Skip to main content

18F-Fluorodeoxyglucose/Positron Emission Tomography in Primary Breast Cancer: Factors Responsible for False-Negative Results

  • Chapter
Methods of Cancer Diagnosis, Therapy and Prognosis

Part of the book series: Methods of Cancer Diagnosis, Therapy and Prognosis ((HAYAT,volume 1))

  • 2054 Accesses

Positron emission tomography (PET) is a molecular imaging technique that uses radio- labeled molecules to image interactions of biological processes at the molecular level in vivo. Molecular imaging with PET is sensitive to these biological processes and this is exhibited without the evidence of anatomic changes on the conventional imaging. 18F-fluoro-2-deoxy-D-glucose (FDG) is the most commonly used radiotracer in PET imaging. FDG is an analogue of glucose and the uptake is directly proportional to the glucose metabolism. Malignant tumors with high glucose metabolism show preferential uptake of FDG as compared to surrounding normal cells. After transport into tumor cell, FDG is phosphorylated by hexokinase into FDG-6-phosphate. However, 18F-FDG-6-phosphate cannot continue through glycolysis because it is not a substrate for enzyme glucose-6-phosphate isomerase. As a result, 18F-FDG-6-phosphate is biochemically trapped within the cell. This trapped molecule representing the metabolically active tissue like the cancer cell can be measured in vivo noninvasively using PET as “hot spots”. This physiological process helps to differentiate normal cells from the abnormal cells on the PET imaging. 18F-FDG-PET is now an established standard in the initial staging, monitoring the response to the therapy, and restaging after treatment of patients with various cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, L.P., Blair, H.F., Makley, J.T., Williams, R.P., Joyce, M.J., Leisure, G., al-Kaisi, N., and Miraldi, F. 1991. Noninvasive grading of muscu-loskeletal tumors using PET. J. Nucl. Med. 32: 1508–1512

    PubMed  CAS  Google Scholar 

  • Adler, L.P., Crowe, J.P., al-Kaisi, N.K., and Sunshine, J.L. 1993. Evaluation of breast masses and axillary lymph nodes with [F-18] 2-deoxy-2-fluoro-D-glucose PET. Radiology 187: 743– 750

    PubMed  CAS  Google Scholar 

  • Avril, N., Dose, J., Janicke, F.,Bense, S., Ziegler, S., Laubenbacher, C., Romer, W., Pache, H., Herz, M., Allgayer, B., Nathrath, W., Graeff, H., and Schwaiger, M. 1996. Metabolic characterization of breast tumors with positron emission tomography using F-18 fluorodeoxyglucose. J. Clin. Oncol. 14:1848–1857

    PubMed  CAS  Google Scholar 

  • Avril, N., Bense, S., Ziegler, S.I., Dose, J., Weber, W., Laubenbacher, C., Romer, W., Janicke, F., and Schwaiger, M. 1997. Breast imaging with fluo-rine- 18-FDG PET: quantitative image analysis. J. Nucl. Med. 38: 1186–1191

    PubMed  CAS  Google Scholar 

  • Avril, N., Menzel, M., Dose, J., Schelling, M., Weber, W., Janicke, F., Nathrath, W., and Schwaiger, M. 2001. Glucose metabolism of breast cancer assessed by 18F-FDG PET: histo-logic and immunohistochemical tissue analysis. J. Nucl. Med. 42: 9–16

    PubMed  CAS  Google Scholar 

  • Barnard, N.J., Hall, P.A., Lemoine, N.R., and Kadar, N. 1987.Proliferative index in breast carcinoma determined in situ by Ki67 immunos-taining and its relationship to clinical and pathological variables. J. Pathol. 152: 287–295

    Article  PubMed  CAS  Google Scholar 

  • Brown, R.S., and Wahl, R.L. 1993. Overexpression of Glut-1 glucose transporter in human breast cancer: an immunohistochemical study. Cancer 72: 2979–2985

    Article  PubMed  CAS  Google Scholar 

  • Brown, R.S., Leung, J.Y., Fisher, S.J., Frey, K.A., Ethier, S.P., and Wahl, R.L. 1995. Intratumoral distribution of tritiated fluorodeoxyglucose in breast carcinoma. I. Are inflammatory cells important? J. Nucl. Med. 36: 1854–1861

    PubMed  CAS  Google Scholar 

  • Buck, A., Schirrmeister, H., Kuhn, T., Shen, C., Kalker, T., Kotzerke, J., Dankerl, A., Glatting, G., Reske, S., and Mattfeldt, T. 2002. FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur. J. Nucl. Med. Mol. Imaging 29: 1317–1323

    Article  PubMed  CAS  Google Scholar 

  • Clavo, A.C., and Wahl, R.L. 1996. Effects of hypoxia on the uptake of tritiated thymidine,L-leucine, L-methionine and FDG in cultured cancer cells. J. Nucl. Med. 37: 502–506

    PubMed  CAS  Google Scholar 

  • Cook, G.J., Houston, S., Rubens, R. Maisey, M.N., and Fogelman, I. 1998. Detection of bone metas-tases in breast cancer by 18-FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J. Clin. Oncol. 16: 3375–3379

    PubMed  CAS  Google Scholar 

  • Crippa, F., Seregni, E., Agresti, R., Chiesa, C., Pascali, C., Bogni, A., Decise, D., De Sanctis, V. , Greco, M., Daidone, M.G., and Bombardieri, E. 1998. Association between F-18 fluorodeoxyglu-cose uptake and postoperative histopathology, hormone receptor status, thymidine labelling index and p53 in primary breast cancer: a preliminary observation. Eur. J. Nucl. Med. 25: 1429–1434

    Article  PubMed  CAS  Google Scholar 

  • Griffeth, L.K., Rich, K.M., Dehdashti, F., Simpson, J.R., Fusselman, M.J., McGuire, A.H., and Siegel, B.A. 1993. Brain metastases from non-central nervous system tumors: evaluation with PET. Radiology 186 : 37–44

    PubMed  CAS  Google Scholar 

  • Helmlinger, G., Yuan, F., Dellian, M., and Jain, R.K. 1997. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat. Med. 3: 177–182

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, E.J., Huang, S., and Phelps, M.E. 1979. Quantitation in positron emission computed tomography: effect of object size. J. Compai. Assisi. Tomogr. 3: 299–308

    Article  Google Scholar 

  • Kim, C.K., Gupta, N.C., Chandramouli, B., and Alavi, A. 1994. Standardized uptake values of FDG: body surface area correction is preferable to body weight correction. J. Nucl. Med. 35: 164–167

    PubMed  CAS  Google Scholar 

  • Knuuti, J., Nuutila, P., Ruotsalainen, U., Saraste, M., Harkonen, R., Ahonen, A., Teras, M., Haaparanta, M., Wegelius, U., Haapanen, A., Hartiala, J., and Voipio-Pulkki, L.M. 1992. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J. Nucl. Med. 33: 1255–1262

    PubMed  CAS  Google Scholar 

  • Kubota, R., Yamada, S., Kubota, K., Ishiwata, K., Tamahashi, N., and Ido, T. 1992. Intratumoral distribution of fluorine-18- fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissue studied by microautoradiogra-phy. J. Nucl. Med. 33: 1972–1980

    PubMed  CAS  Google Scholar 

  • Kubota, R., Kubota, K., Yamada, S., Tada, M., Ido, T., and Tamahashi, N. 1994. Active and passive mechanisms of [fluorine-18] fluorodeoxy-glucose uptake by proliferating and prenecrotic cancer cells in vivo: a microautoradiographic study. J. Nucl. Med. 35:1067–75

    PubMed  CAS  Google Scholar 

  • Kumar, R. 2007. Targeted Functional Imaging in Breast Cancer. Eur. J. Nucl. Med. Mol. Imaging 34: 346–353

    Article  PubMed  Google Scholar 

  • Kumar, R., Loving, V.A., Chauhan, A., Zhuang, H., Mitchell, S., and Alavi, A. 2005. Potential of dual-time-point imaging to improve breast cancer diagnosis with (18) F-FDG PET. J. Nucl. Med. 46: 1819–1824

    PubMed  Google Scholar 

  • Kumar, R., Chauhan, A., Zhuang, H., Chandra, P., Schnall, M., and Alavi, A. 2006a. Clinicopathologic factors associated with false negative FDG—PET in primary breast cancer. Breast Cancer Res. Treat. 98: 267–274

    Article  Google Scholar 

  • Kumar, R., Zhuang, H., Schnall, M., Conant, E., Damia, S., Weinstein, S., Chandra, P., Czerniecki, B., and Alavi, A. 2006b. FDG PET positive lymph nodes are highly predictive of metastasis in breast cancer. Nucl. Med. Commun. 27: 231–236

    Article  Google Scholar 

  • Kumar, R., Chauhan, A., Zhuang, H., Chandra, P., and Alavi, A. 2006c. Stanadarized upatke value in normal breast: effect of age, density and men-opausal status. Mol. Imaging Biol. 8: 355–362

    Article  Google Scholar 

  • Langen, K.J., Braun, U., Kops, E.R., Herzog, H., Kuwert, T., Nebeling, B., and Feinendegen, L.E. 1993. The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J. Nucl. Med. 34: 355–359

    PubMed  CAS  Google Scholar 

  • Li, C.I., Anderson, B.O., Porter, P., Holt, S.K., Daling, J.R., and Moe, R.E. 2000. Changing incidence rate of invasive lobular breast carcinoma among older women. Cancer 88: 2561–2569

    Article  PubMed  CAS  Google Scholar 

  • Linden, H.M., Stekhova, S.A., Link, J.M., Gralow, J.R., Livingston, R.B., Ellis, G.K., Petra, P.H., Peterson, L.M., Schubert, E.K., Dunnwald, L.K., Krohn, K.A., and Mankoff, D.A. 2006. Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J. Clin. Oncol. 24: 2793–2799

    Article  PubMed  CAS  Google Scholar 

  • Moy, L., Ponzo, F., Noz, M.E., Maguire, G.Q., Jr, Murphy-Walcott, A.D., Deans, A.E., Kitazono, M.T., Travascio, L., and Kramer, E.L. 2007. Improving specificity of breast MRI using prone PET and fused MRI and PET 3D volume data-sets. J. Nucl. Med. 48: 528–537

    Article  PubMed  Google Scholar 

  • Oshida, M., Uno, K., Suzuki, M., Nagashima, T., Hashimoto, H., Yagata, H., Shishikura, T., Imazeki, K., and Nakajima, N. 1998. Predicting the prognoses of breast carcinoma patients with positron emission tomography using 2-deoxy-2-fluoro[18F]-D-glucose. Cancer 82: 2227–2234.

    Article  PubMed  CAS  Google Scholar 

  • Raylman, R.R., Majewski, S., Wojcik, R., Weisenberger, A.G., Kross, B., Popov, V., and Bishop, H.A. 2000. The potential role of positron emission mammography for detection of breast cancer. A phantom study. Med. Phys. 27: 1535–1543

    Article  Google Scholar 

  • Schirrmeister, H., Kuhn, T., Guhlmann, A., Santjohanser, C., Horster, T., Nussle, K., Koretz, K., Glatting, G., Rieber, A., Kreienberg, R., Buck, A.C., and Reske, S.N. 2001. Fluorine-18 2-deoxy-2-fluoro-D-glucose PET in the preoperative staging of breast cancer: comparison with the standard staging procedures. Eur. J. Nucl. Med. 28: 351–358

    Article  PubMed  CAS  Google Scholar 

  • Schulte, M., Brecht-Krauss, D., Heymer, B., Guhlmann, A., Hartwig, E., Sarkar, M.R., Diederichs, C.G., Schultheiss, M., Kotzerke, J., and Reske, S.N. 1999. Fluorodeoxyglucose positron emission tomography of soft tissue tumours: is a non-invasive determination of biological activity possible? Eur. J. Nucl. Med. 26: 599–605

    Article  PubMed  CAS  Google Scholar 

  • Stadnik, T.W., Everaert, H., Makkat, S., Sacre, R., Lamote, J., and Bourgain, C. 2006. Breast imaging. Preoperative breast cancer staging: comparison of USPIO-enhanced MR imaging and 18F-fluorode-oxyglucose (FDC) positron emission tomography (PET) imaging for axillary lymph node staging— initial findings. Eur. Radiol. 16: 2153–2160

    Article  PubMed  Google Scholar 

  • Tatsumi, M., Cohade, C., Mourtzikos, K.A., Fishman, E.K., and Wahl, R.L. 2006. Initial experience with FDG-PET/CT in the evaluation of breast cancer. Eur. J. Nucl. Med. Mol. Imaging 33: 254–262

    Article  PubMed  Google Scholar 

  • Torizuka, T., Zasadny, K.R., Recker, B., and Wahl, R.L. 1998. Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies. Radiology 207: 767–774

    PubMed  CAS  Google Scholar 

  • Utech, C.I., Young, C.S., and Winter, P.F. 1996. Prospective evaluation of fluorine-18 fluoro-deoxyglucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur. J. Nucl. Med. 23:1588–1593

    Article  PubMed  CAS  Google Scholar 

  • Vranjesevic, D., Schiepers, C., Silverman, D.H., Quon, A., Villalpando, J., Dahlbom, M., Phelps, M.E., and Czernin, J. 2003. Relationship between 18F-FDG uptake and breast density in women with normal breast tissue. J. Nucl. Med. 44: 1238–1242

    PubMed  Google Scholar 

  • Wahl, R.L., Cody, R.L., Hutchins, G.D., and Mudgett, E.E. 1991. Primary and metastatic breast carcinoma: initial clinical evaluation with PET with the radiolabeled glucose analogue 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 179: 765–770

    PubMed  CAS  Google Scholar 

  • Wahl, R.L., Henry, C.A., and Ethier, S.P. 1992. Serum glucose: effects on tumor and normal tissue accumulation of 2-[F-l8]-fluoro-2-deoxy-D-glucose FDG in rodents with mammary carcinoma. Radiology 183: 643–647

    PubMed  CAS  Google Scholar 

  • Zasadny, K.R., and Wahl, R.L. 1993. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 189: 847–850

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Kumar, R., Lal, N. (2008). 18F-Fluorodeoxyglucose/Positron Emission Tomography in Primary Breast Cancer: Factors Responsible for False-Negative Results. In: Hayat, M.A. (eds) Methods of Cancer Diagnosis, Therapy and Prognosis. Methods of Cancer Diagnosis, Therapy and Prognosis, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8369-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8369-3_36

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8368-6

  • Online ISBN: 978-1-4020-8369-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics