EEG Dynamics During Nitrous Oxide Inhalation in Healthy Male Participants

  • Brett L. Foster
  • Mathew P. Dafilis
  • Nicholas C. Sinclair
  • David T.J. Liley
Conference paper

Abstract

Despite nitrous oxides (N2O) wide and historic clinical use, its quantitative effects on electrical brain function are still poorly characterised. Here we report on improved attempts to characterise the quantitative EEG dynamics of N2O inhalation in healthy males. Results show varying concentrations do not suppresses resting spectra, but rather enhance alpha/beta power.

Keywords

Entropy Dioxide NMDA Ketamine Washout 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Bowdle, T.A.: Depth of anesthesia monitoring. Anesthesiol Clin 24(4) (2006) 793–822.PubMedCrossRefGoogle Scholar
  2. 2.
    Rampil, I.J., Kim, J.S., Lenhardt, R., Negishi, C., Sessler, D.I.: Bispectral EEG index during nitrous oxide administration. Anesthesiology 89(3) (1998) 671–677.PubMedCrossRefGoogle Scholar
  3. 3.
    Barr, G., Jakobsson, J.G., Owall, A., Anderson, R.E.: Nitrous oxide does not alter bispectral index: study with nitrous oxide as sole agent and as an adjunct to i.v. anaesthesia. Br J Anaesth 82(6) (1999) 827–830.PubMedGoogle Scholar
  4. 4.
    Anderson, R.E., Jakobsson, J.G.: Entropy of EEG during anaesthetic induction: a comparative study with propofol or nitrous oxide as sole agent. Br J Anaesth 92(2) (2004) 167–170.PubMedCrossRefGoogle Scholar
  5. 5.
    Goto, T., Nakata, Y., Saito, H., Ishiguro, Y., Niimi, Y., Suwa, K., Morita, S.: Bispectral analysis of the electroencephalogram does not predict respon- siveness to verbal command in patients emerging from xenon anaesthesia. Br J Anaesth 85(3) (2000) 359–363.PubMedGoogle Scholar
  6. 6.
    Hirota, K.: Special cases: ketamine, nitrous oxide and xenon. Best Pract Res Clin Anaesthesiol 20(1) (2006) 69–79.PubMedCrossRefGoogle Scholar
  7. 7.
    Erchova, I.A., Lebedev, M.A., Diamond, M.E.: Somatosensory cortical neuronal population activity across states of anaesthesia. Eur J Neurosci 15(4) (2002) 744–752.PubMedCrossRefGoogle Scholar
  8. 8.
    Rudolph, U., Antkowiak, B.: Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 5(9) (2004) 709–720.PubMedCrossRefGoogle Scholar
  9. 9.
    Yamakura, T., Harris, R.A.: Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels. Comparison with iso urane and ethanol. Anesthesiology 93(4) (2000) 1095–1101.PubMedCrossRefGoogle Scholar
  10. 10.
    John, E.R., Prichep, L.S., Kox, W., Valdes-Sosa, P., Bosch-Bayard, J., Aubert, E., Tom, M., di Michele, F., Gugino, L.D.: Invariant reversible QEEG effects of anesthetics. Conscious Cogn 10(2) (2001) 165–183.PubMedCrossRefGoogle Scholar
  11. 11.
    Johnson, B.W., Sleigh, J.W., Kirk, I.J., Williams, M.L.: High-density EEG mapping during general anaesthesia with xenon and propofol: a pilot study. Anaesth Intensive Care 31(2) (2003) 155–163.PubMedGoogle Scholar
  12. 12.
    Tsuda, N., Hayashi, K., Hagihira, S., Sawa, T.: Ketamine, an NMDA-antagonist, increases the oscillatory frequencies of alpha-peaks on the electroencephalographic power spectrum. Acta Anaesthesiol Scand 51(4) (2007) 472–481.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Brett L. Foster
    • 1
  • Mathew P. Dafilis
  • Nicholas C. Sinclair
  • David T.J. Liley
  1. 1.Brain Dynamics Research Unit, Brain Sciences InstituteSwinburne University of TechnologyMelbourneAustralia

Personalised recommendations