Biotechnological approaches to enhance disease resistance involves either exploitation of natural forms of resistance or genetic engineering approaches, such as the introduction of chitinases, glucanases and other antifungal proteins. The former approach may involve the introduction of novel resistance genes from wild species and the subsequent introgression of genes through the use of molecular markers, or attempts to clone resistance genes. The approach to gene cloning which is most likely to be successful to exploit Arabidopsis. Chitinases, which hydrolyse the β-(1-4)-glycoside in chitin (a major component of fungal cell walls), are often induced in plants following fungal attack and it is thought that these are involved in plant defense. Lines which contain chitinases that are specifically induced in Brassica by pathogens may give a higher degree of protection. Another strategy has been the introduction of a gene for oxalate oxidase in order to reduce susceptibility to infection by Sclerotinia sclerotiorum which relies upon the production of oxalic acid in the infection process.


Quantitative Trait Locus Salicylic Acid Oxalic Acid Phenylalanine Ammonia Lyase Activity Oxalate Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science + Business Media B.V 2008

Personalised recommendations