Insecticidal Genetically Modified Crops and Insect Resistance Management (IRM)

  • Juan Ferré
  • Jeroen Van Rie
  • Susan C. Macintosh
Part of the Progress in Biological Control book series (PIBC, volume 5)

Abstract

Economically important crops, such as maize and cotton, have been transformed with genes encoding insecticidal proteins from Bacillus thuringiensis (Bt) to confer them protection against the most important insect pests. Of the 114 million hectares globally planted with GM crops in 2007, over one third are insect-resistant Bt crops, and the area keeps increasing every year. The potential for insects to evolve resistance to GM insecticidal plants is considered to be one of the main threats to this technology, since resistance to Bt sprayable products has been demonstrated. Insect resistance management plans for this new class of pesticides are encouraged and became mandatory in the USA. Of the several strategies considered, a high dose of the insecticidal protein along with an adjacent refuge plot of non-Bt plants has been chosen as the most effective. Second generation Bt cotton combines two insecticidal proteins with unique target sites. Such “pyramided” Bt crops hold great promise and, in combination with the high dose/refuge strategy, will likely confer maximum protection to the Bt crop technology against insect resistance. So far, no case of resistance evolution to Bt crops has been reported.

References

  1. Adamczyk, J.J., Jr., and Gore, J., 2004. Laboratory and field performance of cotton containing Cry1Ac, Cry1F, and both Cry1Ac and Cry1F (Widestrike®) against beet armyworm and fall armyworm larvae (Lepidoptera: Noctuidae). Florida Entomologist 87: 424–432.CrossRefGoogle Scholar
  2. Adamczyk, J.J., Jr., Adams, L.C., and Hardee, D.D., 2001. Field efficacy and seasonal expression profiles for terminal leaves of single and double Bacillus thuringiensis toxin cotton genotypes. Journal of Economic Entomology 94: 1589–1593.PubMedCrossRefGoogle Scholar
  3. Agi, A.L., Mahaffey, J.S., Bradley J.R., Jr., and Van Duyn, J.W., 2001. Efficacy of seed mixes of transgenic Bt and nontransgenic cotton against bollworm, Helicoverpa zea Boddie. Journal of Cotton Science 5: 74–80.Google Scholar
  4. Ahmad, M., and Roush, R., 1999. Estimation of allele frequencies for Bacillus thuringiensis resistance in diamondback moth, Plutella xylostella and cotton bollworm, Helicoverpa armigera: An isofemale line (F2) approach. BCPC Symposium Proceedings 72: 281–286.CrossRefGoogle Scholar
  5. Akhurst, R.J., James, W., Bird, L.J., and Beard, C., 2003. Resistance to the Cry1Ac A-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology 96: 1290–1299.PubMedCrossRefGoogle Scholar
  6. Alves, A.P., Spencer, T.A., Tabashnik, B.E., and Siegfried, B.D., 2006. Inheritance of resistance to the Cry1Ab Bacillus thuringiensis toxin in Ostrinia nubilalis (Lepidoptera: Crambidae). Journal of Economic Entomology 99: 494–501.PubMedCrossRefGoogle Scholar
  7. Alzate, O., You, T., Claybon, M., Osorio, C., Curtiss, A., and Dean, D.H., 2006. Effects of disulfide bridges in domain I of Bacillus thuringiensis Cry1Aa δ-endotoxin on ion-channel formation in biological membranes. Biochemistry 45: 13597–13605.PubMedCrossRefGoogle Scholar
  8. Andow, D.A., 2002. Resisting resistance to Bt-corn. In: Genetically Engineered Organisms: Assessing Environmental and Human Health Effects, D.K. Letourneau and B.E. Burrows, eds., CRC, Boca Raton, FL, USA, pp. 99–124.Google Scholar
  9. Andow, D.A., and Alstad, D.N., 1998. F2 screening for rare resistance alleles. Journal of Economic Entomology 91: 572–578.Google Scholar
  10. Andow, D.A., Alstad, D.N., Pang, Y.H., Bolin, P.C., and Hutchison, W.D., 1998. Using an F2 screen to search for resistance alleles to Bacillus thuringiensis toxin in European corn borer (Lepidoptera: Crambidae). Journal of Economic Entomology 91: 579–584.Google Scholar
  11. Andow, D.A., Olson, D.M., Hellmich, R.L., Alstad, D.N., and Hutchison, W.D., 2000. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in an Iowa population of European corn borer (Lepidoptera: Crambidae). Journal of Economic Entomology 93: 26–30.PubMedCrossRefGoogle Scholar
  12. Andreadis, S.S., Álvarez-Alfageme, F., Sánchez-Ramos, I., Stodola, T.J., Andow, D.A., Milonas, P.G., Savopoulou-Soultani, M., and Castánera, P., 2007. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in Greek and Spanish populations of Sesamia nonagrioides (Lepidoptera: Noctuidae). Journal of Economic Entomology 100: 195–201.PubMedCrossRefGoogle Scholar
  13. Atsumi, S., Mizuno, E., Hara, H., Nakanishi, K., Kitami, M., Miura, N., Tabunoki, H., Watanabe, A., and Sato, R., 2005. Location of the Bombyx mori aminopeptidase N type 1 binding site on Bacillus thuringiensis Cry1Aa toxin. Applied and Environmental Microbiology 71: 3966–3977.PubMedCrossRefGoogle Scholar
  14. Bacheler, J.S., and Mott, D.W., 1997. Efficacy of grower-managed Bt cotton in North Carolina. In: Beltwide Cotton Conference Proceedings, P. Dugger and D. Richter, eds., National Cotton Council, Memphis, TN, USA, pp. 858–861.Google Scholar
  15. Ballester, V., Granero, F., Tabashnik, B.E., Malvar, T., and Ferré, J., 1999. Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Applied and Environmental Microbiology 65: 1413–1419.PubMedGoogle Scholar
  16. Barrows, B.D., Haslam, S.M., Bischof, L.J., Morris, H.R., Dell, A., and Aroian, R.V., 2007. Resistance to Bacillus thuringiensis toxin in Caenorhabditis elegans from loss of fucose. Journal of Biological Chemistry 282: 3302–3311.PubMedCrossRefGoogle Scholar
  17. Bates, S.L., Cao, J., Zhao, J.Z., Earle, E.D., Roush, R.T., and Shelton, A.M., 2005a. Evaluation of a chemically inducible promoter for developing a within-plant refuge for resistance management. Journal of Economic Entomology 98: 2188–2194.PubMedCrossRefGoogle Scholar
  18. Bates, S.L., Zhao, J.Z., Roush, R.T., and Shelton, A.M., 2005b. Insect resistance management in GM crops: Past, present and future. Nature Biotechnology 23: 57–62.PubMedCrossRefGoogle Scholar
  19. Berliner, E., 1915. Über die Schlaffsucht der Mehlmottenraupe (Ephestia kuhniella, Zell.) und ihren Erreger Bacillus thuringiensis, n.sp. Zeitschrift für Angewandtes Entomologie 2: 29–56.Google Scholar
  20. Bird, L.J., and Akhurst, R.J., 2005. Fitness of Cry1A-resistant and -susceptible Helicoverpa armigera (Lepidoptera: Noctuidae) on transgenic cotton with reduced levels of Cry1Ac. Journal of Economic Entomology 97: 1699–1709.CrossRefGoogle Scholar
  21. Bolin, P.C., Hutchison, W.D., and Andow, D.A., 1999. Long-term selection for resistance to Bacillus thuringiensis Cry1Ac endotoxin in a Minnesota population of European corn borer (Lepidoptera: Crambidae). Journal of Economic Entomology 92: 1021–1030.Google Scholar
  22. Bourguet, D., Genissel, A., and Raymond, M., 2000. Insecticide resistance and dominance levels. Journal of Economic Entomology 93: 1588–1595.PubMedCrossRefGoogle Scholar
  23. Bourguet, D., Desquilbet, M., and Lemarié, S., 2005. Regulating insect resistance management: The case of non-Bt corn refuges in the US. Journal of Environmental Management 76: 210–220.PubMedCrossRefGoogle Scholar
  24. Bravo, A., Gómez, I., Conde, J., Muñoz-Garay, C., Sánchez, J., Miranda, R., Zhuang, M., Gill, S.S., and Soberón, M., 2004. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochimica et Biophysica Acta 1667: 38–46.PubMedCrossRefGoogle Scholar
  25. Bravo, A., Gill, S.S., and Soberón, M., 2005. Bacillus thuringiensis: Mechanisms and use. In: Comprehensive Molecular Insect Science, L.I. Gilbert, I. Kostas and S.S. Gill, eds., Elsevier, Oxford, UK, pp. 175–205.CrossRefGoogle Scholar
  26. Breitler, J.C., Cordero, M.J., Royer, M., Meynard, D., San Segundo, B., and Guiderdoni, E., 2001. The −689/+197 region of the maize protease inhibitor gene directs high level, wound-inducible expression of the cry1B gene which protects transgenic rice plants from stemborer attack. Molecular Breeding 7: 259–274.CrossRefGoogle Scholar
  27. Breitler, J.C., Vassal, J.M., Catala, M.M., Meynard, D., Marfà, V., Melé, E., Royer, M., Murillo, I., San Segundo, B., Guiderdoni, E., and Messeguer, J., 2004. Bt rice harbouring cry genes controlled by a constitutive or wound-inducible promoter: Protection and transgene expression under Mediterranean field conditions. Plant Biotechnology Journal 2: 417–430.PubMedCrossRefGoogle Scholar
  28. Brewer, G.J., 1991. Resistance to Bacillus thuringiensis subsp. kurstaki in the sunflower moth (Lepidoptera: Pyralidea). Environmental Entomology 20: 316–322.Google Scholar
  29. Briese, D.T., 1981. Resistance of insect species to microbial pathogen. In: Pathogenesis of Invertebrate Microbial Diseases, E. Davidson and O. Allenheld, eds., Totowa, NJ, USA, pp. 511–545.Google Scholar
  30. Briggs, J., 1963. Commercial production of insect pathogens. In: Insect Pathology: An Advanced Treatise, Vol. 2., E.A. Steinhaus, ed., Academic, New York, USA, pp. 519–548.Google Scholar
  31. Burd, T., Bradley, J.R., Jr., and Van Duyn, J.W., 1999. Performance of selected Bt cotton genotypes against bollworm in North Carolina. In: Beltwide Cotton Conference Proceedings, P. Dugger and D. Richter, eds., National Cotton Council, Memphis, TN, USA, pp. 931–934.Google Scholar
  32. Burd, A.D., Gould, F., Bradley, J.R., Van Duyn, J.W., and Moar, W.J., 2003. Estimated frequency of nonrecessive Bt resistance genes in bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in eastern North Carolina. Journal of Economic Entomology 96: 137–142.PubMedCrossRefGoogle Scholar
  33. Burges, H.D., and Jones, K.A., (1998). Formulation of bacteria, viruses and protozoa to control insects. In: Formulation of Microbial Biopesticides; Beneficial Microorganisms, Nematodes and Seed Treatments, H.D. Burges, ed., Kluwer, Dordrecht, The Netherlands, pp. 33–127.Google Scholar
  34. Candas, M., Loseva, O., Oppert, B., Kosaraju, P., and Bulla, L.A., Jr., 2003. Insect resistance to Bacillus thuringiensis: Alterations in the Indianmeal moth larval gut proteome. Molecular and Cellular Proteomics 2: 19–28.PubMedCrossRefGoogle Scholar
  35. Cao, J., Shelton, A.M., and Earle, E.D., 2001. Gene expression and insect resistance in transgenic broccoli containing a Bacillus thuringiensis cry1Ab gene with the chemically inducible PR-1a promoter. Molecular Breeding 8: 207–216.CrossRefGoogle Scholar
  36. Chaufaux, J., Seguin, M., Swanson, J.J., Bourguet, D., and Siegfried, B.D., 2001. Chronic exposure of the European corn borer (Lepidoptera: Crambidae) to Cry1Ab Bacillus thuringiensis toxin. Journal of Economic Entomology 94: 1564–1570.PubMedCrossRefGoogle Scholar
  37. Crickmore, N., Zeigler, D.R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., and Dean, D.H., 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews 62: 807–813.PubMedGoogle Scholar
  38. Crickmore, N., Zeigler, D.R., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J., Bravo, A., and Dean, D.H., 2007. Bacillus thuringiensis Toxin Nomenclature. http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/ (accessed 4 January 2008).
  39. Crowder, D.W., and Onstad, D.W., 2005. Using a generational time-step model to simulate dynamics of adaptation to transgenic corn and crop rotation by western corn rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology 98: 518–533.PubMedCrossRefGoogle Scholar
  40. Dalecky, A., Ponsard, S., Bailey, R., Pélissier, C., and Bourguet, D., 2006. Resistance evolution to Bt crops: Predispersal mating of European corn borers. PLoS Biology 4: 1–10.CrossRefGoogle Scholar
  41. Dorsch, J.A., Candas, M., Griko, N.B., Maaty, W.S., Midboe, E.G., Vadlamudi, R.K., and Bulla, L.A., Jr., 2002. Cry1A toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R(1) in Manduca sexta: Involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis. Insect Biochemistry and Molecular Biology 32: 1025–1036.PubMedCrossRefGoogle Scholar
  42. Dubois, N.R., and Dean, D.H., 1995. Synergism between Cry1A insecticidal crystal proteins and spores of Bacillus thuringiensis, and vegetative cells against Lymantria dispar (Lepidoptera: Lymantriidae) larvae. Environmental Entomology 24: 1741–1747.Google Scholar
  43. Estada, U., and Ferré, J., 1994. Binding of insecticidal crystal proteins of Bacillus thuringiensis to the midgut brush border of the cabbage looper, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), and selection for resistance to one of the crystal proteins. Applied and Environmental Microbiology 60: 3840–3846.PubMedGoogle Scholar
  44. Estela, A., Escriche, B., and Ferré, J., 2004. Interaction of Bacillus thuringiensis toxins with larval midgut binding sites of Helicoverpa armigera (Lepidoptera: Noctuidae). Applied and Environmental Microbiology 70: 1378–1384.PubMedCrossRefGoogle Scholar
  45. Fabrick, J.A., and Tabashnik, B.E., 2007. Binding of Bacillus thruringiensis toxin Cry1Ac to multiple sites of cadherin in pink bollworm. Insect Biochemistry and Molecular Biology 37: 97–106.PubMedCrossRefGoogle Scholar
  46. Farinós, G.P., de la Poza, M., Hernández-Crespo, P., Ortego, F., and Castañera, P., 2004. Resistance monitoring of field populations of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after 5 years of Bt maize cultivation in Spain. Entomologia Experimentalis et Applicata 110: 23–30.CrossRefGoogle Scholar
  47. Fernández, L.E., Aimanova, K.G., Gill, S.S., Bravo, A., and Soberón, M., 2006. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae. Biochemical Journal 394: 77–84.PubMedCrossRefGoogle Scholar
  48. Ferré, J., and Van Rie, J., 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology 47: 501–533.PubMedCrossRefGoogle Scholar
  49. Ferré, J., Real, D.M., Van Rie, J., Jansens, S., and Peferoen, M., 1991. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proceedings of the National Academy of Sciences of the USA 88: 5119–5123.PubMedCrossRefGoogle Scholar
  50. Flannagan, R.D., Yu, C.G., Mathis, J.P., Meyer, T.E., Shi, X., Siqueira, H.A., and Siegfried, B.D., 2005. Identification, cloning and expression of a Cry1Ab cadherin receptor from European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae). Insect Biochemistry and Molecular Biology 35: 33–40.PubMedCrossRefGoogle Scholar
  51. Forcada, C., Alcácer, E., Garcerá, M.D., and Martínez, R., 1996. Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins. Archives of Insect Biochemistry and Physiology 31: 257–272.CrossRefGoogle Scholar
  52. Forcada, C., Alcácer, E., Garcerá, M.D., Tato, A., and Martínez, R., 1999. Resistance to Bacillus thuringiensis Cry1Ac toxin in three strains of Heliothis virescens: Proteolytic and SEM study of the larval midgut. Archives of Insect Biochemistry and Physiology 42: 51–63.PubMedCrossRefGoogle Scholar
  53. Gahan, L.J., Gould, F., and Heckel, D.G., 2001. Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293: 857–860.PubMedCrossRefGoogle Scholar
  54. Gahan, L.J., Ma, Y.T., Coble, M.L., Gould, F., Moar, W.J., and Heckel, D.G., 2005. Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae). Journal of Economic Entomology 98: 1357–1368.PubMedCrossRefGoogle Scholar
  55. Gahan, L.J., Gould, F., López, J.D., Jr., Micinski, S., and Heckel, D.G., 2007. A polymerase chain reaction screen of field populations of Heliothis virescens for a retrotransposon insertion conferring resistance to Bacillus thuringiensis toxin. Journal of Economic Entomology 100: 187–194.PubMedCrossRefGoogle Scholar
  56. Gazit, E., La Rocca, P., Sansom, M.S., and Shai, Y., 1998. The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis delta-endotoxin are consistent with an “umbrella-like” structure of the pore. Proceedings of the National Academy of Sciences of the USA 95: 12289–12294.PubMedCrossRefGoogle Scholar
  57. Gill, M., and Ellar, D., 2002. Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin Cry1Ac1. Insect Molecular Biology 11: 619–625.PubMedCrossRefGoogle Scholar
  58. Georghiou, G.P., 1988. Implications of potential resistance to biopesticides. In: Biotechnology, Biological Pesticides, and Novel Plant Pest Resistance for Insect Pest Management, D.W. Roberts and R.R. Granados, eds., Boyce Thompson Institute, Ithaca, NY, USA, pp. 137–146.Google Scholar
  59. Girijashankar, V., Sharma, H.C., Sharma, K.K., Swathisree, V., Prasad, L.S., Bhat, B.V., Royer, M., San Segundo, B., Narasu, M.L., Altosaar, I., and Seetharama, N., 2005. Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Reports 24: 513–522.PubMedCrossRefGoogle Scholar
  60. Gómez, I., Oltean, D.I., Gill, S.S., Bravo, A., and Soberón, M., 2001. Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin interaction using phage display. Journal of Biological Chemistry 276: 28906–28912.PubMedCrossRefGoogle Scholar
  61. Gómez, I., Miranda-Rios, J., Rudino-Pinera, E., Oltean, D.I., Gill, S.S., Bravo, A., and Soberón, M., 2002a. Hydropathic complementarity determines interaction of epitope (869) HITDTNNK(876) in Manduca sexta Bt-R(1) receptor with loop 2 of domain II of Bacillus thuringiensis Cry1A toxins. Journal of Biological Chemistry 277: 30137–30143.PubMedCrossRefGoogle Scholar
  62. Gómez, I., Sánchez, J., Miranda, R., Bravo, A., and Soberón, M., 2002b. Cadherin-like receptor binding facilitates proteolytic cleavage of helix alpha-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin. FEBS Letters 513: 242–246.PubMedCrossRefGoogle Scholar
  63. Gómez, I., Dean, D.H., Bravo, A., and Soberón, M., 2003. Molecular basis for Bacillus thuringiensis Cry1Ab toxin specificity: Two structural determinants in the Manduca sexta Bt-R1 receptor interact with loops alpha-8 and 2 in domain II of Cy1Ab toxin. Biochemistry 42: 10482–10489.PubMedCrossRefGoogle Scholar
  64. Gómez, I., Arenas, I., Benítez, I., Miranda-Rios, J., Becerril, B., Grande, R., Almagro, J.C., Bravo, A., and Soberón, M., 2006. Specific epitopes of domains II and III of Bacillus thuringiensis Cry1Ab toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta. Journal of Biological Chemistry 281: 34032–34039.PubMedCrossRefGoogle Scholar
  65. González-Cabrera, J., Escriche, B., Tabashnik, B.E., and Ferré, J., 2003. Binding of Bacillus thuringiensis toxins in resistant and susceptible strains of pink bollworm (Pectinophora gossypiella). Insect Biochemistry and Molecular Biology 33: 929–935.PubMedCrossRefGoogle Scholar
  66. Gould, F., Martínez-Ramírez, A., Anderson, A., Ferré, J., Silva, F.J., and Moar, W.J., 1992. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proceedings of the National Academy of Sciences of the USA 89: 7986–7990.PubMedCrossRefGoogle Scholar
  67. Gould, F., Anderson, A., Reynolds, A., Bumgarner, L., and Moar, W., 1995. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. Journal of Economic Entomology 88: 1545–1559.Google Scholar
  68. Gould, F., Anderson, A., Jones, A., Sumerford, D., Heckel, D.G, Lopez, J., Micinski, S., Leonard, R., and Laster, M., 1997. Initial frequency of alleles for resistance to Bacillus thuringiensis toxins in field populations of Heliothis virescens. Proceedings of the National Academy of Sciences of the USA 94: 3519–3523.PubMedCrossRefGoogle Scholar
  69. Greenplate, J.T., Penn, S.R., Shappley, Z., Oppenhuizen, M., Mann, J., Reich, B., and Osborn, J., 2000. BollgardII efficacy: Quantification of total lepidopteran activity in a 2-gene product. In: Beltwide Cotton Conference Proceedings, P. Dugger and D. Richter, eds., National Cotton Council, Memphis, TN, USA, pp. 1041–1043.Google Scholar
  70. Griffitts, J.S., Whitacre, J.L., Stevens, D.E., and Aroian, R.V., 2001. Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science 293: 860–864.PubMedCrossRefGoogle Scholar
  71. Griffitts, J.S., Huffman, D.L., Whitacre, J.L., Barrows, B.D., Marroquin, L.D., Muller, R., Brown, J.R., Hennet, T., Esko, J.D., and Aroian, R.V., 2003. Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions. Journal of Biological Chemistry 278: 45594–45602.PubMedCrossRefGoogle Scholar
  72. Griffitts, J.S., Haslam, S.M., Yang, T., Garczynski, S.F., Mulloy, B., Morris, H., Cremer, P.S., Dell, A., Adang, M.J., and Aroian, R.V., 2005. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307: 922–925.PubMedCrossRefGoogle Scholar
  73. Gunning, R.V., Dang, H.T., Kemp, F.C., Nicholson, I.C., and Moores, G.D., 2005. New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Applied and Environmental Microbiology 71: 2558–2563.PubMedCrossRefGoogle Scholar
  74. Guo, S., Cui, H., Xia, L., Wu, D., Ni, W., Zhang, Z., Zhang, B., and Xu, Y., 1999. Development of bivalent insect-resistant transgenic cotton plants. Scientia Agricultura Sinica 32: 1–6.Google Scholar
  75. Hawthorne, D., Siegfried, B., Shelton, T., and Hellmich, R., 2001. Monitoring for resistance alleles: A report from an advisory panel on insect resistance monitoring methods for Bt corn (October 18–20, 2000). Unpublished study submitted to EPA (part of Monsanto’s 2000 IRM monitoring report). MRID # 453205–02.Google Scholar
  76. Heckel, D.G., Gahan, L.C., Gould, F., and Anderson, A., 1997. Identification of a linkage group with a major effect on resistance to Bacillus thuringiensis Cry1Ac endotoxin in the tobacco budworm (Lepidoptera: Noctuidae). Journal of Economic Entomology 90: 75–86.Google Scholar
  77. Heckel, D.G., Gahan, L.J., Baxter, S.W., Zhao, J.-Z., Shelton, A.M., Gould, F., and Tabashnik, B.E., 2007. The diversity of Bt resistance genes in species of Lepidoptera. Journal of Invertebrate Pathology 95: 192–197.PubMedCrossRefGoogle Scholar
  78. Hernández, C.S., and Ferré, J., 2005. Common receptor for Bacillus thuringiensis toxins Cry1Ac, Cry1Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea and Spodoptera exigua. Applied and Environmental Microbiology 71: 5627–5629.PubMedCrossRefGoogle Scholar
  79. Hodgman, T.C., and Ellar, D.J., 1990. Models for the structure and function of the Bacillus thuringiensis delta-endotoxins determined by compilational analysis. DNA Sequence 1: 97–106.PubMedCrossRefGoogle Scholar
  80. Hua, G., Jurat-Fuentes, J.L., and Adang, M.J., 2004a. Bt-R1a extracellular cadherin repeat 12 mediates Bacillus thuringiensis Cry1Ab binding and cytotoxicity. Journal of Biological Chemistry 279: 28051–28056.PubMedCrossRefGoogle Scholar
  81. Hua, G., Jurat-Fuentes, J.L., and Adang, M.J., 2004b. Fluorescent-based assays establish Manduca sexta Bt-R(1a) cadherin as a receptor for multiple Bacillus thuringiensis Cry1A toxins in Drosophila S2 cells. Insect Biochemistry and Molecular Biology 34: 193–202.PubMedCrossRefGoogle Scholar
  82. Huang, F., Buschman, L.L., Higgins, R.A., and McGaughey, W.H., 1999. Inheritance of resistance to Bacillus thuringiensis toxin (Dipel ES) in the European corn borer. Science 284: 965–967.PubMedCrossRefGoogle Scholar
  83. Huang, F., Leonard, B.R., and Andow, D.A., 2007. Sugarcane borer (Lepidoptera: Crambidae) resistance to transgenic Bacillus thuringiensis maize. Journal of Economic Entomology 100: 164–171.PubMedCrossRefGoogle Scholar
  84. Huckaba, R.M., Lassiter, R.B., Huang, X., Blanco, C.A., Langston, V.B., Braxton, L.B., Haile, F.J., Richardson, J.M., and Pellow, J., 2003. Field efficacy of Dow-Agrosciences MXB-13 transgenic cotton for control of cotton bollworm and tobacco budworm. In: Beltwide Cotton Conference Proceedings, P. Dugger and D. Richter, eds., National Cotton Council, Memphis, TN, USA, pp. 1293–1298.Google Scholar
  85. Huffman, D.L., Abrami, L., Sasik, R., Corbeil, J., van der Goot, F.G., and Aroian, R.V., 2004. Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proceedings of the National Academy of Sciences of the USA 101: 10995–11000.PubMedCrossRefGoogle Scholar
  86. Ibargutxi, M.A., Estela, A., Ferré, J., and Caballero, P., 2006. Use of Bacillus thuringiensis toxins for control of the cotton pest Earias insulana (Boisd.) (Lepidoptera: Noctuidae). Applied and Environmental Microbiology 72: 437–442.PubMedCrossRefGoogle Scholar
  87. International Life Science Institute (ILSI), 1999. An Evaluation of Insect Resistance Management in Bt Field Corn: A Science-Based Framework for Risk Assessment and Risk Management. Report of an Expert Panel. November 23, 1998.Google Scholar
  88. Iracheta, M.M., Pereyra-Alferez, B., Galan-Wong, L., and Ferré, J., 2000. Screening for Bacillus thuringiensis crystal proteins active against the cabbage looper, Trichoplusia ni. Journal of Invertebrate Pathology 76: 70–75.PubMedCrossRefGoogle Scholar
  89. Iriarte, J., Bel, Y., Ferrandis, M., Andrew, R., Murillo, J., Ferré, J., and Caballero, P., 1998. Environmental distribution and diversity of Bacillus thuringiensis in Spain. Systematic and Applied Microbiology 21: 97–106.PubMedGoogle Scholar
  90. James, C., 2002. Global review of commercialized transgenic crops: 2001 feature: Bt cotton. ISAAA Brief No. 26, International Service for the Acquisition of Agri-Biotech Applications, Ithaca, NY, USA.Google Scholar
  91. James, C., 2007. Global status of commercialized biotech/GM crops: 2007. ISAAA Brief No. 37, International Service for the Acquisition of Agri-Biotech Applications, Ithaca, NY, USA.Google Scholar
  92. Janmaat, A.F., and Myers, J., 2003. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proceedings of the Royal Society of London, Series B 270: 2263–2270.CrossRefGoogle Scholar
  93. Jenkins, J.N., McCarty, J.C., Jr., and Wofford, T., 1995. Bt cotton a new era in cotton production. In: Beltwide Cotton Conference Proceedings, P. Dugger and D. Richter, eds., National Cotton Council, Memphis, TN, USA, pp. 171–173.Google Scholar
  94. Jurat-Fuentes, J.L., and Adang, M.J., 2001. Importance of Cry1 delta-endotoxin domain II loops for binding specificity in Heliothis virescens (L.). Applied and Environmental Microbiology 67: 323–329.PubMedCrossRefGoogle Scholar
  95. Jurat-Fuentes, J.L., and Adang, M.J., 2004. Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. European Journal of Biochemistry 271: 3127–3135.PubMedCrossRefGoogle Scholar
  96. Jurat-Fuentes, J.L., and Adang, M.J., 2006a. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae. Journal of Invertebrate Pathology 92: 166–171.PubMedCrossRefGoogle Scholar
  97. Jurat-Fuentes, J.L., and Adang, M.J., 2006b. The Heliothis virescens cadherin protein expressed in Drosophila S2 cells functions as a receptor for Bacillus thuringiensis Cry1A but not Cry1Fa toxins. Biochemistry 45: 9688–9695.PubMedCrossRefGoogle Scholar
  98. Jurat-Fuentes, J.L., Gould, F.L., and Adang, M.J., 2003. Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Applied and Environmental Microbiology 69: 5898–5906.PubMedCrossRefGoogle Scholar
  99. Jurat-Fuentes, J.L., Gahan, L.J., Gould, F.L., Heckel, D.G., and Adang, M.J., 2004. The HevCaLP protein mediates binding specificity of the Cry1A class of Bacillus thuringiensis toxins in Heliothis virescens. Biochemistry 43: 14299–14305.PubMedCrossRefGoogle Scholar
  100. Karumbaiah, L., Oppert, B., Jurat-Fuentes, J.L., and Adang, M.J., 2007. Analysis of midgut proteinases from Bacillus thuringiensis-susceptible and -resistant Heliothis virescens (Lepidoptera: Noctuidae). Comparative Biochemistry and Physiology B 146: 139–146.CrossRefGoogle Scholar
  101. Kinsinger, R.A., and McGaughey, W.H., 1979. Susceptibility of populations of Indian meal moth and almond moth to Bacillus thuringiensis. Journal of Economic Entomology 72: 346–349.Google Scholar
  102. Kirsch, K., and Schmutterer, H., 1988. Low efficacy of a Bacillus thuringiensis (Berl.) formulation in controlling the diamondback moth, Plutella xylostella (L.) in the Philippines. Journal of Applied Entomology 105: 249–255.CrossRefGoogle Scholar
  103. Knowles, B.H., 1994. Mechanism of action of Bacillus thuringiensis insecticidal δ-endotoxins. Advances in Insect Physiology 24: 275–308.CrossRefGoogle Scholar
  104. Kranthi, K.R., Kranthi, S., Ali, S., and Banerjee, S.K., 2000. Resistance to “Cry1Ac δ-endotoxin of Bacillus thuringiensis” in a laboratory selected strain of Helicoverpa armigera (Hübner). Current Science 78: 1001–1004.Google Scholar
  105. Kranthi, K.R., Dhawad, C.S., Naidu, S.R., Mate, K., Behere, G.T., Wadaskar, R.M., and Kranthi, S., 2006. Inheritance of resistance in Indian Helicoverpa armigera (Hübner) to Cry1Ac toxin of Bacillus thuringiensis. Crop Protection 25: 119–124.CrossRefGoogle Scholar
  106. Lambert, B., and Peferoen, M., 1992. Insecticidal promise of Bacillus thuringiensis. BioScience 42: 112–122.CrossRefGoogle Scholar
  107. Lee, M.K., Rajamohan, F., Gould, F., and Dean, D.H., 1995. Resistance to Bacillus thuringiensis CryIA δ-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Applied and Environmental Microbiology 61: 3836–3842.PubMedGoogle Scholar
  108. Leong, K.L.H., Cano, R.J., and Kubinski, A.M., 1980. Factors affecting Bacillus thuringiensis total field persistence. Environmental Entomology 9: 593–599.Google Scholar
  109. Li, H., Oppert, B., Higgins, R.A., Huang, F., Zhu, K.Y., and Buschman, L.L., 2004. Comparative analysis of proteinase activities of Bacillus thuringiensis-resistant and -susceptible Ostrinia nubilalis (Lepidoptera: Crambidae). Insect Biochemistry and Molecular Biology 34: 753–762.PubMedGoogle Scholar
  110. Liang, G., Tan, W., and Guo, Y., 2000. Study on screening and inheritance mode of resistance to Bt transgenic cotton in cotton bollworm. Acta Entomologica Sinica 43 (Suppl.): 57–62.Google Scholar
  111. Liu, Y.B., and Tabashnik, B.E., 1997. Experimental evidence that refuges delay insect adaptation to Bacillus thuringiensis. Proceedings of the Royal Society of London, Series B 264: 605–610.CrossRefGoogle Scholar
  112. Liu, Y.B., Tabashnik, B.E., Dennehy, T.J., Patin, A.L., and Bartlett, A.C., 1999. Development time and resistance to Bt crops. Nature 400: 519.PubMedCrossRefGoogle Scholar
  113. Liu, Y.B., Tabashnik, B.E., Meyer, S.K., Carrière, Y., and Bartlett, A.C., 2001. Genetics of pink bollworm resistance to Bacillus thuringiensis toxin Cry1Ac. Journal of Economic Entomology 94: 248–252.PubMedCrossRefGoogle Scholar
  114. Luo, S., Wang, G., Liang, G., Wu, K.M., Bai, L., Ren, X., and Guo, Y., 2006. Binding of three Cry1A toxins in resistant and susceptible strains of cotton bollworm (Helicoverpa armigera). Pesticide Biochemistry and Physiology 85: 104–109.CrossRefGoogle Scholar
  115. Luttrell, R.G., Wan, L., and Knighten, K., 1999. Variation in susceptibility of Noctuid (Lepidoptera) larvae attacking cotton and soybean to purified endotoxin proteins and commercial formulations of Bacillus thuringiensis. Journal of Economic Entomology 92, 21–32.Google Scholar
  116. Ma, G., Roberts, H., Sarjan, M., Featherstone, N., Lahnstein, J., Akhurst, R., and Schmidt, O., 2005. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant Helicoverpa armigera larvae? Insect Biochemistry and Molecular Biology 35: 729–739.PubMedCrossRefGoogle Scholar
  117. MacIntosh, S., Jansens, S., Reed, J., and Newhouse, K., 1998. StarLink Corn: Insect Resistance Management Plan for a Bacillus thuringiensis Cry9C Corn Product, submitted to EPA October 1998. MRID#44679601.Google Scholar
  118. Mahon, R.J., Olsen, K.M., Garsia, K.A., and Young, S.R., 2007. Resistance to the Bt toxin Cry2Ab in a strain of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidea) in Australia. Journal of Economic Entomology 100: 894–902.PubMedCrossRefGoogle Scholar
  119. Marçon, P., Siegfried, B., Spencer, T., and Hutchinson, W., 2000. Development of diagnostic concentrations for monitoring Bacillus thuringiensis resistance in European corn borer (Lepidoptera: Crambidae). Journal of Economic Entomology 93: 925–930.PubMedCrossRefGoogle Scholar
  120. Martínez-Ramírez, A.C., Gould, F., and Ferré, J., 1999. Histopathological effects and growth reduction in a susceptible and a resistant strain of Heliothis virescens (Lepidoptera: Noctuidae) caused by sublethal doses of pure Cry1A crystal proteins from Bacillus thuringiensis. Biocontrol Science and Technology 9: 239–246.CrossRefGoogle Scholar
  121. Matten, S.R., and Reynolds, A.H., 2003. EPA IRM requirements for Bollgard II cotton. In: Beltwide Cotton Conference Proceedings, P. Dugger and D. Richter, eds., National Cotton Council, Memphis, TN, USA, pp. 1111–1121.Google Scholar
  122. McGaughey, W.H., 1985. Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229: 193–195.PubMedCrossRefGoogle Scholar
  123. McGaughey, W.H., and Beeman, R.W., 1988. Resistance to Bacillus thuringiensis in colonies of Indianmeal moth and almond moth (Lepidoptera: Pyralidae). Journal of Economic Entomology 81: 28–33.Google Scholar
  124. McGaughey, W.H., and Johnson, D.E., 1992. Indianmeal moth (Lepidoptera: Pyralidae) resistance to different strains and mixtures of Bacillus thuringiensis. Journal of Economic Entomology 85: 1594–600.Google Scholar
  125. McNall, R.J., and Adang, M.J., 2003. Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis. Insect Biochemistry and Molecular Biology 33: 999–1010.PubMedCrossRefGoogle Scholar
  126. Meng, F., Shen, J., Zhou, W., and Cen, H., 2003. Long-term selection for resistance to transgenic cotton expressing Bacillus thuringiensis toxin in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pest Management Science 60: 167–172.Google Scholar
  127. Metz, T.D., Roush, R.T., Tang, J.D., Shelton, A.M., and Earle, E.D., 1995. Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: Implications for pest resistance management strategies. Molecular Breeding 1: 309–317.CrossRefGoogle Scholar
  128. Moar, W.J., Pusztai-Carey, M., van Faassen, H., Frutos, R., Rang, C., Luo, K., and Adang, M.J. 1995. Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Lepidoptera: Noctuidae). Applied and Environmental Microbiology 61: 2086–2092.PubMedGoogle Scholar
  129. Morin, S., Biggs, R.W., Sisterson, M.S., Shriver, L., Ellers-Kirk, C., Higginson, D., Holley, D., Gahan, J.J., Heckel, D.G., Carrière, Y., Dennehy, T.J., Brown, J.K., and Tabashnik, B.E., 2003. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proceedings of the National Academy of Sciences of the USA 100: 5004–5009.PubMedCrossRefGoogle Scholar
  130. Nagamatsu, Y., Koike, T., Sasaki, K., Yoshimoto, A., and Furukawa, Y., 1999. The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin. FEBS Letters 460: 385–390.PubMedCrossRefGoogle Scholar
  131. Nakanishi, K., Yaoi, K., Nagino, Y., Hara, H., Kitami, M., Atsumi, S., Miura, N., and Sato, R., 2002. Aminopeptidase N isoforms from the midgut of Bombyx mori and Plutella xylostella–their classification and the factors that determine their binding specificity to Bacillus thuringiensis Cry1A toxin. FEBS Letters 519: 215–220.PubMedCrossRefGoogle Scholar
  132. NCGA (National Corn Growers Association), 2006. Corn Growers Value Insect Protection Technology, Implement IRM Plans in 2005. http://www.ncga.com/news/releases/2006/news042706.asp (accessed 4 January 2008).
  133. Oppert, B., Kramer, K.J., Beeman, R.W., Johnson, D., and McGaughey, W.H., 1997. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. Journal of Biological Chemistry 272: 23473–23476.PubMedCrossRefGoogle Scholar
  134. Pardo-López, L., Gómez, I., Muñoz-Garay, C., Jiménez-Juarez, N., Soberón, M., and Bravo, A., 2006. Structural and functional analysis of the pre-pore and membrane-inserted pore of Cry1Ab toxin. Journal of Invertebrate Pathology 92: 172–177.PubMedCrossRefGoogle Scholar
  135. Peyronnet, O., Noulin, J.F., Laprade, R., and Schwartz, J.L., 2004. Patch-clamp study of the apical membrane of the midgut of Manduca sexta larvae: Direct demonstration of endogenous channels and effect of a Bacillus thuringiensis toxin. Journal of Insect Physiology 50: 791–803.PubMedCrossRefGoogle Scholar
  136. Pigott, C.R., and Ellar, D.J., 2007. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews 71: 255–281.PubMedCrossRefGoogle Scholar
  137. Powell, K., 2003. Concerns over refuge size for US EPA-approved Bt corn. Nature Biotechology 21: 467–468.CrossRefGoogle Scholar
  138. Pozsgay, M., Fast, P., Kaplan, H., and Carey, P.R., 1987. The effect of sunlight on the protein crystals from Bacillus thuringiensis var. kurstaki HD1 and NRD12: A Raman spectroscopic study. Journal of Invertebrate Pathology 50: 246–253.CrossRefGoogle Scholar
  139. Pray, C.E., Huang, J., Ma, D., and Qiao, F., 2001. Impact of Bt cotton in China. World Development 29: 813–825.CrossRefGoogle Scholar
  140. Puntheeranurak, T., Stroh, C., Zhu, R., Angsuthanasombat, C., and Hinterdorfer, P., 2005. Structure and distribution of the Bacillus thuringiensis Cry4Ba toxin in lipid membranes. Ultramicrosopy 105: 15–24.Google Scholar
  141. Rajagopal, R., Sivakumar, S., Agrawal, N., Malhotra, P., and Bhatnagar, R.K., 2002. Silencing of midgut aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. Journal of Biological Chemistry 370: 971–978.Google Scholar
  142. Rajendran, L., and Simons, K., 2005. Lipid rafts and membrane dynamics. Journal of Cell Science 118: 1099–1102.PubMedCrossRefGoogle Scholar
  143. Rausell, C., Muñoz-Garay, C., Miranda-CassoLuengo, R., Gómez, I., Rudino-Pinera, E., Soberón, M., and Bravo, A., 2004a. Tryptophan spectroscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of Cry1Ab toxin from Bacillus thuringiensis is the membrane-insertion intermediate. Biochemistry 43: 166–174.PubMedCrossRefGoogle Scholar
  144. Rausell, C., Pardo-López, L., Sánchez, J., Muñoz-Garay, C., Morera, C., Soberón, M., and Bravo, A., 2004b. Unfolding events in the water-soluble monomeric Cry1Ab toxin during transition to oligomeric pre-pore and membrane-inserted pore channel. Journal of Biological Chemistry 279: 55168–55175.PubMedCrossRefGoogle Scholar
  145. Ravi, K.C., Mohan, K.S., Manjunath, T.M., Head, G., Patil, B.V., Greba, A., Premalatha, K., Peter, J., and Rao, N.G.V., 2005. Relative abundance of Helicoverpa amrigera (Lepidoptera: Noctuidae) on different host crops in India and the role of these crops as natural refuge for Bacillus thuringiensis cotton. Environmental Entomology 34: 59–69.CrossRefGoogle Scholar
  146. Roush, R.T., 1997. Bt-transgenic crops: Just another pretty insecticide or a chance for a new start in resistance management? Pesticide Science 51: 328–334.CrossRefGoogle Scholar
  147. Sangiorgio, V., Pitto, M., Palestini, P., and Masserini, M., 2004. GPI-anchored proteins and lipid rafts. Italian Journal of Biochemistry 53: 98–111.PubMedGoogle Scholar
  148. SAP (Scientific Advisory Panel), 1998. Subpanel on Bacillus thuringiensis (Bt) Plant-Pesticides: Transmittal of the Final Report of the FIFRA Scientific Advisory Panel Subpanel on Bacillus thuringiensis Plant-Pesticides and Resistance Management, Meeting held on February 9–10, 1998. Report dated, April 28, 1998. Docket Number: OPPTS- 00231. http://www.epa.gov/scipoly/sap/meetings/1998/index.htm (accessed 4 January 2008).
  149. SAP (Scientific Advisory Panel), 2001. Subpanel on Insect Resistance Management Report: Sets of Scientific Issues Being Considered by the Environmental Protection Agency Regarding: Bt Plant-Pesticides Risk and Benefit Assessments. Report dated, March 12, 2001. http://www.epa.gov/oscpmont/sap/meetings/2000/index.htm (accessed 4 January 2008).
  150. Sequeira, R.V., and Playford, C.L., 2001. Abundance of Helicoverpa (Lepidoptera: Noctuidae) pupae under cotton and other crops in central Queensland: Implications for resistance management. Australian Journal of Entomology 40: 264–269.CrossRefGoogle Scholar
  151. Shelton, A.M., Tang, J.D., Roush, R.T., Metz, T.D., and Earle, E.D., 2000. Field tests on managing resistance to Bt-engineered plants. Nature Biotechnology 18: 339–342.PubMedCrossRefGoogle Scholar
  152. Shelton, A.M., Zhao, J.-Z., and Roush, R.T., 2002. Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annual Review of Entomology 47: 845–881.PubMedCrossRefGoogle Scholar
  153. Siegfried, B., and Spencer, T., 2000. Monitoring Bt susceptibility of European corn borer to Cry1Ab: 2000 data summary. Unpublished study submitted to EPA (part of Monsanto’s 2000 IRM report). MRID # 453205–02.Google Scholar
  154. Siegfried, B., Spencer, T., and Nearman, J., 1999. Monitoring Bt susceptibility of European corn borer and corn earworm to Cry1Ab. Unpublished study submitted to EPA (part of Monsanto’s 1999 IRM research report). MRID # 450369–02.Google Scholar
  155. Siegfried, B.D., Spencer, T., and Nearman, J., 2000. Baseline susceptibility of the corn earworm (Lepidoptera: Noctuidae) to the Cry1Ab toxin from Bacillus thuringiensis. Journal of Economic Entomology 93: 1265–1268.PubMedCrossRefGoogle Scholar
  156. Siegfried, B.D., Vaughn, T.T., and Spencer, T., 2005. Baseline susceptibility of western corn rootworm (Coleoptera: Crysomelidae) to Cry3Bb1 Bacillus thuringiensis toxin. Journal of Economic Entomology 98: 1320–1324.PubMedCrossRefGoogle Scholar
  157. Sims, S.R., and Stone, T.B., 1991. Genetic basis of tobacco budworm resistance to an engineered Pseudomonas fluorescens expressing the -endotoxin of Bacillus thuringiensis kurstaki. Journal of Invertebrate Pathology 57: 206–210.CrossRefGoogle Scholar
  158. Sims, S.B., Greenplate, J.T. Stone, T.B. Caprio, M.A., and Gould, F.L., 1996. Monitoring strategies for early detection of Lepidoptera resistance to Bacillus thuringiensis insecticidal proteins. In: Molecular Genetics and Evolution of Pesticide Resistance, T.M. Brown, ed., American Chemical Society Symposium Series No. 645, American Chemical Society, Washington, DC, USA, pp. 229–242.CrossRefGoogle Scholar
  159. Siqueira, H.A.A., Moellenbeck, D., Spencer, T., and Siegfried, B.D., 2004. Cross-resistance of Cry1Ab-selected Ostrinia nubilalis (Lepidoptera: Crambidae) to Bacillus thuringiensis δ-endotoxins. Journal of Economic Entomology 97: 1049–1057.PubMedCrossRefGoogle Scholar
  160. Sivakumar, S., Rajagopal, R., Venkatesh, G.R., Srivastava, A., and Bhatnagar, R.K., 2007. Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected SF21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac. Journal of Biological Chemistry 282: 7312–7319.PubMedCrossRefGoogle Scholar
  161. Sjoblad, R.D., McClintock, J.T., and Engler, R., 1992. Toxicological considerations for protein components of biological pesticide products. Regulatory Toxicology and Pharmacology 15: 3–9.PubMedCrossRefGoogle Scholar
  162. Soberón, M., Pardo-López, L., López, I., Gómez, I., Tabashnik, B.E., and Bravo, A., 2007. Engineering modified Bt toxins to counter insect resistance. Science 318: 1640–1642.PubMedCrossRefGoogle Scholar
  163. Song, S.S., 1991. Resistance of diamondback moth (Plutella xylostella L.: Yponomeutidae: Lepidoptera) against Bacillus thuringiensis Berliner. Korean Journal of Applied Entomology 30: 291–293.Google Scholar
  164. Song, Q., Luppens, C., and Gan, X., 2000. Monitoring the susceptibility of the southwestern cornborer, Diatraea grandiosella, to Bacillus thuringiensis toxin Cry1Ab. Unpublished study submitted to EPA (part of Monsanto’s 2000 IRM report). MRID # 453205–02.Google Scholar
  165. Stodola, T.J., Andow, D.A., Hyden, A.R., Hinton, J.L., Roark, J.J., Buschman, L.L., Porter, P., and Cronholm, G.B., 2006. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in southern United States Corn Belt population of European corn borer (Lepidoptera: Crambidae). Journal of Economic Entomology 99: 502–507.PubMedCrossRefGoogle Scholar
  166. Stone, T.B., Sims, S.R., and Marrone, P.G., 1989. Selection of tobacco budworm for resistance to a genetically engineered Pseudomonas fluorescens containing the δ-endotoxin of Bacillus thuringiensis subsp. kurstaki. Journal of Invertebrate Pathology 53: 228–234.CrossRefGoogle Scholar
  167. Tabashnik, B.E., 1994. Evolution of resistance to Bacillus thuringiensis. Annual Review of Entomology 39: 47–79.CrossRefGoogle Scholar
  168. Tabashnik, B.E., Cushing, N.L., Finson, N., and Johnson, M., 1990. Field Development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology 83: 1671–1676.Google Scholar
  169. Tabashnik, B.E., Finson, N., Johnson, M.W., and Heckel, D.G., 1994. Cross-resistance to Bacillus thuringiensis toxin CryIF in the diamondback moth (Lepidoptera: Plutellidae). Applied and Environmental Microbiology 60: 4627–4629.PubMedGoogle Scholar
  170. Tabashnik, B.E., Johnson, K.W., Engleman, J.T., and Baum, J.A., 1996. Cross-resistance of the diamondback moth indicates altered interactions with domain II of Bacillus thuringiensis toxins. Applied and Environmental Microbiology 62: 2839–2844.PubMedGoogle Scholar
  171. Tabashnik, B.E., Liu, Y.B., Malvar, T., Heckel, D.G., Masson, L., Ballester, V., Granero, F., Ménsua, J.L., and Ferré, J., 1997. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proceedings of the National Academy of Sciences of the USA 94: 12780–12785.PubMedCrossRefGoogle Scholar
  172. Tabashnik, B.E., Liu, Y.B., de Maagd, R.A., and Dennehy, T.J., 2000a. Cross-resistance of pink bollworm (Pectinophora gossypiella) to Bacillus thuringiensis toxins. Applied and Environmental Microbiology 66: 4582–4584.PubMedCrossRefGoogle Scholar
  173. Tabashnik, B.E., Patin, A.L., Dennehy, T.J., Liu, Y.B., Carrière, Y., Sims, M.A., and Antilla L., 2000b. Frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm. Proceedings of the National Academy of Sciences of the USA 97: 12980–12984.PubMedCrossRefGoogle Scholar
  174. Tabashnik, B.E., Liu, Y.B., de Maagd, R., and Dennehy, T.J., 2000c. Cross-resistance of pink bollworm (Pectinophora gossypiella) to Bacillus thuringiensis toxins. Applied and Environmental Microbiology 66: 4582–4584.PubMedCrossRefGoogle Scholar
  175. Tabashnik, B.E., Liu, Y.B., Dennehy, T.J., Sims, M.A., Sisterson, M.S., Biggs, R.W., and Carrière, Y., 2002. Inheritance of resistance to Bt toxin Cry1Ac in a field-derived strain of pink bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology 95: 1018–1026.PubMedCrossRefGoogle Scholar
  176. Tabashnik, B.E., Liu, Y.B., Unnithan, D.C., Carrière, Y., Dennehy, T.J., and Morin, S., 2004. Shared genetic basis of resistance to Bt toxin Cry1Ac in independent strains of pink bollworm. Journal of Economic Entomology 97: 721–726.PubMedCrossRefGoogle Scholar
  177. Tabashnik, B.E., Biggs, R.W., Higginson, D.M., Henderson, S., Unnithan, D.C., Unnithan, G.C., Ellers-Kirk, C., Sisterson, M.S., Dennehy, T.J., Carriere, Y., and Morin, S., 2005a. Association between resistance to Bt cotton and cadherin genotype in pink bollworm. Journal of Economic Entomology 98: 635–644.PubMedCrossRefGoogle Scholar
  178. Tabashnik, B.E., Dennehy, T.J., and Carrière, Y., 2005b. Delayed resistance to transgenic cotton in pink bollworm. Proceedings of the National Academy of Sciences of the USA 102: 15389–15393.PubMedCrossRefGoogle Scholar
  179. Tabashnik, B.E., Fabrick, J.A., Henderson, S., Biggs, R.W., Yafuso, C.M., Nyboer, M.E., Manhardt, N.M., Coughlin, L.A., Sollome, J., Carriere, Y., Dennehy, T.J., and Morin, S., 2006. DNA screening reveals pink bollworm resistance to Bt cotton remains rare after a decade of exposure. Journal of Economic Entomology 99: 1525–1530.PubMedCrossRefGoogle Scholar
  180. Tanaka, H., and Kimura, Y., 1991. Resistance to Bt formulation in diamondback moth, Plutella xylostella L., on watercress. Japanese Journal of Economic Entomology and Zoology 35: 253–255.Google Scholar
  181. Tang, J.D., Shelton, A.M., Van Rie, J., De Roeck, S., Moar, W.J., Roush, R.T., and Peferoen, M., 1996. Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth (Plutella xylostella). Applied and Environmental Microbiology 62: 564–569.PubMedGoogle Scholar
  182. Tang, J.D., Collins, H.L., Metz, T.D., Earle, E.D., Zhao, J.Z., Roush, R.T., and Shelton, A.M., 2001. Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies. Journal of Economic Entomology 94: 240–247.PubMedCrossRefGoogle Scholar
  183. Tomimoto, K., Hayakawa, T., and Hori, H., 2006. Pronase digestion of brush border membrane-bound Cry1Aa shows that almost the whole activated Cry1Aa molecule penetrates into the membrane. Comparative Biochemistry and Physiology B 144: 413–422.CrossRefGoogle Scholar
  184. Tsuda, Y., Nakatani, F., Hashimoto, K., Ikawa, S., Matsuura, C., Fukada, T., Sugimoto, K., and Himeno, M., 2003. Cytotoxic activity of Bacillus thuringiensis Cry proteins on mammalian cells transfected with cadherin-like Cry receptor gene of Bombyx mori (silkworm). Biochemical Journal 369: 697–703.PubMedCrossRefGoogle Scholar
  185. USEPA (United States Environmental Protection Agency), 2001a. Bt Biopesticides Registration Action Document D. Insect Resistance Management. http://www.epa.gov/oppbppd1/biopesticides/pips/bt_brad2/4-irm.pdf (accessed 4 January 2008).
  186. USEPA (United States Environmental Protection Agency), 2001b. Bt Cotton Refuge Requirements for the 2001 Growing Season. http://www.epa.gov/pesticides/biopesticides/pips/bt_cotton_refuge_2001.htm (accessed 4 January 2008).
  187. USEPA (United States Environmental Protection Agency), 2005. Biopesticides Registration Action Document. Bacillus thuringiensis var. aizawai Cry1F and the Genetic Material (from the Insert of Plasmid PGMA281) Necessary for Its Production in Cotton and Bacillus thuringiensis var. kurstaki Cry1Ac and the Genetic Material (from the Insert of Plasmid PMYC3006) Necessary for Its Production in Cotton. http://www.epa.gov/pesticides/biopesticides/ingredients/tech_docs/brad_006512–006513.pdf (accessed 4 January 2008).
  188. USEPA (United States Environmental Protection Agency), 2006. New Biopesticide Active Ingredients–2006. http://www.epa.gov/pesticides/biopesticides/product_lists/new_ai_2006.htm (accessed 4 January 2008).
  189. USEPA (United States Environmental Protection Agency), 2007a. Bacillus thuringiensis Cry3Bb1 Protein and the Genetic Material Necessary for Its Production (Vector ZMIR13L) in Event MON863 Corn (006484) Biopesticide Registration Action Document (BRAD). http://www.epa.gov/pesticides/biopesticides/ingredients/tech_docs/brad_006484.htm (accessed 4 January 2008).
  190. USEPA (United States Environmental Protection Agency), 2007b. Notice of pesticide registration, No. 68467–3, approved July 17, 2007.Google Scholar
  191. USEPA/USDA (United States Environmental Protection Agency/ United States States Department of Agriculture), 1999. EPA/USDA Position Paper on Insect Resistance Management for Bt Crops. Docket Number: D-16122A (posted 8/26/1999).Google Scholar
  192. Vachon, V., Schwartz, J.L., and Laprade, R., 2006. Influence of the biophysical and biochemical environment on the kinetics of pore formation by Cry toxins. Journal of Invertebrate Pathology 92: 160–165.PubMedCrossRefGoogle Scholar
  193. Van Rie, J., Jansens, S., Höfte, H., Degheele, D., and Van Mellaert, H., 1989. Specificity of Bacillus thuringiensis δ-endotoxins: Importance of specific receptors on the brush border membranes of the mid-gut of target insects. European Journal of Biochemistry 186: 239–247.PubMedCrossRefGoogle Scholar
  194. Van Rie, J., McGaughey, W.H., Johnson, D.E., Barnett, B.D., and Van Mellaert, H., 1990. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247: 72–74.PubMedCrossRefGoogle Scholar
  195. Vaughn, T., Cavato, T., Brar, G., Coombe, T., DeGooyer, T., Ford, S., Groth, M., Howe, A., Johnson, S., Kolacz, K., Pilcher, C., Purcell, J., Romano, C., English, L., and Pershing, J., 2005. A method of controlling corn rootworm using a Bacillus thuringiensis protein expressed in transgenic maize. Crop Science 45: 931–938.CrossRefGoogle Scholar
  196. Vié, V., Van Mau, N., Pomarède, P., Dance, C., Schwartz, J.L., Laprade, R., Frutos, R., Rang, C., Masson, L., Heitz, F., and Le Grimellec, C., 2001. Lipid-induced pore formation of the Bacillus thuringiensis Cry1Aa insecticidal toxin. Journal of Membrane Biology 180: 195–203.PubMedCrossRefGoogle Scholar
  197. Vijaykumar, Bashasab, F., Krishnareddy, K.B., Kuruvinashetti, M.S., and Patil, B.V., 2007. Mating compatibility among Helicoverpa armigera (Lepidoptera: Noctuidae) occurring on selected host plants and Bt cotton survivors. Journal of Economic Entomology 100: 903–908.PubMedCrossRefGoogle Scholar
  198. Wang, P., Zhao, J.Z., Rodrigo-Simón, A., Kain, W. Janmaat, A.F., Shelton, A.M., Ferré, J., and Myers, J., 2007. Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of cabbage looper, Trichoplusia ni. Applied and Environmental Microbiology 73: 1199–1207.PubMedCrossRefGoogle Scholar
  199. Whalon, M.E., and McGaughey, W.H., 1998 Bacillus thuringiensis: Use and resistance management. In: Insecticides with Novel Modes of Action, I. Ishaaya and D. Degheele, eds., Springer, New York, USA, pp. 106–137.Google Scholar
  200. Whalon, M.E., Miller, D.L., Hollingworth, R.M., Grafius, E.J., and Miller, J.R., 1993. Selection of a Colorado potato beetle (Coleoptera: Chrysomelidae) strain resistant to Bacillus thuringiensis. Journal of Economic Entomology 86: 226–233.Google Scholar
  201. Wu, K.M., and Guo, Y.Y., 2005. The evolution of cotton pest management practices in China. Annual Review of Entomology 50: 31–52.PubMedCrossRefGoogle Scholar
  202. Wu, K., Yuyuan, G., Lv, N., Greenplate, J.T., and Deaton, R., 2002. Resistance monitoring of Heliocoverpa armigera (Lepidoptera: Noctuidae) to Bacillus thuringiensis insecticidal protein in China. Journal of Economic Entomology 95: 826–831.PubMedCrossRefGoogle Scholar
  203. Xie, R., Zhuang, M., Ross, L.S., Gómez, I., Oltean, D.I., Bravo, A., Soberón, M., and Gill, S.S., 2005. Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins. Journal of Biological Chemistry 280: 8416–8425.PubMedCrossRefGoogle Scholar
  204. Xu, X., Yu, L., and Wu, Y., 2005. Disruption of a cadherin gene associated with resistance to Cry1Ac δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Applied and Environmental Microbiology 71: 948–954.PubMedCrossRefGoogle Scholar
  205. Yang, Y., Chen, H., Wu, S., Yang, Y., Xu, X., and Wu, Y., 2006. Identification and molecular detection of a deletion mutation responsible for a truncated cadherin of Helicoverpa armigera. Insect Biochemistry and Molecular Biology 36: 735–740.PubMedCrossRefGoogle Scholar
  206. Zhang, X., Candas, M., Griko, N.B., Rose-Young, L., and Bulla, L.A., Jr., 2005. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death and Differentiation 12: 1407–1416.PubMedCrossRefGoogle Scholar
  207. Zhang, X., Candas, M., Griko, N.B., Taussig, R., and Bulla, L.A., Jr., 2006. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proceedings of the National Academy of Sciences of the USA 103: 9897–9902.PubMedCrossRefGoogle Scholar
  208. Zhao, J.Z., Collins, H.L., Tang, J.D., Cao, J., Earle, E.D, Roush, R.T., Herrero, S., Escriche, B., Ferré, J., and Shelton, A.M., 2000. Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of Cry1C. Applied and Environmental Microbiology 66: 3784–3789.PubMedCrossRefGoogle Scholar
  209. Zhao, J.Z., Li, Y., Collins, H.L., and Shelton, A.M., 2002. Examination of the F2 screen for rare resistance alleles to Bacillus thuringiensis toxins in the diamondback moth. Journal of Economic Entomology 95: 14–21.PubMedCrossRefGoogle Scholar
  210. Zhao, J.Z., Cao, J., Li, Y., Collins, H.L., Roush, R.T., Earle, E.D., and Shelton, A.M., 2003. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nature Biotechnology 21: 1493–1497.PubMedCrossRefGoogle Scholar
  211. Zhao, J.Z., Cao, J., Collins, H.L., Bates, S.L., Roush, R.T., Earle, E.D., and Shelton, A.M., 2005. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proceedings of the National Academy of Sciences of the USA 102: 8426–8430.PubMedCrossRefGoogle Scholar
  212. Zhuang, M., Oltean, D.I., Gómez, I., Pullikuth, A.K., Soberón, M., Bravo, A., and Gill, S.S., 2002. Heliothis virescens and Manduca sexta lipid rafts are involved in Cry1A toxin binding to the midgut epithelium and subsequent pore formation. Journal of Biological Chemistry 277: 13863–13872.PubMedCrossRefGoogle Scholar
  213. Zoebelein, G., 1990. Twenty-three year surveillance of development of insecticide resistance in diamondback moth from Thailand (Plutella xylostella L., Lepidoptera, Plutellidae). Mededelingen Faculteit Landbouwwetenschappen Rijksuniversiteit, Gent 55: 313–322.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Juan Ferré
    • 1
  • Jeroen Van Rie
    • 2
  • Susan C. Macintosh
    • 3
  1. 1.University of ValenciaBurjassotSpain
  2. 2.Bayer BioScience N.V.GhentBelgium
  3. 3.Macintosh & Associates, Inc.Saint PaulUSA

Personalised recommendations