Changes in the water level of Lake Peipsi and their reflection in a sediment core

  • Jaan-Mati Punning
  • Galina Kapanen
  • Mihkel Kangur
  • Tiit Hang
  • Natalia Davydova
Part of the Developments in Hydrobiology book series (DIHY, volume 199)


A comprehensive study (chronological, lithological and geochemical) of an 8.5 m postglacial sediment sequence from Lake Peipsi was conducted to elucidate the effects of lake-level changes on the sedimentary environment and biogeochemical dynamics in a large lake. Four lithological units were distinguished in the sediment sequence studied: clayey silt, slightly laminated greyish carbonaceous gyttja, brownish-grey gyttja and dark gyttja. These units indicate that large shifts in sedimentation processes occurred in the past. The sediment data show that fluctuations in water depth had a profound impact on the lake environment, recorded as changes in the lithological composition, phosphorus content of sediments and composition of diatom assemblages. The corresponding changes are best reflected in sediments accumulated during phases of regression when the lake area was also smaller. As the water depth and area of the lake increased, wave-induced erosion and resedimentation smoothed or even disturbed the initial information. The increase of phosphorus content in the unconsolidated, high-porosity surface sediments (0.5 m) is most probably connected with active diffusion and matter exchange between the water-sediment pools.


Lake sediments Lake Peipsi Sediment lithology Water-level fluctuations Diatom assemblages Phosphorus content 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barker, P. A., N. Roberts, H. F. Lamb, S. van der Kaars & A. Benkaddour, 1994. Interpretation of Holocene lake-level changes from diatom assemblages in Lake Sidi Ali, Middle Atlas, Morocco. Journal of Paleolimnology 12: 223–234.CrossRefGoogle Scholar
  2. Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron & H. Bennion, 2001. Diatoms. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Change Using Lake Sediments, Vol. 3: Terrestrial, Algal and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, 155–202.Google Scholar
  3. Battarbee, R. W., N. Anderson, E. Jeppesen & P. Leavitt, 2005. Combining paleolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshwater Biology 50: 1772–1780.CrossRefGoogle Scholar
  4. Blinova, I., 2001. Riverine load into L. Peipsi. In Nõges, T. (ed.), Peipsi. Meteorology, Hydrology, Hydrochemistry. Sulemees Publishers, Tartu, 94–96.Google Scholar
  5. Ciglenečki, I., M. Carić, F. Kršinić, D. Viličić & B. Ćosović, 2005. The extinction by sulphide — turnover and recovery of a naturally eutrophic, meromictic seawater lake. Journal of Marine Systems 56: 29–44.CrossRefGoogle Scholar
  6. Davydova, N., 1981. Diatoms in sediment cores from Lake Peipsi-Pskov. In Raukas, A. (ed.), Bottom Deposits of Lake Peipsi. Estonian Academy of Sciences, Tallinn, 74–81, (In Russian).Google Scholar
  7. Davydova, N., 1985. Diatoms — Indicators of Natural Conditions of Water Reservoir in Holocene. Nauka, Leningrad, (In Russian).Google Scholar
  8. Davydova, N. & K. Kimmel, 1991. Palaeogeography of Lake Peipsi on the basis of biostratigraphical studies of bottom sediments. Proceedings of the Estonian Academy of Sciences, Geology 40: 16–23, (In Russian).Google Scholar
  9. Dean, W. E., 1999. The carbon cycle and biogeochemical dynamics in lake sediments. Journal of Paleolimnology 21: 375–393.CrossRefGoogle Scholar
  10. Golterman, H. L., 2004. The Chemistry of Phosphate and Nitrogen Compounds in Sediments. Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  11. Håkanson, L. & M. Jansson, 1983. Principles of Lake Sedimentology. Springer-Verlag, Berlin.Google Scholar
  12. Hang, T. & A. Miidel, 1999a. Bedrock topography. In Miidel, A. & A. Raukas (eds), Lake Peipsi: Geology. Sulemees Publishers, Tallinn, 27–28.Google Scholar
  13. Hang, T. & A. Miidel, 1999b. Holocene history of the lake. In Miidel, A. & A. Raukas (eds), Lake Peipsi: Geology. Sulemees Publishers, Tallinn, 131–135.Google Scholar
  14. Hang, T., A. Miidel, V. Kalm & K. Kimmel, 2001. New data on the distribution and stratigraphy of the bottom deposits of Lake Peipsi. Proceedings of the Estonian Academy of Sciences, Geology 50: 233–253.Google Scholar
  15. Heiri O., A. F. Lotter & M.-J. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.CrossRefGoogle Scholar
  16. Kangur, K., T. Möls, J. Haberman, K. Kangro, R. Laugaste, A. Milius, T. Nõges, H. Timm, T. Timm & P. Zingel, 2002. Lake Peipsi change of ecological state during 1992–2001. In Roose, A. (ed.), Estonian Environmental Monitoring 2001. Tartu, 57–64, (In Estonian).Google Scholar
  17. Kangur, M., K. Kangur, R. Laugaste, J.-M. Punning & T. Möls, 2007. Combining limnological and palaeolimnological approaches in assessing degradation of Lake Pskov. Hydrobiologia 584: 121–132.CrossRefGoogle Scholar
  18. Kozerski H. P., H. Behrendt & J. Köhler, 1994. Possibilities and limitations of sediment traps to measure sedimentation and resuspension. Hydrobiologia 284: 93–100.CrossRefGoogle Scholar
  19. Kozerski H. P., H. Behrendt & J. Köhler, 1999. The N and P budget of the shallow, flushed lake Müggelsee: retention, external and internal load. Hydrobiologia 408/409: 159–166.CrossRefGoogle Scholar
  20. Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae. In Susswasserflora Mitteleuropas 2/1–4. Stuttgart.Google Scholar
  21. Miidel, A., T. Hang, R. Pirrus & A. Liiva, 1995. On the development of the southern part of Lake Peipsi in the Holocene. Proceedings of the Estonian Academy of Sciences, Geology 44: 33–44.Google Scholar
  22. Niinemets, E., 1999. Ostracods. In Miidel, A. & A. Raukas (eds), Lake Peipsi: Geology. Sulemees Publishers, Tallinn, 90–97.Google Scholar
  23. Nõges, T., A. Heinsalu, T. Alliksaar & P. Nõges, 2006. Paleolimnological assessment of eutrophication history of large transboundary Lake Peipsi, Estonia/Russia. Verhandlungen der Internationalen Vereinigung für Limnologie 29: 1135–1138.Google Scholar
  24. Orviku, K., 1960. Geomorphology. In Orviku, K. (ed.), Geology of U.S.S.R., 28. Gosgeoltekhizdat, Moscow, 209–230, (In Russian).Google Scholar
  25. Pirrus, R. & V. Tassa, 1981. On the sapropel layer at Värska. In Raukas, A. (ed.), Bottom Deposits of Pihkva-Peipsi Lake. Estonian Academy of Sciences, Tallinn: 82–93, (In Russian).Google Scholar
  26. Punning, J.-M. & A. Leeben, 2003. A comparison of sediment and monitoring data: implications for paleomonitoring a small lake. Environmental Monitoring and Assessment 89: 1–13.PubMedCrossRefGoogle Scholar
  27. Punning, J.-M., M. Kangur, T. Koff & G. Possnert, 2003. Holocene lake-level changes and their reflection in the paleolimnological records of two lakes in northern Estonia. Journal of Paleolimnology 29: 167–178.CrossRefGoogle Scholar
  28. Punning, J.-M., L. Puusepp & T. Koff, 2004. Spatial variability of diatoms, subfossil macrophytes and OC/N values in surface sediments of Lake Väike Juusa (southern Estonia). Proceedings of the Estonian Academy of Sciences. Biology, Ecology 53: 147–160.Google Scholar
  29. Punning, J.-M., T. Koff, E. Kadastik & A. Mikomägi, 2005. Holocene lake level fluctuations recorded in the sediment composition of Lake Juusa, southeastern Estonia. Journal of Paleolimnology 34: 377–390.CrossRefGoogle Scholar
  30. Raukas, A., 1981. On the lithological composition of bottom deposits in Pihkva-Peipsi Lake. In Raukas, A. (ed.), Bottom Deposits of Pihkva-Peipsi Lake. Estonian Academy of Sciences, Tallinn, 23–41, (In Russian).Google Scholar
  31. Sarv, A. & E. Ilves, 1975. On Holocene deposits in the delta of River Emajõgi (Saviku). Proceedings of Estonian Academy of Sciences. Chemistry, Geology 24: 64–69, (In Russian).Google Scholar
  32. SFS 3025: 1986. Determination of Phosphorus in Water. Finnish Standards Association SFS, Helsinki.Google Scholar
  33. SFS 3026: 1986. Determination of Phosphate in Water. Finnish Standards Association SFS, Helsinki.Google Scholar
  34. Simonsen, R., 1987. Atlas and Catalogue of the Diatom Types of Friederich Hustedt, Vol. I–III. Stuttgart.Google Scholar
  35. Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506/509: 135–145.CrossRefGoogle Scholar
  36. Yang, J.-R. &, 1995. Regression and weighted averaging models relating surficial sedimentary diatom assemblages to water depth in Lake Ontario. Journal of Great Lakes Research 21: 84–94.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Jaan-Mati Punning
    • 1
  • Galina Kapanen
    • 1
  • Mihkel Kangur
    • 1
  • Tiit Hang
    • 2
  • Natalia Davydova
    • 3
  1. 1.Institute of EcologyTallinn UniversityTallinnEstonia
  2. 2.Institute of GeologyUniversity of TartuTartuEstonia
  3. 3.Institute of LimnologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations