Pattern Classification of Visual Evoked Potentials Based on Parallel Factor Analysis

  • Jie Li
  • Liqing Zhang
  • Qibin Zhao

Abstract

Visual Evoked Potentials (VEPs) reflect the brain’s mental process to specific stimuli, including perception and recognition. Feature analysis of VEPs evoked by geometric figures is of significance in understanding visual neural mechanism and has potential applications in the field of brain computer interface and biomedical engineering. We use Parallel Factor (PARAFAC) model to extract features of the VEPs triggered by three classes of geometric figures, and construct the computational model for class discrimination. PARAFAC is used to decompose the wavelet transformed VEPs. Then by the proposed computational model, we can project single trial data into the subspace spanned by channel× frequency× time of the factors to obtain the feature vectors. We further use SVM to classify the feature vectors of the selected two classes, achieving the highest classification accuracy 80%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gruber, T., Malinowski, P., Muller, M.: Modulation of oscillatory brain activity and evoked potentials in a repetition priming task in the human EEG. Eur. J. Neurosci. 19 (2004) 1073–1082.PubMedCrossRefGoogle Scholar
  2. 2.
    Gruber, W., Klimesch, W., Sauseng, P., Doppelmayr, M.: Alpha phase synchronization predicts P1 and N1 latency and amplitude size. Cereb. Cortex 15 (2005) 371–377.PubMedCrossRefGoogle Scholar
  3. 3.
    Jansen, B., Hegde, A., Boutros, N.: Contribution of different EEG frequencies to auditory evoked potential abnormalities in schizophrenia. Clin. Neurophysiol. 115 (2004) 523–533.PubMedCrossRefGoogle Scholar
  4. 4.
    Jones, K., Begleiter, H., Porjesz, B., Wang, K., Chorlian, D.: Complexity measures of event related potential surface laplacian data calculated using the wavelet packet transform. Brain Topogr. 14 (2002) 333–344.PubMedCrossRefGoogle Scholar
  5. 5.
    Miwakeichi, F., Nez-Montes, E., Valdes-Sosa, P., Nishiyama, N., Mizuhara, H., Yamaguchi, Y.: Decomposing EEG data into space-time-frequency components using parallel factor analysis. NeuroImage 22 (2004) 1035–1045.PubMedCrossRefGoogle Scholar
  6. 6.
    Mørup, M., Hansen, L., Herrmann, C., Parnas, J., Arnfred, S.: Parallel factor analysis as an exploratory tool for wavelet transformed event-related EEG. NeuroImage 29 (2006) 938–947.PubMedCrossRefGoogle Scholar
  7. 7.
    Lathauwer, L., Moor, B., Vandewalle, J.: On the best Rank-1 and Rank-(r1, r2, …, rn)approximation of higher-order tensors. Society for Industrial and Applied Mathematics 21 (2000) 1324–1342.Google Scholar
  8. 8.
    Mørup, M., Hansen, L., Parnas, J., Arnfred, S.: Decomposing the time-frequency representation of EEG using non-negative matrix and multi-way factorization. Technical reports (2006).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jie Li
    • 1
  • Liqing Zhang
    • 1
  • Qibin Zhao
    • 1
  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniveristyShanghai 200240China

Personalised recommendations