Ab Initio Approaches to Designing Thermodynamic Properties of Materials

  • A. Pasturel
  • N. Jakse
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

This paper presents a brief overview of recent developments in the application of ab initio calculations to the study of bulk thermodynamic properties and phase equilibria in alloys. We also emphasize the links that presently exist between ab initio methodologies and the Calphad approach to obtain a valuable tool in the calculation of complex, multicomponent phase equilibria often found in industrial alloys.

Keywords

Ab initio calculations computational thermodynamics phase diagrams thermo- dynamic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Martin, R.M., 2004, Electronic Structure Basic theory and Practical Methods, Cambridge University Press, Cambridge.MATHGoogle Scholar
  2. [2]
    Hohenberg, P., and Kohn, W., Inhomogenous electron gas, Phys. Rev. 136:B864-871.Google Scholar
  3. [3]
    Kohn, W. and Sham, L.J., 1965, Self-consistent equations including exchange and correlations effects, Phys. Rev. 140:A1133-1138.CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    Hafner, J., 2000, Atomic-scale computational materials science, Acta Mater. 48:71-92.CrossRefGoogle Scholar
  5. [5]
  6. [6]
    Wallace, D.C., 1998, Thermodynamics of Crystals, Dover Publications Inc. Mineola, New York.Google Scholar
  7. [7]
    Colinet, C., Wolf, W., Podloucky, R., and Pasturel, A. 2005, Ab initio study of the structural stability ofTiSi2 compounds, Appl. Phys. Lett. 87:41910-41912.CrossRefGoogle Scholar
  8. [8]
    van de Walle, A., and Ceder, G., 2002, The effect of lattice vibrations on substitutional alloy thermodynamics, Rev. of Modern Physics 74:11-38.CrossRefADSGoogle Scholar
  9. [9]
    Robert, G., Pasturel, A., and Siberchicot, B., 2003, Calculated thermodynamic properties of plutonium metal, J. Phys. Condens. Matter 15:8377-8387.CrossRefADSGoogle Scholar
  10. [10]
    Allen, M. P., and Tildesley, D. J., 1987, Computer Simulations of Liquids Clarendon Press, Oxford.Google Scholar
  11. [11]
    Ducastelle, F., 1991, Order and Phase Stability in Alloys, Elsevier Science, New York. Google Scholar
  12. [12]
    Zunger, A., 1994, Statics and Dynamics of Alloy Phase Transformations, eds P. Turchi and A. Gonis, Plenum New York, pp. 361-419.Google Scholar
  13. [13]
    de Fontaine, D., 1994, Cluster approach to order-disorder transformation in alloys, Solid State Phys. 47:33-176.CrossRefGoogle Scholar
  14. [14]
    Zarkevitch, N. A., and Johnson, D. D., 2004, Reliable first-principles alloy thermodynamics via truncated cluster expansions, Phys. Rev. Lett. 92:255702-255705.CrossRefADSGoogle Scholar
  15. [15]
    van der Walle, A., and Ceder, G., 2002, Automating first-principles phase diagram calculations, J. Phase equilibria 23:348-359.CrossRefGoogle Scholar
  16. [16]
    Blum, V., and Zunger, A., 2004, Mixed-basis cluster expansion for thermodynamics of bcc alloys, Phys. Rev. B 70:155108-155124.CrossRefADSGoogle Scholar
  17. [17]
    Hart, G., Blum, V., Walorski, M. J., and Zunger, A., 2005, Evolutionary approach for determining first-principles Hamiltonians, Nature Materials 4:391-394.CrossRefPubMedADSGoogle Scholar
  18. [18]
    Berne, C., Sluiter, M., Kawazoe, Y., Hansen, T., and Pasturel, A., 2001, Site occupancy in the Re-W sigma phase, Phys. Rev. B 64:144103-144111.CrossRefADSGoogle Scholar
  19. [19]
    Sluiter, M., Pasturel, A., and Kawazoe, Y., 2003, Site occupation in the Ni-Nb μ phase, Phys. Rev. B 67:174203-174213.CrossRefADSGoogle Scholar
  20. [20]
    Dupin, N., Fries, S. G., Joubert, J. M., Sundman, B., Sluiter, M., Kawazoe, Y., and Pasturel, A., 2006, Using first-principles results to calculate finite-temperature thermodynamic properties of the Ni-Nb μ phase in the Bragg-Williams approximation. Phil. Mag. 86:1631-1641.CrossRefADSGoogle Scholar
  21. [21]
    Wolverton, C., Yan, X. Y., Vijayaraghavan, R., and Ozolins, V., 2002, Acta Mater. 50:2187-2197.CrossRefGoogle Scholar
  22. [22]
    Jiang, M., Oikawa, K., Ikeshoji, T., Wulff, L., and Ishida, K., 2001, Thermodynamic Calculations of Fe-Zr and Fe-Zr-C Systems, J. Phase Equilibria 22:406-417.CrossRefGoogle Scholar
  23. [23]
    Stein, F., Sauthoff, G., and Palm, M., 2002, Experimental Determination of Intermetallic Phases, Phase Equilibria, and Invariant Reaction Temperatures in the FeZr System, J. Phase Equilibria 23:480-494.CrossRefGoogle Scholar
  24. [24]
    Barberis, P., Dupin, N., Lemaignan, C., Pasturel, A., and Grange, J. M., 2005, Microstructure and phase control in Zr-Fe-Cr-Ni alloys: thermodynamic and kinetic aspects, J. of ASTM Int. 2:129-156.Google Scholar
  25. [25]
    Pisch, A., Jakse, N., Pasturel, A., Harvey, J. P., and Chartrand, P., 2007, Structural stability in the Al-Li-Si system, Appl. Phys. Lett. 90:251902-251904.CrossRefADSGoogle Scholar
  26. [26]
    Curtarolo, S., Morgan, D., Persson, K., Rodgers, J., and Ceder, G., 2003, Predicting Crystal Structures with Data Mining of Quantum Calculations, Phys. Rev. Lett. 91:135503-135506.CrossRefPubMedADSGoogle Scholar
  27. [27]
    Fischer, C., Tibbetts, K. J., Morgan, D., and Ceder, G., 2006, Predicting crystal structure by merging data mining with quantum mechanics, Nature Materials 5:641-646.CrossRefPubMedADSGoogle Scholar
  28. [28]
    Turchi, P., Abrikosov, I., Burton, B., Fries, S., Grimvall, G., Kaufman, L., Korzhavyi, P., Manga, V., Ohno, M., Pisch, A., Scott, A., and Zhang, W., 2007, Interface between quantum-mechanical-based approaches, experiments, and Calphad methodology, Comp. Coupling of Phase Diagrams and Thermo. 31:4-27.Google Scholar
  29. [29]
    Ansara, I., Chart, T. G., Fernadez-Guillermet, A., Hayes, F. H., Kattner, U. R., Pettifor, D. G., Saunders, N., and Zeng, K., 1997, Thermodynamic Modelling of Selected Topologically Close-packed Intermetallic Compounds, Calphad 21:171-181.CrossRefGoogle Scholar
  30. [30]
    Fries, S., and Sundman, B., 2002, Using Re-W σ-phase first-principles results in the Bragg-Williams approximation to calculate finite-temperature thermodynamic properties, Phys. Rev. B 66:12203-12206.CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • A. Pasturel
    • 1
  • N. Jakse
    • 1
  1. 1.Sciences et Ingénierie des Matériaux et ProcédésFrance

Personalised recommendations