Negative and Positive Magnetoresistance in Variable-Range Hopping Regime of Undoped AlxIn1−xSb/InSb Quantum Wells

  • S. Ishida
  • T. Manago
  • K. Oto
  • A. Fujimoto
  • H. Geka
  • A. Okamoto
  • I. Shibasaki
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 119)

Abstract

Low-temperature magnetoresistance (MR) in the variable-range hopping (VRH) regime of undoped AlxIn1−xSb/InSb quantum wells was studied. The low-T resistance shows that the two dimensional (2D) Mott VRH crossovers to Efros-Shklovskii (ES) VRH due to the Coulomb interaction with lowering T. The anisotropic negative MR in weak magnetic fields was explained by the quantum interference in the VRH. The in-plane positive MR in higher fields found in ES VRH regime was attributed to the spin-Zeeman effect that suppresses the hops between singly occupied states in the presence of intra-state correlation. As for the orbital MR subtracted from perpendicular MR, in deeply insulating regime the negative MR saturates above a characteristic field followed by an exponential increase of the positive MR in agreement with the quantum interference and the subsequent shrinkage of wave functions with increasing field, while in barely insulating regime of the 2D metal-insulator (MI) transition a large negative MR inexplicable survives even in the extremely high magnetic-fields.

Keywords

Anisotropy Shrinkage Coherence GaAs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kohdaparast G. A. et al.: Phys. Rev. B 70, 155322-1–6, 2004ADSGoogle Scholar
  2. 2.
    Mason W., Kravchenko S. V., Bowker G. E. and Furneaux J. E.: Phys. Rev. B 52, 7857–7859, 1995CrossRefADSGoogle Scholar
  3. 3.
    Kohndaker S. I. et al.: Phys. Rev. B 59, 4580–4583, 1999CrossRefADSGoogle Scholar
  4. 4.
    Mott N. F.: J. Non-Cryst. Solids 1, 1-, 1968CrossRefADSGoogle Scholar
  5. 5.
    Efros A. L. and Shklovskii B. I.: J. Phys. C 8, L49, 1975CrossRefADSGoogle Scholar
  6. 6.
    Nguyen V. L., Spivak B. Z. and Shklovskii B. I.: Sov. Phys.-JETP 62, 1021–1029, 1985Google Scholar
  7. 7.
    Sivan U., Entin-Wohlman O. and Imry Y.: Phys. Rev. Lett. 60, 1566–1569, 1988PubMedCrossRefADSGoogle Scholar
  8. 8.
    Kurobe A. and Kamimura H.: J. Phys. Soc. Jpn. 51, 1904–1913, 1982CrossRefADSGoogle Scholar
  9. 9.
    Ishida S. et al.: phys. stat. sol. (b) 205, 161–165, 1998CrossRefGoogle Scholar
  10. 10.
    Ye Q. Y., Shklovskii B. I., Zrenner A., Koch F. and Ploog K.: Phys. Rev. B 41, 8477–8484, 1990CrossRefADSGoogle Scholar
  11. 11.
    Kohndaker S. I., Pepper M., Ritchie D. A. and Schlimak S. I.: phys. stat. sol. (b) 218, 181–183, 2000CrossRefGoogle Scholar
  12. 12.
    Yoon J., Li C. C., Shahar D., Tsui D. C. and Shayegin M. Phys. Rev. Lett. 84, 4421–4244, 2000PubMedCrossRefADSGoogle Scholar
  13. 13.
    Pudalov V. M., Brunthaler G., Prinz A. and Bauer G.: Phys. Rev. Lett. 88, 076401-1–4, 2002ADSGoogle Scholar
  14. 14.
    Mettes K. M. et al.: Phys. Rev. B 60, R5093–R5096, 1999CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • S. Ishida
    • 1
  • T. Manago
    • 1
  • K. Oto
    • 2
  • A. Fujimoto
    • 3
  • H. Geka
    • 4
  • A. Okamoto
    • 4
  • I. Shibasaki
    • 4
  1. 1.Tokyo University of Science, YamaguchiYamaguchiJapan
  2. 2.Department of Physics, Faculty of ScienceChiba UniversityChibaJapan
  3. 3.Applied PhysicsOsaka Institute of TechnologyOsakaJapan
  4. 4.Asahi Kasei CorporationShizuokaJapan

Personalised recommendations