Parallelization, Special Hardware and Post-Newtonian Dynamics in Direct N - Body Simulations

  • Rainer Spurzem
  • Ingo Berentzen
  • Peter Berczik
  • David Merritt
  • Pau Amaro-Seoane
  • Stefan Harfst
  • Alessia Gualandris
Part of the Lecture Notes in Physics book series (LNP, volume 760)

The formation and evolution of supermassive black hole (SMBH) binaries during and after galaxy mergers is an important ingredient for our understanding of galaxy formation and evolution in a cosmological context, e.g. for predictions of cosmic star formation histories or of SMBH demographics (to predict events that emit gravitational waves). If galaxies merge in the course of their evolution, there should be either many binary or even multiple black holes, or we have to find out what happens to black hole multiples in galactic nuclei, e.g. whether they come sufficiently close to merge resulting from emission of gravitational waves, or whether they eject each other in gravitational slingshot interactions.


Black Hole Gravitational Wave Gravitational Radiation FPGA Chip Processor Chip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarseth S. J., 1999, PASP, 111, 1333CrossRefADSGoogle Scholar
  2. Aarseth S. J., 2003a, ApSS, 285, 367Google Scholar
  3. Aarseth S. J., 2003, Gravitational N-Body Simulations. Cambridge University Press, CambridgeGoogle Scholar
  4. Aarseth S. J., 2007, MNRAS, 378, 285CrossRefADSGoogle Scholar
  5. Ahmad A., Cohen L., 1973, J. Comput. Phys., 12, 349CrossRefADSGoogle Scholar
  6. Barnes J., Hut P., 1986, Nature, 324, 446CrossRefADSGoogle Scholar
  7. Begelman M. C., Blandford R. D., Rees M. J., 1980, Nature, 287, 307CrossRefADSGoogle Scholar
  8. Berczik P., Merritt D., Spurzem R., 2005, ApJ, 633, 680CrossRefADSGoogle Scholar
  9. Berczik P., Merritt D., Spurzem R., Bischof H.-P., 2006, ApJ, 642, L21CrossRefADSGoogle Scholar
  10. Berentzen I., Preto M., Berczik P., Merritt D., Spurzem R., 2008, to be submittedGoogle Scholar
  11. Damour T., Dereulle N., 1987, Phys. Lett., 87, 81Google Scholar
  12. Dehnen W., 1993, MNRAS, 265, 250ADSGoogle Scholar
  13. Dorband E. N., Hemsendorf, M., Merritt, D., 2003, J. Comput. Phys., 185, 484MATHCrossRefADSMathSciNetGoogle Scholar
  14. Dubinski J., 1996, New Astron., 1, 133CrossRefADSGoogle Scholar
  15. Fukushige T., Makino J., Kawai A., 2005, PASJ, 57, 1009ADSGoogle Scholar
  16. Greengard L., Rokhlin V., 1987, J. Comput. Phys., 73, 325MATHCrossRefADSMathSciNetGoogle Scholar
  17. Harfst S., Gualandris A., Merritt D., Spurzem R., Portegies Zwart S., Berczik P., 2007, New Astron., 12, 357CrossRefADSGoogle Scholar
  18. Khalisi E., Omarov C. T., Spurzem R., Giersz M., Lin D. N. C., 2003, in Krause E., Jaeger W., Resch M., eds, Performance Computing in Science and Engineering. Springer Verlag, p. 71Google Scholar
  19. Kupi G., Amaro-Seoane P., Spurzem R., 2006, MNRAS, 371, L45ADSGoogle Scholar
  20. Kustaanheimo P., Stiefel E., Journ. für die reine und angew. Math., 1965, 218, 204MATHMathSciNetCrossRefGoogle Scholar
  21. Lagoute C., Longaretti P. -Y., 1996, A8A, 308, 441Google Scholar
  22. Lee H. M., 1987, ApJ, 319, 801CrossRefADSGoogle Scholar
  23. Lee M. H., 1993, ApJ, 418, 147CrossRefADSGoogle Scholar
  24. Maalej K. P., Boily C., David R., Spurzem R., 2005, in Casoli F., Contini T., Hameury J. M., Pagani L., eds, SF2A-2005: Semaine de l’Astrophysique Francaise. EdP-Sciences, Conference Series, p. 629Google Scholar
  25. Makino J., 2002, New Astron., 7, 373CrossRefADSGoogle Scholar
  26. Makino J., Aarseth S. J., 1992, PASJ, 44, 141ADSGoogle Scholar
  27. Makino J., Fukushige T., Koga M., Namura K., 2003, PASJ, 55, 1163ADSGoogle Scholar
  28. Makino J., Funato Y., 2004, ApJ, 602, 93CrossRefADSGoogle Scholar
  29. Makino J., Taiji M., 1998, Scientific Simulations with Special-Purpose Computers — the GRAPE systems. WileyGoogle Scholar
  30. Mikkola S., 1997, Celes. Mech. Dyn. Ast., 68, 87MATHCrossRefADSMathSciNetGoogle Scholar
  31. Mikkola S., Merritt D., 2007, ArXiv e-prints 709, arXiv:0709.3367ADSGoogle Scholar
  32. Milosavljević M., Merritt D., 2001, ApJ, 563, 34CrossRefADSGoogle Scholar
  33. Milosavljević M., Merritt D., 2003, ApJ, 596, 860CrossRefADSGoogle Scholar
  34. Pearce F. R., Couchman H. M. P., 1997, New Astron., 2, 411CrossRefADSGoogle Scholar
  35. Peters P. C., 1964, Phys. Rev., 136, B1224CrossRefADSGoogle Scholar
  36. Peters P. C., Mathews J., 1963, Phys. Rev., 131, 435MATHCrossRefADSMathSciNetGoogle Scholar
  37. Portegies Zwart S. F., McMillan S. L. W., Hut P., Makino J., 2001, MNRAS, 321, 199CrossRefADSGoogle Scholar
  38. Preto M., Berentzen I., Berczik P., Spurzem R., 2008, in preparationGoogle Scholar
  39. Quinlan G. D., Shapiro S. L., 1989, ApJ, 343, 725CrossRefADSGoogle Scholar
  40. Quinlan G. D., Shapiro S. L., 1990, ApJ, 356, 483CrossRefADSGoogle Scholar
  41. Soffel M. H., 1989, Relativity in Astrometry, Celestial Mechanics and Geodesy. Springer-VerlagGoogle Scholar
  42. Spurzem R., 1999, J. Comput. Applied Math., 109, 407MATHCrossRefADSMathSciNetGoogle Scholar
  43. van Albada T. S., van Gorkom J. H., 1977, A8A, 54, 121Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rainer Spurzem
    • 1
  • Ingo Berentzen
    • 1
  • Peter Berczik
    • 1
  • David Merritt
    • 2
  • Pau Amaro-Seoane
    • 3
  • Stefan Harfst
    • 2
    • 4
  • Alessia Gualandris
    • 2
    • 4
  1. 1.Astronomisches Rechen-InstitutZentr. Astron. Univ. Heidelberg (ZAH)Mönchhofstrasse 12-14Germany
  2. 2.College of Science, Dept. of PhysicsRochester Instute of TechnologyRochesterUSA
  3. 3.Max-Planck Institut für Gravitationsphysik (Albert-Einstein-Institut)D-14476 PotsdamGermany
  4. 4.Astronomical Institute Anton Pannekoek and Section Computational ScienceUniversity of AmsterdamThe Netherlands

Personalised recommendations