Advertisement

Realistic N - Body Simulations of Globular Clusters

  • A. Dougal Mackey
Part of the Lecture Notes in Physics book series (LNP, volume 760)

This chapter is an introduction to realistic N-body modelling of globular clusters – specifically, why it might be desired to conduct such models and what constitutes their key ingredients. Detailed consideration is also given to the analysis of data from such simulations, and how it is increasingly becoming more important to perform simulated observations in order to derive quantities that are directly comparable with real-world measurements. The most salient points from this general discussion are illustrated via an extensive case study concerning N-body modelling of massive stellar clusters in the Large and Small Magellanic Clouds.

Keywords

Black Hole Globular Cluster Star Cluster Initial Mass Function Magellanic Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarseth S. J., Heggie D. C., 1998, MNRAS, 297, 794CrossRefADSGoogle Scholar
  2. Aarseth S. J., 2003, Gravitational N-Body Simulations. Cambridge Univ. Press, CambridgezbMATHCrossRefGoogle Scholar
  3. Brandl B., et al., 1996, ApJ, 466, 254CrossRefADSGoogle Scholar
  4. Borch A., Spurzem R., Hurley J., 2007, 328, 662Google Scholar
  5. Casares J., 2006, in Karas V., Matt G., eds, Proc. IAU Symp. 238, Black Holes: From Stars to Galaxies. Cambridge Univ. Press, Cambridge, p. 3Google Scholar
  6. Casertano S., Hut P., 1985, ApJ, 298, 80CrossRefADSGoogle Scholar
  7. de Grijs R., Johnson R. A., Gilmore G. F., Frayn C. M., 2002a, MNRAS, 331, 228Google Scholar
  8. de Grijs R., Gilmore G. F., Johnson R. A., Mackey A.D., 2002b, MNRAS, 331, 245Google Scholar
  9. Elson R. A. W., 1991, ApJS, 76, 185CrossRefADSGoogle Scholar
  10. Elson R. A. W., 1992, MNRAS, 256, 515ADSGoogle Scholar
  11. Elson R. A. W., Fall S. M., Freeman K. C., 1987, ApJ, 323, 54CrossRefADSGoogle Scholar
  12. Elson R. A. W., Freeman K. C., Lauer T. R., 1989, ApJ, 347, L69CrossRefADSGoogle Scholar
  13. Fukushige T., Makino J., Kawai A., 2005, PASJ, 57, 1009ADSGoogle Scholar
  14. Giersz M., Heggie D. C., 1994, MNRAS, 268, 257ADSGoogle Scholar
  15. Heggie D. C., Mathieu R. D., 1986, in Hut P., McMillan S., eds, Lecture Notes in Physics Vol. 267, The Use of Supercomputers in Stellar Dynamics. Springer-Verlag, Berlin, p. 233Google Scholar
  16. Hunter D. A., Shaya E. J., Holtzman J. A., Light R. M., 1995, ApJ, 448, 179CrossRefADSGoogle Scholar
  17. Hunter D. A., O’Neil Jr. E. J., Lynds R., Shaya E. J., Groth E. J., Holtzman J. A., 1996, 459, L27Google Scholar
  18. Hurley J. R., Pols O. R., Tout C. A., 2000, MNRAS, 315 543CrossRefADSGoogle Scholar
  19. Hurley J. R., Tout C. A., Pols O. R., 2002, MNRAS, 329, 897CrossRefADSGoogle Scholar
  20. Hurley J. R., Tout C. A., Aarseth S. J., Pols O. R., 2004, MNRAS, 355, 1207CrossRefADSGoogle Scholar
  21. Hurley J. R., Pols O. R., Aarseth S. J., Tout C. A., 2005, MNRAS, 363, 293CrossRefADSGoogle Scholar
  22. King I. R., 1962, AJ, 67, 471CrossRefADSGoogle Scholar
  23. Kroupa P., 2001, MNRAS, 322, 231CrossRefADSGoogle Scholar
  24. Kurucz R. L., 1992, in Barbuy B., Renzini A., eds, Proc. IAU Symp. 149, The Stellar Populations of Galaxies. Kluwer, Dordrecht, p. 225Google Scholar
  25. Mackey A. D., Gilmore G. F., 2003a, MNRAS, 338, 85CrossRefADSGoogle Scholar
  26. Mackey A. D., Gilmore G. F., 2003b, MNRAS, 338, 120CrossRefADSGoogle Scholar
  27. Mackey A. D., Wilkinson M. I., Davies M. B., Gilmore G. F., 2007, MNRAS, 379, L40CrossRefADSGoogle Scholar
  28. Mackey A. D., Wilkinson M. I., Davies M. B., Gilmore G. F., 2008a, MNRAS, in pressGoogle Scholar
  29. Mackey A. D., et al., 2008b, in prep.Google Scholar
  30. Makino J., 1991, ApJ, 369, 200CrossRefADSMathSciNetGoogle Scholar
  31. Makino J., Fukushige T., Koga M., Namura K., 2003, PASJ, 55 ,1163ADSGoogle Scholar
  32. Malumuth E. M., Heap S. R., 1994, AJ, 107, 1054CrossRefADSGoogle Scholar
  33. Mardling R. A., Aarseth S. J., 2001, MNRAS, 321, 398CrossRefADSGoogle Scholar
  34. McLaughlin D. E., van der Marel R. P., 2005, ApJS, 161, 304CrossRefADSGoogle Scholar
  35. Meylan G., Heggie D. C., 1997, A&AR, 8, 1ADSGoogle Scholar
  36. Mikkola S., Aarseth S. J., 1993, Celest. Mech. Dyn. Astron., 57, 439zbMATHCrossRefADSMathSciNetGoogle Scholar
  37. Mikkola S., Aarseth S. J., 1998, New Astron., 3, 309CrossRefADSGoogle Scholar
  38. Sirianni M., Nota A., De Marchi G., Leitherer C., Clampin M., 2002, ApJ, 579, 275CrossRefADSGoogle Scholar
  39. van der Marel R.P., Alves D.R., Hardy E., Suntzeff N.B., 2002, AJ, 124, 2639CrossRefADSGoogle Scholar
  40. Wilkinson M. I., Hurley J. R., Mackey A. D., Gilmore G. F., Tout C. A., 2003, MNRAS, 343, 1025CrossRefADSGoogle Scholar
  41. Zhang W., Woosley S. E., Heger A., 2008, ApJ, 679, 639CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. Dougal Mackey
    • 1
  1. 1.Institute for AstronomyUniversity of Edinburgh Royal ObservatoryBlackford HillUK

Personalised recommendations