Skip to main content

Phosphorus and aquatic plants

  • Chapter

Part of the Plant Ecophysiology book series (KLEC,volume 7)

Aquatic systems receive the bulk of their nutrient supply from stream inflow. In stream communities, and also in lakes with a stream outflow, the export of nutrients in outgoing stream water is a major factor in nutrient budgets of aquatic communities. By contrast, in lakes without an outflow, nutrient accumulation in permanent sediments is often the major export pathway. Only a small fraction of available nutrients is incorporated into the biological interactions of stream communities (Winterbourn and Townsend 1991). In streams and rivers, the majority of nutrients flow on, as particles or dissolved in the water, to be discharged into a lake or the sea. Nevertheless, some nutrients do cycle from inorganic forms in freshwater, to inorganic forms in animals or plants, to inorganic forms in water, and so on. Because of the transport downstream, the displacement of nutrients may be best represented as a spiral (Elwood et al. 1983), where rapid phases of inorganic nutrient displacement alternate with periods when the nutrients are locked in biomass (e.g. in aquatic plants). Aquatic plants may obtain nitrogen (N) and phosphorus (P) from the sediment and then release these elements into the water. These plants function as a source for nutrients, by trapping fine organic and inorganic particles, enhancing mineralization of organic matter through oxidation of the sediments, and altering the localized environment, thus enabling P release through reducing conditions and increased pH and temperature. Oxygen translocation to the roots of plants has the effect of oxidizing the immediate sediment environment, and this may limit P availability (Moore et al. 1994; Wigand et al. 1997). Aquatic plants can also have a significant impact on a system’s light environment and nutrient budget (Reckhow and Chapra 1999).

Keywords

  • Aquatic Plant
  • Soluble Reactive Phosphorus
  • Aquatic Macrophyte
  • Water Hyacinth
  • Freshwater Biol

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abernethy VJ (1994) Functional ecology of euhydrophyte communities of European riverine wetland ecosystems. Dissertation, University of Glasgow, Scotland

    Google Scholar 

  • Agami M, Waisel Y (1986) The ecophysiology of roots of submerged vascular plants. Physiol Veg 24: 607–624

    CAS  Google Scholar 

  • Baldy V, Trémolières M, Andrieu M, Belliard J (2007) Changes in phosphorus content of two aquatic plants according to water velocity, trophic status and time period in hardwater streams. Hydrobiologia 575: 343–351

    CrossRef  CAS  Google Scholar 

  • Barko JW, Smart RM (1980) Mobilization of sediment phosphorus by submerged freshwater macrophytes. Freshwater Biol 10: 229–238

    CrossRef  CAS  Google Scholar 

  • Barko JW, Smart RM (1981) Sediment-based nutrition of submersed macrophytes. Aquat Bot 10: 339–352

    CrossRef  CAS  Google Scholar 

  • Barko JW, James WF (1998) Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In: Sondergaard S, Sondergaard, C (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, Berlin/Heidelberg/New York, pp 197–214

    Google Scholar 

  • Barko JW, Smart RM, McFarland DG, Chen RL (1988) Interrelationships between the growth of Hydrilla verticillata (L.f.) Royle and sediment nutrient availability. Aquat Bot 32: 205–216

    CrossRef  Google Scholar 

  • Barko JW, Gunnison D, Carpenter SR (1991) Sediment interactions with submersed macrophyte growth and community dynamics. Aquat Bot 41: 41–65

    CrossRef  Google Scholar 

  • Best MD, Mantai KE (1979) Growth of Myriophyllum: sediment or lake water as the source of nitrogen and phosphorus. Ecology 59: 1075–1080

    CrossRef  Google Scholar 

  • Best EPH, Woltman H, Jacobs FHH (1996) Sediment-related growth limitation of Elodea nuttallii as indicated by a fertilization experiment. Freshwater Biol 36: 33–44

    CrossRef  Google Scholar 

  • Boeger R (1992) The influence of substratum and water velocity on growth of Ranunculus aquatilis L. (Ranunculaceae). Aquat Bot 42: 351–359

    CrossRef  Google Scholar 

  • Bole JB, Allan JR (1978) Uptake of phosphorus from sediment by aquatic plants, Myriophyllum spicatum and Hydrilla verticillata. Water Res 12: 353–358

    CrossRef  CAS  Google Scholar 

  • Canfield DEJ, Hoyer MV (1988) Influence of nutrient enrichment and light availability on the abundance of aquatic macrophytes in Florida streams. Can J Fish Aquat Sci 45: 1467–1472

    CrossRef  Google Scholar 

  • Carbiener, R, Trémolières M, Mercier JL, Ortscheit A (1990) Aquatic macrophyte communities as bioindicators of eutrophication in calcareous oligosaprobe stream waters (Upper Rhine plain, Alsace). Vegetatio 86: 71–88

    CrossRef  Google Scholar 

  • Carignan R, Kalff J (1980) Phosphorus source for aquatic weeds: water or sediment. Science 207: 987–988

    CrossRef  PubMed  CAS  Google Scholar 

  • Carpenter SR, Adams SA (1977) The macrophyte tissue nutrient pool of hardwater eutrophic lake: implications for macrophyte harvesting. Aquat Bot 3: 239–255

    CrossRef  CAS  Google Scholar 

  • Carr GM, Chambers PA, (1998) Macrophyte growth and sediment phosphorus and nitrogen in a Canadian prairie river. Freshwater Biol 39: 525–536

    CrossRef  CAS  Google Scholar 

  • Chambers PA, Prepas EE (1994) Nutrient dynamics in riverbeds: the impact of sewage effluent and aquatic macrophytes. Water Res 28: 453–464

    CrossRef  CAS  Google Scholar 

  • Chambers PA, Prepas EE, Bothwell ML, Hamilton HR (1989) Roots versus shoots in nutrient uptake by aquatic macrophytes in flowing waters. Can J Fish Aquat Sci 46: 435–439

    CrossRef  Google Scholar 

  • Chambers PA, Prepas EE, Gibson K (1992) Temporal and spatial dynamics in riverbed chemistry: the influence of flow and sediment composition. Can J Fish Aquat Sci 49: 2128–2140

    CrossRef  CAS  Google Scholar 

  • Chapin FS, Van Cleve K (1989) Approaches to studying nutrient uptake, use and loss in plants. In: Pearcy RW, Mooney HA, Ehleringer JR, Rundel PW (eds), Physiological Ecology. Chapman & Hall, New York, pp 185–207

    Google Scholar 

  • Clarke SJ, Wharton G (2001a) Using macrophytes for the environmental assessment of rivers: the role of sediment nutrients. R&D Technical Report E1–S01/TR, 90 p

    Google Scholar 

  • Clarke SJ, Wharton G (2001b) Sediment nutrient characteristics and aquatic macrophytes in lowland English rivers. Sci Total Environ 266: 103–112

    CrossRef  PubMed  CAS  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88: 528–534

    CrossRef  Google Scholar 

  • Dawson FH (1976) The annual production of aquatic macrophyte Ranunculus penicillatus var. calcareous (R.W. Butcher) CDK Cook. Aquat Bot 2: 51–73

    CrossRef  Google Scholar 

  • Dawson FH (1988) Water flow and the vegetation of running waters. In: Symoens JJ (ed), Vegetation of Inland Waters. Kluwer, The Netherlands, 283–308

    Google Scholar 

  • Dawson FH, Newman JR, Gravelle MJ, Rouen KJ, Henville P (1999) Assessment of the trophic status of rivers using macrophytes. Evaluation of the Mean Trophic Rank. R&D Technical Report E39, Environment Agency, Bristol, UK, 178 p

    Google Scholar 

  • Demars BOL, Harper DM (1998) The aquatic macrophytes of an English lowland river system: assessing response to nutrient enrichment. Hydrobiologia 384: 75–88

    CrossRef  Google Scholar 

  • De Marte JA, Hartman RT (1974) Studies on absorption of 32P, 59Fe and 45Ca by water-milfoil (Myriophyllum excalbescens Fernald). Ecology 55: 188–194

    CrossRef  CAS  Google Scholar 

  • Denny P (1972) Sites of nutrient absorption in aquatic macrophytes. J Ecol 60: 819–929

    CrossRef  Google Scholar 

  • Duarte C (1992) Nutrient concentration of aquatic plants: patterns across species. Limnol Oceanogr 37: 882–889

    CrossRef  CAS  Google Scholar 

  • Elwood JW, Newbold JD, O’Neill RV, van Winckle W (1983) Resource spiralling: an operational paradigm for analyzing lotic ecosystems. In: Fontaine TD, Bartell SM (eds), Dynamics of Lotic Ecosystems. Ann Arbor Science, Ann Arbor, MI, pp 3–28

    Google Scholar 

  • Eugelink AH (1998) Phosphorus uptake and active growth of Elodea canadensis Michx. and Elodea nuttallii (Planch.) St. John. Water Sci Technol 37: 59–65

    CrossRef  Google Scholar 

  • Feijoo CS, Momo FR, Bonetto CA, Tur NM (1996) Factors influencing biomass and nutrient content of the submersed macrophyte Egeria densa Planch. in a pampasic stream. Hydrobiologia 341: 21–26

    CrossRef  CAS  Google Scholar 

  • Gabrielson JO, Perkins MA, Welch EB (1984) The uptake, translocation and release of phosphorus by Elodea densa. Hydrobiologia 3: 43–48

    CrossRef  Google Scholar 

  • Garbey C, Murphy KJ, Thiébaut G, Muller S (2004a) Variation in P-content in aquatic plant tissues offers an efficient tool for determining plant growth strategies along a resource gradient. Freshwater Biol 49: 346–356

    CrossRef  Google Scholar 

  • Garbey C, Thiébaut G, Muller S (2004b) Morphological plasticity of a spreading aquatic macrophyte, Ranunculus peltatus, in response to environmental variables. Plant Ecol 173: 125–137

    CrossRef  Google Scholar 

  • Gerloff GC, Krombholz PH (1966) Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants. Limnol Oceanogr 11: 529–537

    CrossRef  Google Scholar 

  • Grime JP (1988) The CRS model of primary plant strategies: origins, implications, and tests. In: Gottlieb LD, Jain SK (eds), Plant Evolutionary Biology. Chapman & Hall, London, pp 371–393

    Google Scholar 

  • Hammer DA (1992) Designing constructed wetlands systems to treat agricultural non point source pollution. Ecol Eng 1: 49–82

    CrossRef  Google Scholar 

  • Harding JPC (1981) Macrophytes as monitors of river quality in the southern NWWA area, Report No. TS-BS-81–2. North West Water, Rivers Division, Scientists Dept. Technical Support Group

    Google Scholar 

  • Haury J, Peltre M-C, Trémolières M, Barbe J, Thiébaut G, Bernez I, Daniel H, Chatenet P, Haan-Archipof G, Muller S, Dutartre A, Laplace-Treyture C, Cazaubon A, Lambert-Servien E (2006) A new method to assess water trophy and organic pollution: the Macrophyte Biological Index for Rivers (IBMR): its application to different types of river and pollution. Hydrobiologia 570: 153–158

    CrossRef  CAS  Google Scholar 

  • Holmes NTH (1995) Macrophytes for Water and Other River Quality Assessments. National Rivers Authority, Anglian Region, Peterborough

    Google Scholar 

  • Holmes NTH, Newbold C (1984) River plant communities - reflectors of water and substrate chemistry. Focus Nat. Conserv. 9: 535–539

    Google Scholar 

  • Holmes NTH, Newman JR, Chadd S, Rouen KJ, Saint L, Dawson FH (1999) Mean Trophic Rank: A User’s Manual. R&D Technical Report E38. Environmental Agency, Bristol, UK

    Google Scholar 

  • Howard-Williams C, Allanson BR (1981) Phosphorus cycling in a dense Potamogeton pectinatus L. bed. Oecologia 49: 56–66

    CrossRef  Google Scholar 

  • Jarvie HP, Neal C, Williams RJ, Neal, M, Wickham HD, Hill LK, Wade AJ, Warwick A, White J (2002) Phosphorus sources, speciation and dynamics in the lowland eutrophic River Kennet, UK. Sci Total Environ 282–283: 175–203

    CrossRef  Google Scholar 

  • Kelly MG, Whitton BA (1998) Biological monitoring of eutrophication in rivers. Hydrobiologia 384: 55–67

    CrossRef  Google Scholar 

  • Kern-Hansen U, Dawson FH (1978) The standing crop of aquatic plants of lowland streams in Denmark and the inter-relationships of nutrients in plant, sediment and water. In: Proceedings, EWRS 5th International Symposium On Aquatic Weeds, pp 143–150

    Google Scholar 

  • Kunii H (1984) Seasonal growth and profile structure development of Elodea nuttallii (Planch.) St John in pond Ojaga-Ike, Japan. Aquat Bot 18: 239–247

    CrossRef  Google Scholar 

  • Lofgren S, Bostrom B (1989) Interstitial water concentrations of phosphorus, iron and manganese in a shallow, eutrophic Swedish lake - implications for phosphorus cycling. Water Res 23: 1115–1125

    CrossRef  Google Scholar 

  • Madsen JD, Adams MS (1988) The nutrient dynamics of a submersed macrophyte community in a stream ecosystem dominated by Potamogeton pectinatus. J Freshwater Ecol 4: 541–550

    CAS  Google Scholar 

  • Madsen TV, Cedergreen N (2002) Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshwater Biol 46: 283–291

    CrossRef  Google Scholar 

  • Moore BC, Lafer JE, Funk WH (1994) Influence of aquatic macrophytes on phosphorus and sediment porewater chemistry in a freshwater wetland. Aquat Bot 49: 137–148

    CrossRef  CAS  Google Scholar 

  • Pelton DK, Levine SN, Braner M (1998) Measurements of phosphorus uptake by macrophytes and epiphytes from the La Platte River (VT) using 32P in streams microcosms. Freshwater Biol 39: 285–299

    CrossRef  Google Scholar 

  • Prairie YT, Kalff J (1988) Dissolved phosphorus dynamics in headwater streams. Can J Fish Aquat Sci 45: 200–209

    CrossRef  CAS  Google Scholar 

  • Rattray MR (1995) The relationship between P, Fe and Mn, uptakes by submersed rooted angiosperms. Hydrobiologia 308: 107–120

    Google Scholar 

  • Rattray MR, Howard-Williams C, Brown JM (1991) Sediment and water as sources of nitrogen and phosphorus for submerged rooted aquatic macrophytes. Aquat Bot 40: 225–237

    CrossRef  Google Scholar 

  • Raven JA (1981) Nutritional strategies of submerged benthic plants: the acquisition of C, N and P by rhizophytes and haptophytes. New Phytol 88: 1–30

    CAS  Google Scholar 

  • Reckhow KH, Chapra SC (1999) Modelling excessive nutrient loading in the environment. Environ Pollut 100: 197–207

    CrossRef  PubMed  CAS  Google Scholar 

  • Reddy KR, Sutton DL, Bowes, G (1983) Freshwater aquatic plant biomass production in Florida. Soil Crop Sci Soc Fla Proc 42: 28–40

    Google Scholar 

  • Reddy KR, Smith WH (eds) (1987) Aquatic Plants for Water Treatment and Resource Recovery. Magnolia Publishing, Orlando, FL

    Google Scholar 

  • Reddy KR, Kadlec RH, Flaig E, Gale PM (1999) Phosphorus retention in streams and wetlands: a review. Crit Rev Environ Sci Technol 29: 83–146

    CrossRef  CAS  Google Scholar 

  • Robach F, Hajnsek I, Eglin I, Trémolières M (1995) Phosphorus sources for aquatic macrophytes in running waters: water or sediment? Acta Bot Gall 142: 719–731

    Google Scholar 

  • Rorslett B, Berge D, Johansen SW (1985) Mass invasion of Elodea canadensis in a mesotrophic, South Norwegian lake - impact on water quality. Verh Internat Verein Limnol 22: 2920–2926

    Google Scholar 

  • Royle RN, King RJ (1991) Aquatic macrophytes in Lake Liddle, New south Wales: biomass, nitrogen and phosphorus status, and changing distribution from 1981 to 1987. Aquat Bot 41: 281–298

    CrossRef  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116: 447–453

    CrossRef  PubMed  CAS  Google Scholar 

  • Schneider S, Melzer A (2003) The Trophic Index of Macrophytes (TIM) - a new tool for indicating the trophic state of running waters. Int Rev Hydrobiol 88: 49–67

    CrossRef  Google Scholar 

  • Sculthorpe CD (1967) The Biology of Aquatic Vascular Plants. Edward Arnold, London

    Google Scholar 

  • Smart RM, Barko JW (1985) Laboratory culture of submersed freshwater macrophytes on natural sediments. Aquat Bot 21: 251–263

    CrossRef  Google Scholar 

  • Smith FW, Mudge SR, Rae AL, Glassop D (2003) Phosphate transport in plants. Plant Soil 248: 71–83

    CrossRef  CAS  Google Scholar 

  • Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impact of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100: 179–196

    CrossRef  PubMed  CAS  Google Scholar 

  • Sooknah RD, Wilkie AC (2004) Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol Eng 22: 27–42

    CrossRef  Google Scholar 

  • Thiébaut G (2005) Does competition for phosphate supply explain the invasion pattern of Elodea species? Water Res 39: 3385–3393

    CrossRef  PubMed  CAS  Google Scholar 

  • Thiébaut G (2006) Aquatic macrophyte approach to assess the impact of disturbances on the diversity of the ecosystem and on river quality. Int Rev Hydrobiol 91: 483–497

    CrossRef  CAS  Google Scholar 

  • Thiébaut G, Muller S (1999) A macrophyte communities sequence as an indicator of eutrophication and acidification levels in weakly mineralised streams in north-eastern France. Hydrobiologia 410: 17–24

    CrossRef  Google Scholar 

  • Thiébaut G, Muller S (2003) Linking phosphorus pools of water, sediment and macrophytes in running waters. Ann Limnol 39: 307–316

    CrossRef  Google Scholar 

  • Thiébaut G, Guerold F, Muller S (2002) Are trophic and diversity indices based on macrophyte communities pertinent tools to monitor water quality? Water Res 36: 3602–3610

    CrossRef  PubMed  Google Scholar 

  • Thiébaut G, Garbey C, Muller S (2004) Suivi biologique par les macrophytes aquatiques de la qualité des cours d’eau de la Réserve Biosphère des Vosges du Nord (N-Est de la France). Terre et Vie 59: 123–133

    Google Scholar 

  • Wigand C, Stevenson JC, Cornell JC (1997) Effects of different submersed macrophytes on sediment biogeochemistry. Aquat Bot 56: 233–244

    CrossRef  CAS  Google Scholar 

  • Winterbourn M.J, Townsend CR (1991) Streams and rivers: one-way flow systems. In: Barnes RSK, Mann KH (eds), Fundamentals of Aquatic Ecology. Blackwell Scientific, Oxford, pp 230–244

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Thiébaut, G. (2008). Phosphorus and aquatic plants. In: White, P.J., Hammond, J.P. (eds) The Ecophysiology of Plant-Phosphorus Interactions. Plant Ecophysiology, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8435-5_3

Download citation