Analysis of long-term ecological status of Lake Balaton based on the ALMOBAL phytoplankton database

  • Éva Hajnal
  • Judit Padisák
Part of the Developments in Hydrobiology book series (DIHY, volume 199)


Lake Balaton (Hungary), one of the largest lakes in Europe, has undergone eutrophication and restoration during the last two decades. The first quantitative phytoplankton records date back to the 1930s, and since that time thousands of data have been published or accumulated in counting protocols or computer sheets. These data provide material for both scientific analyses (e.g. effects of global change) and applications (e.g. estimation of reference state for the Water Framework Directive). The ALMOBAL phytoplankton database was developed to provide computing support for these applications. It stores data in standardized forms, handles synonyms and allows analyses to be conducted on the basis of floral records, numbers or biomass. The analysis includes records of about 3000 phytoplankton samples taken during the past 60 years from two representative basins in Lake Balaton. This article represents the first attempt at historical reconstruction of the ecological status and compares it with changes in trophic state and current water quality. The results indicate that the phytoplankton biomass and community structure found in the early 1960s could be regarded as reference conditions. Statistical analyses support the view that late summer phytoplankton assemblages are the most sensitive indicators of trophic change, and clearly show the eutrophication of the lake that occurred from the mid-1970s to the mid-1990s and the restoration during the last decade. An additional advantage is that, since quality estimation is based on relative biomass, the method can be used to reconstruct water quality in cases when counting protocols are available, but some basic data for quantitative estimates are missing.


WFD Phytoplankton Database Functional assemblages Monitoring Long-term changes Eutrophication Restoration Q-index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez-Cobelas, M., C. S. Reynolds, P. Sanchez-Castillo & J. Kristiansen, 1998. Phytoplankton and Trophic Gradients. Developments in Hydrobiology, Vol. 129. Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 372.Google Scholar
  2. Blenckner, T., This volume. Models as tools to understand past, recent and future changes of large lakes. Hydrobiologia.Google Scholar
  3. Crosetti, L. O.& C. E. D. Bicudo, 2005. Structural and functional phytoplankton responses to nutrient impoverishment in mesocosms placed in a shallow eutrophic reservoir (Garças Pond), São Paulo, Brazil. Hydrobiologia 541: 71–85.CrossRefGoogle Scholar
  4. da Silva, C. A., S. Train & L. C. Rodrigues, 2005. Phytoplankton assemblages in a Brazilian subtropical cascading reservoir system. Hydrobiologia 537: 99–109.CrossRefGoogle Scholar
  5. Descy, J.-P., C. S. Reynolds & J. Padisák, 1994. Phytoplankton in Turbid Environments. Rivers and Shallow Lakes. Developments in Hydrobiology, Vol. 100. Kluwer Academic Publishers, Dordrecht, Boston, London, 214.Google Scholar
  6. Devercelli, M., 2006. Phytoplankton of the Middle Paraná River during an anomalous hydrological period: a morphological and functional approach. Hydrobiologia 563:465–478.CrossRefGoogle Scholar
  7. EC Parliament and Council, 2000. Directive of the European Parliament and of the Council 2000/60/EC establishing a framework for community action in the field of water policy. European Commission PE-CONS 3639/1/100 Rev 1, Luxembourg.Google Scholar
  8. Entz, G., J. Kottász & O. Sebestyén, 1937. Quantitatív tanulmányok a Balaton bioszesztonján. Annales Instituti Biologici Tihany 9: 1–144. (Quantitative studies on the bioseston of Lake Balaton).Google Scholar
  9. Findlay, D. L. & S. E. M. Kasian, 1987. Phytoplankton community responses to nutrient addition in Lake 226, Experimental Lakes Area, Northwestern Ontario. Canadian Journal of Fisheries and Aquatic Sciences 44: 35–46.CrossRefGoogle Scholar
  10. Findlay D. L., J. J. Paterson, L. L. Hendzel & H. J. Kling, 2005. Factors influencing Gonyostomum semen blooms in a small boreal reservoir lake. Hydrobiologia 533: 243–252.CrossRefGoogle Scholar
  11. G.-Tóth, L. & J. Padisák, 1978. Short term investigations on the phytoplankton of Lake Balaton at Tihany. Acta Botanica Academiae Scientiarum Hungaricae 24: 187–204.Google Scholar
  12. Hajnal, É. & J. Padisák, 2006a. Balatoni fitoplankton adatbázis (ALMOBAL) létrehozása és alkalmazhatósága vízminőségi monitorozásra. Hidrológiai Közlöny 86:149–150. (The ALMOBAL DataBase for water quality monitoring of Lake Balaton. In Hungarian with English summary).Google Scholar
  13. Hajnal, É. & J. Padisák, 2006b. Elaboration phytoplankton database (ALMOBAL) of Lake Balaton for monitoring water quality. Kandó Conference, Budapest ISBN 9637154426, 11.Google Scholar
  14. Herodek, S. & G. Tamás, 1973. The primary production of phytoplankton in Lake Balaton April-September 1972. Annales Instituti Biologici Tihany 40: 207–218.Google Scholar
  15. Herodek, S. & G. Tamás, 1975. The primary production of phytoplankton in the Keszthely Basin of Lake Balaton in 1973–74. Annales Instituti Biologici Tihany 42: 175–190.Google Scholar
  16. Istvánovics, V., L. Somlyódy & A. Clement, 2002. Cyanobacteria-mediated internal eutrophication in shallow Lake Balaton after load reduction. Water Research 36: 3314–3322.PubMedCrossRefGoogle Scholar
  17. Istvánovics, V., A. Clement, L. Somlyódy, A. Specziár, L. G.-Tóth & J. Padisák, 2007. Updating water quality targets for shallow Lake Balaton (Hungary), recovering from eutrophication. Hydrobiologia 581: 305–318.CrossRefGoogle Scholar
  18. Komárek, J. & B. Fott, 1983. Chlorophyceae (Grünalgen). Ordnung: Chlorococcales. In Huber-Pestalozzi, G. (ed.), Das Phytoplankton des Süsswassers. Systematik und Biologie, Vol. 7/1. Schweitzerbart’sche Verlagbuchhandlung, Stuttgart: 1044.Google Scholar
  19. Kristiansen, J., 2003. From IAP to IAP. Hydrobiologia 502:1–2.CrossRefGoogle Scholar
  20. Kümmerlin, R. E., 1991. Long-term development of phytoplankton in Lake Constance. Verhandlungen der internationle Vereinigung für throretische und angewandte Limnologie 24: 826–830.Google Scholar
  21. Lepistö, L., A. Räike & O.-P. Pietiläinen, 1999. Long-term changes of phytoplankton in a eutrophicated boreal lake during the past one hundred years (1893–1998). Algological Studies 94: 223–244.Google Scholar
  22. Lopes, M. R. M., C. E. de M. Bicudo & M. C. Ferragut, 2005. Short term spatial and temporal variation of phytoplankton in a shallow tropical oligotrophic reservoir, southeast Brazil. Hydrobiologia 542: 235–247.CrossRefGoogle Scholar
  23. Lund, J. W. G., 1979. Changes in the phytoplankton of an English lake, 1945–1977. Freshwater Biological Association Publications 1306.Google Scholar
  24. Makarewicz, J. C. & R. I. Baybutt, 1981. Long-term (1927–1978) changes in the phytoplankton community of Lake Michigan at Chicago. Bulletin of the Torrey Botanical Club 108: 240–254.CrossRefGoogle Scholar
  25. Mineeva, N. M. & A. S. Litvinov, 1998. Long-term variation of chlorophyll content in Rybinsk Reservoir (Russia) in relation to its hydrological regime. In George, D. G., J. G. Jones, P. Puncochar, C. S. Reynolds & D. W. Sutcliffe (eds), Management of Lakes and Reservoirs During Global Change. Kluwer Academic Publisher, Dordrecht, Boston, London: 111–125.Google Scholar
  26. Morabito, G., A. Oggioni, E. Caravati & P. Panzani, 2007. Seasonal morphological plasticity of phytoplankton in Lago Maggiore (N. Italy). Hydrobiologia 578: 47–57.CrossRefGoogle Scholar
  27. Naselli-Flores, L., J. Padisák & M. Dokulil, 2003. Phytoplankton and Equilibrium Concept: The Ecology of Steady-State Assemblages. Developments in Hydrobiology, Vol. 172. Kluwer Academic Publishers, Dordrecht, Boston, London, 403.Google Scholar
  28. Naselli-Flores, L. & R. Barone, 2005. Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiolgia 548: 85–99.CrossRefGoogle Scholar
  29. Naselli-Flores, L., J. Padisák & M. Albay, 2007. Shape and size in phytoplankton ecology: Do they matter? Hydrobiologia 578: 157–161.CrossRefGoogle Scholar
  30. Neale, P., J. F. Talling, S. I. Heaney, C. S. Reynolds & J. W. G. Lund, 1991. Long time series from the English Lake District: Irradiance-dependent phytoplankton dynamics during spring maximum. Limnology Oceanography 36:751–760.CrossRefGoogle Scholar
  31. Padisák, J., 1998. Sudden and gradual responses of phytoplankton to global climate change: case studies from two large, shallow lakes (Balaton, Hungary and the Neusiedlersee Austria/Hungary). In George, D. G., J. G. Jones, P. Puncochar, C. S. Reynolds & D. W. Sutcliffe (eds), Management of Lakes and Reservoirs During Global Change. Kluwer Academic Publisher, Dordrecht, Boston, London: 111–125.Google Scholar
  32. Padisák, J. & L. G.-Tóth, 1991. Some aspects of the ecology of the subdominant green algae in a large nutrient limited shallow lake (Balaton, Hungary). Archiv für Protistenkunde 139: 225–242.Google Scholar
  33. Padisák, J., C. S. Reynolds & U. Sommer, 1993. Intermediate Disturbance Hypothesis in Phytoplankton Ecology. Developments in Hydrobiology, Vol. 81. Kluwer Academic Publishers, Dordrecht, Boston, London, 200.Google Scholar
  34. Padisák, J. & A. Kovács, 1997. Anabaena compacta (Nygaard) Hickel-új kékalga faj a Balaton üledékében és planktonjában. Hidrológiai Közlöny 77: 29–32. (Anabaena compacta (Nygaard) Hickelöa new blue-green algal species in the sediments and plankton of lake Balaton. In Hungarian with English summary).Google Scholar
  35. Padisák, J., L. Krienitz, W. Scheffler, R. Koschel, J. Kristiansen & I. Grigorszky, 1998. Phytoplankton succession in the oligotrophic Lake Stechlin (Germany) in 1994 and 1995. Hydrobiologia 369/370: 179–197.CrossRefGoogle Scholar
  36. Padisák, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophicatioon and restoration measures, with special reference to cyanoprokaryotes. Hydrobiologia 384: 41–53.CrossRefGoogle Scholar
  37. Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.CrossRefGoogle Scholar
  38. Padisák, J., É. Soróczki-Pintér, É. Hajnal & Zs. Zámbóné-Doma, 2004. A balatoni fitoplankton tér-és időbeli mintázata 2003-ban. In Mahunka, S. & J. Banczerowski (eds), A Balaton kutatásának 2003. évi eredményei. MTA-Amulett’98, Budapest, 16–26. (Spatial and temporal patterns of Lake Balaton phytoplankton in 2003. Results of Lake Balaton Research in 2003. In Hungarian).Google Scholar
  39. Padisák, J., É. Soróczki-Pintér, É. Hajnal & Zs. Zámbóné-Doma, 2005. A balatoni fitoplankton tér-és időbeli mintázata 2004-ben. In Mahunka, S. & J. Banczerowski (eds), A Balaton kutatásának 2004. évi eredményei. MTA-Amulett’98, Budapest, 16–26. (Spatial and temporal patterns of Lake Balaton phytoplankton in 2004. Results of Lake Balaton Research in 2003. In Hungarian).Google Scholar
  40. Padisák, J., G. Borics, I. Grigorszky & É. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the water framework directive: the assemblage index. Hydrobiologia 553: 1–14.CrossRefGoogle Scholar
  41. Podani, J., 1988. Syn-Tax III. User’s manual. Abstracta Botanica 12: 1–183.Google Scholar
  42. Pomogyi, P., 1993. Nutrient retention by the Kis-Balaton Water Protection System. Hydrobiologia 251: 309–320.CrossRefGoogle Scholar
  43. Reynolds, C. S. & E. G. Bellinger, 1992. Patterns of abundance and dominance of the phytoplankton on Rostherne Mere, England: evidence from a 18-year data set. Aquatic Sciences 54: 10–36.CrossRefGoogle Scholar
  44. Reynolds, C. S., M. T. Dokulil & J. Padisák, 2000. The Trophic Spectrum Revisited. Developments in Hydrobiology, Vol. 150. Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 152.Google Scholar
  45. Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.CrossRefGoogle Scholar
  46. Salmaso, N. & J. Padisák, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.CrossRefGoogle Scholar
  47. Sas, H., 1989. Lake Restoration and Reduction of Nutrient Loading: Expectations, Experiences, Extrapolations. Academia Verlag Richarz, St Augustin.Google Scholar
  48. Sebestyén, O., 1960. Á llományokról, különös tekintettel a tavi planktonra (Balatoni tanulmányok alapján). Annales Instituti Biologici Tihany 27: 93–113. (Über Bestände, mit besonderer Berücksichtigung des See-Planktons (auf Grund von Balaton-Studien). In Hungarian with German summary).Google Scholar
  49. Talling, J. F., 1993. Comparative seasonal changes, and interannual variability and stability in a 26-year record of total phytoplankton biomass in four English lake basins. Hydrobiologia 268: 65–98.CrossRefGoogle Scholar
  50. Tamás, G., 1955. Mennyiségi planktontanulmányok a Balatonon VI. A negyvenes évek fitoplanktonjának biomasszája. Annales Instituti Biologici Tihany 23: 95–110. (Quantitative plankton studies on Lake Balaton. VI. Biomass of the phytoplankton of the forties. In Hungarian with English summary).Google Scholar
  51. Tamás, G., 1965. Horizontale Plankton-Untersuchungen im Balaton VI. über das Phytoplankton im südwestlichen Teil des Sees auf Grund von Schöpf-und Netzfilterproben vom July 1962. Annales Instituti Biologici Tihany 32: 229–245.Google Scholar
  52. Tamás, G., 1967. Horizontale Plankton-Untersuchungen im Balaton V. Über das Phytoplankton des Sees auf Grund der im Jahre 1965 geschöpften und Netzfilterproben. Annales Instituti Biologici Tihany 34: 191–231.Google Scholar
  53. Tamás, G., 1969. Horizontal plankton investigations in Lake Balaton VII. On the phytoplankton of Lake Balaton, based on scooped samples and filtrates taken in 1966. Annales Instituti Biologici Tihany 36: 257–292.Google Scholar
  54. Tamás, G., 1972. Horizontal Phytoplankton studies in Lake Balaton based on scooped samples and filtrates taken in 1967. Annales Instituti Biologici Tihany 39: 151–188.Google Scholar
  55. Tamás, G., 1974. The Biomass Changes of Phytoplankton in Lake Balaton during the1960s. Annales Instituti Biologici Tihany 41: 323–342.Google Scholar
  56. Tamás, G., 1975. Horizontally occurring quantitative phytoplankton investigations in Lake Balaton, 1974. Annales Instituti Biologici Tihany 42: 219–280.Google Scholar
  57. Townsend, S. A., 2005. Hydraulic phases, persistent stratification, and phytoplankton in a tropical floodplain Lake (Mary River, Northern Australia). Hydrobiologia 556:163–179.CrossRefGoogle Scholar
  58. Utermöhl, H., 1936. Quantitative Methoden Untersuchung des Nannoplankton in Adderheldens. Handbuch der Biologische Arbeitmethoden, Abteilung IX(1).Google Scholar
  59. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der internationale Vereinigung für theoretische und angewandte Limnologie 5: 567–596.Google Scholar
  60. Vörös, L., 1980. A Balaton fitoplanktonjának tömege, összetétele és diverzitása 1976-ban. Botanikai Közlemények 67: 25–33. (Masse, Zusammensetzung und Diversität der Phytoplankton im Balaton, in Jahre 1976. In Hungarian with German summary).Google Scholar
  61. Willén, E., 1992. Long-term changes in the phytoplankton of large lakes in response to changes in nutrient loading. Nordic Journal of Botany 12: 577–587.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of LimnologyUniversity of PannoniaVeszpremHungary

Personalised recommendations