Skip to main content

An informal introduction to Statistical Mechanics of liquids is presented, emphasizing the key concepts and theoretical methodologies for a molecular description of “simple” liquids. The objective is to explain routes to explicit calculations of microscopic structure, thermodynamic and interfacial properties, time-dependent correlation functions and their link with transport coefficients. Possible extensions of this methodology to liquid metals and to water are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hansen, J. P., and McDonald, I. R., 2006, Theory of Simple Liquids, 3d edition, Academic Press, London.

    Google Scholar 

  2. Frenkel, D., and Smit, B., 2002, Understanding Molecular Simulation, 2d edition, Academic Press, San Diego.

    Google Scholar 

  3. Maitland, G. C., Rigby, M., Smith, E. B., and Wakeham W.A., 1981, Intermolecular Forces, Clarendon Press, Oxford.

    Google Scholar 

  4. See e.g. Chandler, D., 1987, Introduction to Modern Statistical Physics, Oxford University Press, Oxford.

    Google Scholar 

  5. Hansen, J. P., and Verlet, L., 1969, Phase Transitions of the Lennard-Jones System, Phys. Rev. 184:151-161.

    Article  CAS  ADS  Google Scholar 

  6. Barrat, J. L., and Hansen , J. P., 2003, Basic Concepts for Simple and Complex Liquids, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  7. Carnahan, N. F., and Starling K. E., 1969, Equation of State for Nonattracting Rigid Spheres, J. Chem. Phys. 51:635-636.

    Article  CAS  ADS  Google Scholar 

  8. Barker J. A., and Henderson, D., 1967, Perturbation Theory and Equation of State for Fluids. II. A Successful Theory of Liquids, J. Chem. Phys. 47:4714-21; 1976, What is “liquid”? Understanding the states of matter, Rev. Mod. Phys. 48:587-671.

    Google Scholar 

  9. Weeks, J. D., Chandler, D., and Andersen, H.C., 1971, Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids, J. Chem. Phys. 54:5237-47.

    Article  CAS  ADS  Google Scholar 

  10. Rowlinson, J. S., and Swinton, F., 1983, Liquids and Liquid Mixtures, 3d edition, Butterworths, London.

    Google Scholar 

  11. Evans, R., 1991, in Fundamentals of Inhomogeneous Fluids, D. Henderson ed., Marcel Dekker, New York.

    Google Scholar 

  12. Rosenfeld, Y., Levesque, D., and Weis, J. J., 1990, Free-energy model for the inhomogeneous hard-sphere fluid mixture: Triplet and higher-order direct correlation functions in dense fluids, J. Chem. Phys. 92:6818-32; Rosenfeld, Y., Schmidt, M., Löwen, H., and Tarazona, P., 1997, Fundamental-measure free-energy density func-tional for hard spheres: Dimensional crossover and freezing, Phys. Rev. E55: 4245-63.

    Google Scholar 

  13. Verlet, L., 1967, Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Phys. Rev. 159:98-103.

    Article  CAS  ADS  Google Scholar 

  14. Landau, L. D., and Lifshitz, E. M., 1987, Fluid Mechanics, 2d edition ButterworthHeinemann, Oxford.

    MATH  Google Scholar 

  15. Kubo, R., 1966, The fluctuation-dissipation theorem, Rep. Prog. Phys.29:255-284.

    Article  CAS  ADS  Google Scholar 

  16. Résibois, P., and De Leener, M., 1977, Classical Kinetic Theory of Fluids, John Wiley, New York.

    Google Scholar 

  17. Heine, V., 1970, The pseudopotential concept, Sol. State Phys. 24:1-36.

    Article  CAS  Google Scholar 

  18. Ashcroft, N. W., and Stroud, D., 1978, Sol. State Phys. 33:1.

    Article  CAS  Google Scholar 

  19. For a recent review of experimental data on liquid metals, see Scopigno, T., Ruocco, G., and Sette, F., 2005, Microscopic dynamics in liquid metals: The experimental point of view, Rev. Mod. Phys. 77:881-933.

    Google Scholar 

  20. Ziman, J. M., 1961, A theory of the electrical properties of liquid metals. I: The monovalent metals, Phil. Mag. 6:1013-34.

    Article  MATH  CAS  ADS  Google Scholar 

  21. Guillot, B., 2002, A reappraisal of what we have learnt during three decades of computer simulations on water, J. Molec. Liquids 101:219-260.

    Article  CAS  Google Scholar 

  22. Berendsen, H. J. C., Grigera, J. R., and Straatsma T. P., 1987, The missing term in effective pair potentials, J. Phys. Chem. 91:6269-71.

    Article  CAS  Google Scholar 

  23. Jackson, G., Chapman W. G., and Gubbins, K. E., 1988, Phase equilibria of associating fluids. Spherical molecules with multiple bonding sites, Molec. Phys. 65:1-31.

    Article  CAS  ADS  Google Scholar 

  24. For a review, see Müller, E. A., and Gubbins, K. E., 2001, Molecular-Based Equations of State for Associating Fluids: A Review of SAFT and Related Approaches, Ind. Eng. Chem. Res. 40:2193-2211.

    Article  CAS  Google Scholar 

  25. Wertheim, M. S., 1984, Fluids with highly directional attractive forces. I. Statistical thermodynamics, J. Stat. Phys. 35:19-34.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Sprik, M., and Klein, M. L., 1988, A polarizable model for water using distributed charge sites, J. Chem. Phys. 89:7556-60.

    Article  CAS  ADS  Google Scholar 

  27. Greenfield, A. J., Wellendorf, J., and Wiser, N., 1971, X-ray determination of the static structure factor of liquid Na and K, Phys. Rev. A 4(4):1607-1616.

    Article  ADS  Google Scholar 

  28. Hansen, J. P., and Schiff, D., 1973, Influence of interatomic repulsion on the structure of liquids at melting, Molec. Phys. 25:1281-1290.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Hansen, J.P. (2008). Fundamentals of Liquids. In: Ghetta, V., Gorse, D., Mazière, D., Pontikis, V. (eds) Materials Issues for Generation IV Systems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8422-5_19

Download citation

Publish with us

Policies and ethics