A Role of BRCA1-Associated Protein BARD1 in Oxidative Stress Response and Signaling and Proliferation Control

  • Irmgard Irminger-Finger
  • Shazib Pervais

More than a decade ago, the BRCA1 and BRCA2 genes, responsible for familial breast cancers, were discovered. About 50 percent of women diagnosed with breast cancer have inherited mutations in BRCA1 or BRCA2 that predispose them to breast and ovarian cancer. Although there are several thousand publications concerning analysis of structure, expression, and function of these genes, no treatment methods for breast cancer have been developed that based on the accumulated knowledge. BRCA1 and BRCA2 are large proteins that interact with many other proteins of diverse functions. One particular protein, BARD1, a binding partner of BRCA1, might crucially regulate the tumor suppressor function of BRCA1 and act as a tumor suppressor in its own right. The functions attributed to BARD1 might make it indispensable for cell viability. This might explain why BARD1 mutations are rarely found in cancer, but aberrant truncated forms are overexpressed. Disappointingly, while screening for mutations in the predisposition genes BRCA1 and BRCA2 is now routinely carried out, no treatment methods have been developed that are based on our knowledge of BRCA1 and BRCA2 functions, which leaves mutation carriers without hope for future treatment. It will be interesting how dissection of the functions of BARD1 will open new avenues for cancer treatment. Here we discuss that BARD1 expression can be regulated in a cell cycle dependent way, in a hormone dependent was, and by hypoxia and oxidative stress. Understanding the way how BARD1 is activated will be important the understanding of its role in tumorigenesis and in the search for treatment targets.


BARD1 BRCA1 BRCA2 breast cancer ovarian cancer apoptosis cancer therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayi, T. C., Tsan, J. T., Hwang, L. Y., Bowcock, A. M., and Baer, R. (1998). Conservation of function and primary structure in the BRCA1-associated RING domain (BARD1) protein. Oncogene 17, 2143–2148.PubMedCrossRefGoogle Scholar
  2. Bischof, P., and Irminger-Finger, I. (2005). The human cytotrophoblastic cell, a mononuclear chameleon. Int J Biochem Cell Biol 37, 1–16.PubMedCrossRefGoogle Scholar
  3. Creekmore, A. L., Ziegler, Y. S., Boney, J. L., and Nardulli, A. M. (2007). Estrogen receptor alpha regulates expression of the breast cancer 1 associated ring domain 1 (BARD1) gene through intronic DNA sequence. Mol Cell Endocrinol 267, 106–115.PubMedCrossRefGoogle Scholar
  4. Eakin, C. M., Maccoss, M. J., Finney, G. L., and Klevit, R. E. (2007). Estrogen receptor alpha is a putative substrate for the BRCA1 ubiquitin ligase. Proc Natl Acad Sci USA 104, 5794–5799.PubMedCrossRefGoogle Scholar
  5. Fabbro, M., Savage, K., Hobson, K., Deans, A. J., Powell, S. N., McArthur, G. A., and Khanna, K. K. (2004). BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage. J Biol Chem 279, 31251–31258.PubMedCrossRefGoogle Scholar
  6. Feki, A., Jefford, C. E., Berardi, P., Wu, J. Y., Cartier, L., Krause, K. H., and Irminger-Finger, I. (2005). BARD1 induces apoptosis by catalysing phosphorylation of p53 by DNA-damage response kinase. Oncogene, 24(23): 3726–3736.PubMedCrossRefGoogle Scholar
  7. Feki, A., Jefford, C. E., Durand, P., Harb, J., Lucas, H., Krause, K. H., and Irminger-Finger, I. (2004). BARD1 expression during spermatogenesis is associated with apoptosis and hormonally regulated. Biol Reprod 71, 1614–1624.PubMedCrossRefGoogle Scholar
  8. Ghimenti, C., Sensi, E., Presciuttini, S., Brunetti, I. M., Conte, P., Bevilacqua, G., and Caligo, M. A. (2002). Germline mutations of the BRCA1-associated ring domain (BARD1) gene in breast and breast/ovarian families negative for BRCA1 and BRCA2 alterations. Genes Chromosomes Cancer 33, 235–242.PubMedCrossRefGoogle Scholar
  9. Irminger-Finger, I., Leung, W. C., Li, J., Dubois-Dauphin, M., Harb, J., Feki, A., Jefford, C. E., Soriano, J. V., Jaconi, M., Montesano, R., and Krause, K. H. (2001). Identification of BARD1 as mediator between proapoptotic stress and p53-dependent apoptosis. Mol Cell 8, 1255–1266.PubMedCrossRefGoogle Scholar
  10. Irminger-Finger, I., Soriano, J. V., Vaudan, G., Montesano, R., and Sappino, A. P. (1998). In vitro repression of Brca1-associated RING domain gene, Bard1, induces phenotypic changes in mammary epithelial cells. J Cell Biol 143, 1329–1339.PubMedCrossRefGoogle Scholar
  11. Jefford, C. E., Feki, A., Harb, J., Krause, K. H., and Irminger-Finger, I. (2004). Nuclear-cytoplasmic translocation of BARD1 is linked to its apoptotic activity. Oncogene 23, 3509–3520.PubMedCrossRefGoogle Scholar
  12. Joukov, V., Chen, J., Fox, E. A., Green, J. B., and Livingston, D. M. (2001). Functional communication between endogenous BRCA1 and its partner, BARD1, during Xenopus laevis development. Proc Natl Acad Sci U S A 98, 12078–12083.PubMedCrossRefGoogle Scholar
  13. Karppinen, S. M., Heikkinen, K., Rapakko, K., and Winqvist, R. (2004). Mutation screening of the BARD1 gene: evidence for involvement of the Cys557Ser allele in hereditary susceptibility to breast cancer. J Med Genet 41, e114.PubMedCrossRefGoogle Scholar
  14. Li, L., Cohen, M., Wu, J., Sow, M. H., Nikolic, B., Bischof, P., and Irminger-Finger, I. (2007). Identification of BARD1 splice-isoforms involved in human trophoblast invasion. Int J Biochem Cell Biol.Google Scholar
  15. McCarthy, E. E., Celebi, J. T., Baer, R., and Ludwig, T. (2003). Loss of Bard1, the heterodimeric partner of the Brca1 tumor suppressor, results in early embryonic lethality and chromosomal instability. Mol Cell Biol 23, 5056–5063.PubMedCrossRefGoogle Scholar
  16. Meek, D. W. (1994). Post-translational modification of p53. Semin Cancer Biol 5, 203–210.PubMedGoogle Scholar
  17. Milczarek, G. J., Martinez, J., and Bowden, G. T. (1997). p53 Phosphorylation: biochemical and functional consequences. Life Sci 60, 1–11.PubMedCrossRefGoogle Scholar
  18. Pomeroy, S. L., Tamayo, P., Gaasenbeek, M., Sturla, L. M., Angelo, M., McLaughlin, M. E., Kim, J. Y., Goumnerova, L. C., Black, P. M., Lau, C., et al. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442.PubMedCrossRefGoogle Scholar
  19. Reedy, M. B., Hang, T., Gallion, H., Arnold, S., and Smith, S. A. (2001). Antisense inhibition of BRCA1 expression and molecular analysis of hereditary tumors indicate that functional inactivation of the p53 DNA damage response pathway is required for BRCA-associated tumorigenesis. Gynecol Oncol 81, 441–446.PubMedCrossRefGoogle Scholar
  20. Ren, B., Cam, H., Takahashi, Y., Volkert, T., Terragni, J., Young, R. A., and Dynlacht, B. D. (2002). E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 16, 245–256.PubMedCrossRefGoogle Scholar
  21. Thai, T. H., Du, F., Tsan, J. T., Jin, Y., Phung, A., Spillman, M. A., Massa, H. F., Muller, C. Y., Ashfaq, R., Mathis, J. M., et al. (1998). Mutations in the BRCA1-associated RING domain (BARD1) gene in primary breast, ovarian and uterine cancers. Hum Mol Genet 7, 195–202.PubMedCrossRefGoogle Scholar
  22. Tsuzuki, M., Wu, W., Nishikawa, H., Hayami, R., Oyake, D., Yabuki, Y., Fukuda, M., and Ohta, T. (2005). A truncated splice variant of human BARD1 that lacks the RING finger and ankyrin repeats. Cancer Lett.Google Scholar
  23. Wu, J. Y., Vlastos, A. T., Pelte, M. F., Caligo, M. A., Bianco, A., Krause, K. H., Laurent, G. J., and Irminger-Finger, I. (2006). Aberrant expression of BARD1 in breast and ovarian cancers with poor prognosis. Int J Cancer 118, 1215–1226.PubMedCrossRefGoogle Scholar
  24. Wu, J. Y., Vlastos, A. T., Pelte, M. T., Caligo, M. A., Bianco, A., Krause, K. H., Laurent, J. G., and Irminger-Finger, I. (2005). Aberrant expression of BARD1 in breast and ovarian cancers with poor prognosis. Int J Cancer.Google Scholar
  25. Wu, L. C., Wang, Z. W., Tsan, J. T., Spillman, M. A., Phung, A., Xu, X. L., Yang, M. C., Hwang, L. Y., Bowcock, A. M., and Baer, R. (1996). Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat Genet 14, 430–440.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Irmgard Irminger-Finger
    • 1
  • Shazib Pervais
    • 2
  1. 1.Department of Gynecology and ObstetricsUniversity Hospitals GenevaSwitzerland
  2. 2.National University of SingaporeSingapore

Personalised recommendations