifications in carbon (C) metabolism that bypass P-requiring steps, alternative respiratory pathways, and alterations in membrane biosynthesis requiring less P (Plaxton and Carswell 1999; Uhde-Stone et al. 2003a,b; Wasaki et al. 2003; Misson et al. 2005; Lambers et al. 2006). In comparison, processes that lead to enhanced P uptake include modified root architecture and greater root growth, prolific development of root hairs leading to expanded root surface area, enhanced expression of Pi transporter genes, and increased production and exudation of phosphatases and organic acids (Marschner et al. 1986; López- Bucio et al. 2002; Shane and Lambers 2005). These numerous adaptive responses to P-deficiency are not mutually exclusive and all may occur within a single species.

Keywords

Lateral Root Root Hair Plant Cell Environ Root Architecture White Lupin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams MA, Pate JS (2002) Phosphorus sources and availability modify growth and distribution of root clusters and nodules of native Australian legumes. Plant Cell Environ 26: 837–850CrossRefGoogle Scholar
  2. Al-Ghazi Y, Muller B, Pinloche S, Tranbarger TJ, Nacry P, Rossignol M, Tardieu F, Doumas P (2003) Temporal responses of Arabidopsis root architecture to phosphate starvation: evidence for the involvement of auxin signalling. Plant Cell Environ 26: 1053–1066CrossRefGoogle Scholar
  3. Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97: 883–893PubMedCrossRefGoogle Scholar
  4. Bates TR, Lynch JP (1996) Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ 19: 529–538CrossRefGoogle Scholar
  5. Bates TR, Lynch JP (2000) The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition. Am J Bot 87: 964–970PubMedCrossRefGoogle Scholar
  6. Beebe SE, Rojas-Pierce M, Yan X, Blair MW, Pedraza F, Muñoz F, Tohme J, Lynch JP (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46: 413–423CrossRefGoogle Scholar
  7. Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inzé D (1995) superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7: 1405–1419PubMedCrossRefGoogle Scholar
  8. Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes - transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14: 695–700PubMedCrossRefGoogle Scholar
  9. Borch K, Bouma TJ, Lynch JP, Brown KM (1999) Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ 22: 425–431CrossRefGoogle Scholar
  10. Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inzé D, Sandberg G, Casero PJ, Bennett MJ (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13: 843–852PubMedCrossRefGoogle Scholar
  11. Celenza JL Jr., Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9: 2131–2142PubMedCrossRefGoogle Scholar
  12. Charlton WA (1996) Lateral root initiation. In: Waisel Y, Eshel A, Kafkafi U (eds), Plant Roots: The Hidden Half (2nd edition). Marcel Dekker, New YorkGoogle Scholar
  13. Chevalier F, Pata M, Nacry P, Doumas P, Rossignol M (2003) Effects of phosphate availability on the root system architecture: large-scale analysis of the natural variation between Arabidopsis accessions. Plant Cell Environ 26: 1839–1850CrossRefGoogle Scholar
  14. Christianson ML, Warnick DA (1985) Temporal requirements for phytohormone balance in the control of organogenesis in vitro. Dev Biol 112: 494–497CrossRefGoogle Scholar
  15. Ciereszko I, Zambrzycka A, Rychter A (1998) Sucrose hydrolysis in bean roots (Phaseolus vulgaris L.) under phosphate deficiency. Plant Sci 133: 139–144CrossRefGoogle Scholar
  16. Cripps CL, Eddington LH (2005) Distribution of mycorrhizal types among alpine vascular plant families on the Beartooth Plateau, Rocky Mountains, U.S.A., in reference to large-scale patterns in arctic-alpine habitats. Arct Antarct Alp Res 37: 177–188CrossRefGoogle Scholar
  17. Day DA, Wiskich JT (1995) Regulation of alternative oxidase activity in higher plants. J Bioenerg Biomembr 27: 379–385PubMedCrossRefGoogle Scholar
  18. De Smet I, Tetsurmura T, De Rybel B, Frey NF, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inzé D, Bennett MJ, Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134: 681–690PubMedCrossRefGoogle Scholar
  19. Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17: 678–682PubMedCrossRefGoogle Scholar
  20. Devaiah BN, Karthikeyan AS, Raghothama KG (2007) WRKY75 transcription factor is modulated by phosphate acquisition and root development in Arabidopsis. Plant Physiol 143: 1789–1801PubMedCrossRefGoogle Scholar
  21. Diem HG, Duhoux E, Zaid H, Arahou M (2000) Cluster roots in Casuarinaceae: role and relationship to soil nutrient factors. Ann Bot 85: 929–936CrossRefGoogle Scholar
  22. Dinkelaker B, Hengeler C, Marschner H (1995) Distribution and function of proteoid roots and other root clusters. Bot Acta 108: 183–200Google Scholar
  23. Dolan L (2001) The role of ethylene in root hair growth in Arabidopsis. J Plant Nutr Soil Sci 164: 141–145CrossRefGoogle Scholar
  24. Emery NRJ, Atkins CA (2002) Roots and cytokinins. In: Waisel Y, Eshel A, Kafkafi U (eds), Plant Roots: The Hidden Half (3rd edition). Marcel Dekker, New York, pp 417–434Google Scholar
  25. Essigmann B, Güler S, Narang RA, Linke D, Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 95: 1950–1955PubMedCrossRefGoogle Scholar
  26. Franco-Zorrilla JM, González E, Bustos R, Linhares F, Leyva A, Paz-Ares J (2004) The transcriptional control of plant responses to phosphate limitation. J Exp Bot 55: 285–293PubMedCrossRefGoogle Scholar
  27. Gahoonia TS, Nielsen NE (1998) Direct evidence on participation of root hairs in phosphorus (32P) uptake from soil. Plant Soil 198: 147–152CrossRefGoogle Scholar
  28. Gardner WK, Parbery DG, Barber DA (1982) The acquisition of phosphorus by Lupinus albus L. I. Some characteristics of the soil/root interface. Plant Soil 68: 19–32CrossRefGoogle Scholar
  29. Gardner WK, Barber DA, Parbery DG (1983) The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced. Plant Soil 70: 107–124CrossRefGoogle Scholar
  30. Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22: 801–810CrossRefGoogle Scholar
  31. Gilbert GA, Knight JD, Vance CP, Allan DL (2000) Proteoid root development of phosphorus deficient lupin is mimicked by auxin and phosphonate. Ann Bot 85: 921–928CrossRefGoogle Scholar
  32. Gilroy S, Jones DL (2000) Through form to function: root hair development and nutrient uptake. Trends Plant Sci 5: 56–60PubMedCrossRefGoogle Scholar
  33. Graham MA, Ramírez M, Valdes-López O, Lara M, Tesfaye M, Vance CP, Hernandez G (2006) Identification of candidate phosphorus stress induced genes in Phaseolus vulgaris through clustering analysis across several plant species. Funct Plant Biol 33: 789–797CrossRefGoogle Scholar
  34. Grierson PF (1992) Organic acids in the rhizosphere of Banksia integrifolia L.f. Plant Soil 144: 259–265CrossRefGoogle Scholar
  35. Grierson PF, Attiwill PM (1989) Chemical characteristics of the proteoid root mat of Banksia integrifolia L. Aust J Bot 37: 137–143CrossRefGoogle Scholar
  36. Grierson CS, Parker JS, Kemp AC (2001) Arabidopsis genes with roles in root hair development. J Plant Nutr Soil Sci 164: 131–140CrossRefGoogle Scholar
  37. Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ (2003) Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 132: 578–596PubMedCrossRefGoogle Scholar
  38. Hammond JP, Broadley MR, White PJ (2004) Genetic responses to phosphorus deficiency. Ann Bot 94: 323–332PubMedCrossRefGoogle Scholar
  39. Hernández G, Ramirez M, Valdés-López O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F, Wu HC, Lara M, Town CD, Kopka J, Udvardi MK, Vance CP (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144: 752–767PubMedCrossRefGoogle Scholar
  40. Himanen K, Vuylsteke M, Vanneste S, Vercruysse S, Boucheron E, Alard P, Chriqui D, Van Montagu M, Inzé D, Beeckman T (2004) Transcript profiling of early lateral root initiation Proc Natl Acad Sci USA 101: 5146–5151PubMedCrossRefGoogle Scholar
  41. Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237: 173–195CrossRefGoogle Scholar
  42. Johnson JF, Allan DL, Vance CP (1994) Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol 104: 657–665PubMedGoogle Scholar
  43. Johnson JF, Allan DL, Vance CP, Weiblen G (1996a) Root carbon dioxide fixation by phosphorus-deficient Lupinus albus. Contribution to organic acid exudation by proteoid roots. Plant Physiol 112: 19–30PubMedCrossRefGoogle Scholar
  44. Johnson JF, Vance CP, Allan DL (1996b) Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol 112: 31–41PubMedCrossRefGoogle Scholar
  45. Jones MA, Raymond MJ, Smirnoff N (2006) Analysis of the root-hair morphogenesis transcriptome reveals the molecular identity of six genes with roles in root-hair development. Plant J 45: 83–100PubMedCrossRefGoogle Scholar
  46. Jungk A (2001) Root hairs and the acquisition of plant nutrients from soil. J Plant Nutri Soil Sci 164: 121–129CrossRefGoogle Scholar
  47. Karthikeyan AS, Varadarajan DK, Jain A, Held MA, Carpita NC, Raghothama KG (2007) Phosphate starvation responses are mediated by sugar signaling in Arabidopsis. Planta 225: 907–918PubMedCrossRefGoogle Scholar
  48. Keerthisinghe G, Hocking PJ, Ryan PR, Delhaize E (1998) Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L.). Plant Cell Environ 21: 467–478CrossRefGoogle Scholar
  49. Kihara T, Wada T, Suzuki Y, Hara T, Koyama H (2003) Alteration of citrate metabolism in cluster roots of white lupin. Plant Cell Physiol 44: 901–908PubMedCrossRefGoogle Scholar
  50. Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency. Annu Rev Plant Biol 55: 459–493PubMedCrossRefGoogle Scholar
  51. Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98: 693–713PubMedCrossRefGoogle Scholar
  52. Lamont B (1974) The biology of dauciform roots in the sedge Cyathochaete avenacea. New Phytol 73: 985–996CrossRefGoogle Scholar
  53. Lamont B (1982) Mechanisms for enhancing nutrient uptake in plants, with particular reference to Mediterranean, South Africa and Australia. Bot Rev 48: 597–689CrossRefGoogle Scholar
  54. Lamont BB (1993) Why are hairy root clusters so abundant in the most nutrient-impoverished soils of Australia? Plant Soil 155/156: 269–272CrossRefGoogle Scholar
  55. Lamont BB (2003) Structure, ecology and physiology of root clusters - a review. Plant Soil 48: 1–19CrossRefGoogle Scholar
  56. Laskowski M, Biller S, Stanley K, Kajstura T, Prusty R (2006) Expression profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of lateral root emergence. Plant Cell Physiol 47: 788–792PubMedCrossRefGoogle Scholar
  57. Li X, Mo X, Shou H, Wu P (2006) Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol 47: 1112–1123PubMedCrossRefGoogle Scholar
  58. Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55: 983–992PubMedCrossRefGoogle Scholar
  59. Liu J, Uhde-Stone C, Li A, Vance C, Allan D (2001) A phosphate transporter with enhanced expression in proteoid roots of white lupin (Lupinus albus L.). Plant Soil 237: 257–266CrossRefGoogle Scholar
  60. Liu JQ, Samac DA, Bucciarelli B, Allan DL, Vance CP (2005) Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J 41: 257–268PubMedCrossRefGoogle Scholar
  61. Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and rhizobial symbioses. Plant J 38: 203–214PubMedCrossRefGoogle Scholar
  62. López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129: 244–256PubMedCrossRefGoogle Scholar
  63. López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opini Plant Biol 6: 280–287CrossRefGoogle Scholar
  64. Lynch JP, Brown KM (2001) Topsoil foraging - an architectural adaptation of plants to low phosphorus availability. Plant Soil 237: 225–237CrossRefGoogle Scholar
  65. Ma Z, Bielenberg DG, Brown KM, Lynch JP (2001) Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ 24: 459–467CrossRefGoogle Scholar
  66. Ma Z, Baskin TI, Brown KM, Lynch JP (2003) Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol 131: 1381–1390PubMedCrossRefGoogle Scholar
  67. Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28: 67–77PubMedCrossRefGoogle Scholar
  68. Marchant A, Bhalerao R, Casimiro I, Eklot J, Casero PJ, Bennett M, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissue in Arabidopsis seedling. Plant Cell 14: 589–597PubMedCrossRefGoogle Scholar
  69. Marschner H, Römheld V, Horst WJ, Martin P (1986) Root induced changes in the rhizosphere: importance for the mineral nutrition of plants. Z Pflanz Bodenkunde 149: 441–456CrossRefGoogle Scholar
  70. Martín AC, del Pozo JC, Iglesias J, Rubio V, Solano R, de la Peña A, Leyva A, Paz-Ares J (2000) Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J 24: 559–567PubMedCrossRefGoogle Scholar
  71. Massonneau A, Langlade N, Léon S, Smutny J, Vogt E, Neumann G, Martinoia E (2001) Metabolic changes associated with cluster root development in white lupin (Lupinus albus L.): relationship between organic acid excretion, sucrose metabolism and energy status. Planta 213: 534–542PubMedCrossRefGoogle Scholar
  72. Masucci JD, Schiefelbein JW (1996) Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8: 1505–1517PubMedCrossRefGoogle Scholar
  73. Menand B, Yi K, Jouanic S, Hoffmann L, Ryan E, Linstead P, Schaefer DG, Dolan L (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316: 1477–1480PubMedCrossRefGoogle Scholar
  74. Miller RM (2005) The nonmycorrhizal root - a strategy for survival in nutrient-impoverished soils. New Phytol 165: 655–658PubMedCrossRefGoogle Scholar
  75. Miller RM, Smith CI, Jastrow JD, Bever JD (1999) Mycorrhizal status of the genus Carex (Cyperaceae). Am J Bot 86: 547–553PubMedCrossRefGoogle Scholar
  76. Miller SS, Liu J, Allan DL, Menzhuber CJ, Fedorova M, Vance CP (2001) Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol 127: 594–606PubMedCrossRefGoogle Scholar
  77. Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M-C (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102: 11934–11939PubMedCrossRefGoogle Scholar
  78. Morcuende R, Bari R, Gibon Y, Zheng WM, Pant BD, Blasing O, Usadel B, Czechowski T, Udvardi MK, Stitt M, Scheible WR (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ 30: 85–112PubMedCrossRefGoogle Scholar
  79. Morris RO, Bilyeu KD, Laskey JG, Cheikh NN (1999) Isolation of a gene encoding a glycosylated cytokinin oxidase from maize. Biochem Biophys Res Commun 255: 328–333PubMedCrossRefGoogle Scholar
  80. Müller M, Schmidt W (2004) Environmentally induced plasticity of root hair development in Arabidopsis. Plant Physiol 134: 409–419PubMedCrossRefGoogle Scholar
  81. Müller R, Morant M, Jarmer H, Nilsson L, Nielsen TH (2007) Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol 143: 156–171PubMedCrossRefGoogle Scholar
  82. Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P (2005) A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol 138: 2061–2074PubMedCrossRefGoogle Scholar
  83. Narang RA, Bruene A, Aitmann T (2000) Analysis of phosphate acquisition efficiency in Arabidopsis accessions. Plant Physiol 124: 1786–1799PubMedCrossRefGoogle Scholar
  84. Neumann G, Martinoia E (2002) Cluster root - an underground adaptation for survival in extreme environments. Trends Plant Sci 7: 162–167PubMedCrossRefGoogle Scholar
  85. Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208: 373–382CrossRefGoogle Scholar
  86. Neumann G, Massonneau A, Langlade N, Dinkelaker B, Hengeler C, Römheld V, Martinoia E (2000) Physiological aspects of cluster root function and development in phosphorus-deficient white lupin (Lupinus albus L.). Ann Bot 85: 909–919CrossRefGoogle Scholar
  87. Ortega-Martínez O, Pernas M, Carol RJ, Dolan L (2007) Ethylene modulates stem cell division in the Arabidopsis thaliana root. Science 317: 507–510PubMedCrossRefGoogle Scholar
  88. Parker JS, Cavell AC, Dolan L, Roberts K, Grierson CS (2000) Genetic interactions during root hair morphogenesis in Arabidopsis. Plant Cell 12: 1961–1974PubMedCrossRefGoogle Scholar
  89. Pate J, Watt M (2001) Roots of Banksia spp. (Proteacea) with special reference to functioning of their specialized root clusters. In: Waisel Y, Eshel A, Kafkafi U (eds), Plant Roots: The Hidden Half (3rd edition). Marcel Dekker, New York, pp 989–1006Google Scholar
  90. Peñaloza E, Muñoz G, Salvo-Garrido H, Silva H, Luis J, Corcuera LJ (2005) Phosphate deficiency regulates phosphoenolpyruvate carboxylase expression in proteoid root clusters of white lupin. J Exp Bot 56: 145–153PubMedGoogle Scholar
  91. Peterson RL, Farquhar ML (1996) Root hairs: specialized tubular cells extending root surfaces. Bot Gaz 62: 1–40Google Scholar
  92. Plaxton WC, Carswell MC (1999) Metabolic aspects of the phosphate starvation response in plants. In: Lerner HR (ed), Plant Responses to Environmental Stresses: From Phytohormones to Genome Reorganisation. Dekker, New York, pp 349–372Google Scholar
  93. Reed RC, Brady SR, Muday GK (1998) Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol 118: 1369–1378PubMedCrossRefGoogle Scholar
  94. Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T (2006) Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ 29: 115–125PubMedCrossRefGoogle Scholar
  95. Ridge RW (1995) Recent developments in the cell and molecular biology of root hairs. J Plant Res 108: 399–405CrossRefGoogle Scholar
  96. Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15: 2122–2133PubMedCrossRefGoogle Scholar
  97. Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beeckman T, Frimi J, Benkova E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport auxin distribution. Plant Cell 19: 2197–2212PubMedCrossRefGoogle Scholar
  98. Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52: 527–560PubMedCrossRefGoogle Scholar
  99. Salama AMSE-DA, Wareing PF (1979) Effects of mineral nutrition on endogenous cytokinins in plants of sunflower (Helianthus annuus L.). J Exp Bot 30: 971–981CrossRefGoogle Scholar
  100. Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramirez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol 46: 174–184PubMedCrossRefGoogle Scholar
  101. Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274: 101–125CrossRefGoogle Scholar
  102. Shane MW, Cramer MD, Funayama-Noguchi S, Cawthray GR, Millar AH, Day DA, Lambers H (2004) Developmental physiology of cluster-root carboxylate synthesis and exudation in harsh Hakea. Expression of phosphoenolpyruvate carboxylase and the alternative oxidase. Plant Physiol 135: 549–560PubMedCrossRefGoogle Scholar
  103. Shane MW, Dixon KW, Lambers H (2005) The occurrence of dauciform roots amongst Western Australian reeds, rushes and sedges, and the impact of phosphorus supply on dauciform-root development in Schoenus unispiculatus (Cyperaceae). New Phytol 165: 887–898PubMedCrossRefGoogle Scholar
  104. Shane MW, Cawthray GR, Cramer MD, Kuo J, Lambers H (2006) Specialized ‘dauciform’ roots of Cyperaceae are structurally distinct but functionally analogous with ‘cluster’ roots. Plant Cell Environ 29: 1989–1999PubMedCrossRefGoogle Scholar
  105. Skene KR (1998) Cluster roots: some ecological considerations. J Ecol 86: 1060–1064CrossRefGoogle Scholar
  106. Skene KR, James WM (2000) A comparison of the effects of auxin on cluster root initiation and development in Grevillea robusta Cunn. ex R. Br. (Proteaceae) and the genus Lupinus (Leguminosae). Plant Soil 219: 221–229CrossRefGoogle Scholar
  107. Skene KR, Kierans M, Sprent J, Raven JA (1996) Structural aspects of cluster root development and their possible significance for nutrient acquisition in Grevillea robusta (Proteacea). Ann Bot 77: 443–451CrossRefGoogle Scholar
  108. Sousa MF, Façanha AR, Tavares RM, Lino-Neto T, Gerós H (2007) Phosphate transport by proteoid roots of Hakea sericea. Plant Sci 173: 550–558CrossRefGoogle Scholar
  109. Steen I (1997) Phosphorus availability in the 21st century. Management of a non-renewable resource. Phosphorus Potassium 217: 25–31Google Scholar
  110. Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19: 2169–2185PubMedCrossRefGoogle Scholar
  111. Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low phosphate media reprograms plant root architecture. Nat Genet 19: 792–796CrossRefGoogle Scholar
  112. Swarup R, Perry P, Hagenbeck D, Van Der Straeten D, Beemster GTS, Sandberg G, Bhalerao R, Ljung K, Bennett MJ (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root elongation. Plant Cell 19: 2186–2196PubMedCrossRefGoogle Scholar
  113. Tanimoto M, Roberts K, Dolan L (1995) Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J 8: 943–948PubMedGoogle Scholar
  114. Tesfaye M, Liu J, Allan DL, Vance CP (2007) Genomic and genetic control of phosphate stress in legumes. Plant Physiol 144: 594–603PubMedCrossRefGoogle Scholar
  115. Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101: 339–344PubMedGoogle Scholar
  116. Ticconi CA, Abel S (2004) Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9: 548–555PubMedCrossRefGoogle Scholar
  117. Ticconi CA, Delatorre CA, Lahner B, Salt DE, Abel S (2004) Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. Plant J 37: 801–814PubMedCrossRefGoogle Scholar
  118. Uhde-Stone C, Gilbert G, Johnson JMF, Litjens R, Zinn KE, Temple SJ, Vance CP, Allan DL (2003a) Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant Soil 248: 99–116CrossRefGoogle Scholar
  119. Uhde-Stone C, Zinn KE, Ramirez-Yáñez M, Li A, Vance CP, Allan DL (2003b) Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Plant Physiol 131: 1064–1079PubMedCrossRefGoogle Scholar
  120. Uhde-Stone C, Liu J, Zinn KE, Allan DL, Vance CP (2005) Transgenic proteoid roots of white lupin: a vehicle for characterizing and silencing root genes involved in adaptation to P stress. Plant J 44: 840–853PubMedCrossRefGoogle Scholar
  121. Ulmasov T, Murfett J, Hagen G, Guilfoyle T (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9: 1963–1971PubMedCrossRefGoogle Scholar
  122. Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157: 423–447CrossRefGoogle Scholar
  123. Wang Y-H, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol 127: 345–359PubMedCrossRefGoogle Scholar
  124. Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kishimoto N, Kikuchi S, Yamagishi M, Osaki M (2003) Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ 26: 1515–1523CrossRefGoogle Scholar
  125. Waters BM, Blevins DG (2000) Ethylene production, cluster root formation, and localization of iron (III) reducing capacity in Fe deficient squash roots. Plant Soil 225: 21–31CrossRefGoogle Scholar
  126. Watt M, Evans JR (1999) Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol 120: 705–716PubMedCrossRefGoogle Scholar
  127. Weisskopf L, Abou-Mansour E, Fromin N, Tomasi N, Santelia D, Edelkott I, Neumann G, Aragno M, Tabacchi R, Martinoia E (2006a) White lupin has developed a complex strategy to limit microbial degradation of secreted citrate required for phosphate acquisition. Plant Cell Environ 29: 919–927PubMedCrossRefGoogle Scholar
  128. Weisskopf L, Tomasi N, Santelia D, Martinoia E, Langlade NB, Tabacchi R, Abou-Mansour E (2006b) Isoflavonoid exudation from white lupin roots is influenced by phosphate supply, root type and cluster-root stage. New Phytol 171: 657–668PubMedGoogle Scholar
  129. Werner T, Motyka V, Strand M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98: 10487–10492PubMedCrossRefGoogle Scholar
  130. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15: 2532–2550PubMedCrossRefGoogle Scholar
  131. Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126: 875–890PubMedCrossRefGoogle Scholar
  132. Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132: 1260–1271PubMedCrossRefGoogle Scholar
  133. Yan F, Zhu Y, Müller C, Schubert S (2002) Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129: 50–63PubMedCrossRefGoogle Scholar
  134. Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138: 2087–2096PubMedCrossRefGoogle Scholar
  135. Zaid H, El Morabet R, Diem HG, Arahou M (2003) Does ethylene mediate cluster root formation under iron deficiency? Ann Bot 92: 673–677PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Carroll P. Vance
    • 1
  1. 1.Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulUSA

Personalised recommendations