Study Cases of Enzymatic Processes

  • Sonia Barberis
  • Fanny Guzmán
  • Andrés Illanes
  • Josep López-Santín
  • Lorena Wilson
  • Gregorio Álvaro
  • José M. Guisán
  • Roberto Fernández-Lafuente
  • César Mateo
  • Pere Clapés
  • Juan M. Lema
  • Gemma Eibes
  • Carmen López
  • M. Teresa Moreira
  • Gumersindo Feijoo

Peptides are heteropolymers composed by amino acid residues linked by peptidic bonds between the carboxyl group of one amino acid residue and the α-amino group of the next one. The definition is rather vague in terms of chain length, peptides ranging from two residues to a few dozens residues. Its upper limit of molecular mass has been set rather arbitrarily in 6,000 Da. The size of the molecule determines the technology most suitable for its production. Recombinant DNA technology is particularly suitable for the synthesis of large peptides and proteins, as illustrated by the case of insulin and other hormones (Walsh 2005). Chemical synthesis is a viable technology for the production of small and medium size peptides ranging from about 5 to 80 residues (Kimmerlin and Seebach 2005). Enzymatic synthesis is more restricted and has been hardly applied for the synthesis of peptides exceeding 10 residues. Its potential relies on the synthesis of very small peptides and, in fact, most of the cases reported correspond to dipeptides and tripeptides (Kumar and Bhalla 2005). In this sense, the technologies for peptide production are not competitive with each other in most of the cases.


Ionic Liquid Immobilize Lipase Lipase Production Acyl Donor Candida Rugosa Lipase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahamsen L, Tom J, Burnier J et al. (1991) Engineering subtilisin and its substrates for efficient ligation of peptide bond in aqueous solution. Biochemistry 30:4151-4159CrossRefGoogle Scholar
  2. Adamczak M, Hari Krishna S (2004) Strategies for improving enzymes for efficient biocatalysis. Food Technol Biotech 42(4):251-264Google Scholar
  3. Ahn, JM, Boyle NA, Macdonald MT et al. (2002) Peptidomimetics and peptide backbone modifi-cations. Mini Rev Med Chem 2(5):463-473CrossRefGoogle Scholar
  4. Albericio F (2000) Orthogonal protecting groups for Nα -amino and C-terminal carboxyl functions in solid-phase synthesis. Biopolymers (Peptide Sci) 55:123-139CrossRefGoogle Scholar
  5. Ambulos NP, Bibbs L, Bonewald LF et al. (2000) Analysis of synthetic peptides In: Kates SA, Albericio F (eds). Solid-phase synthesis: a practical guide. Marcel Dekker, New York, pp 751-789Google Scholar
  6. Amorim Fernandes J, McAlphine M, Halling P (2005) Operational stability of subtilisin CLECs in organic solvents in repeated batch and continuous operation. Biochem Eng J 24:11-15CrossRefGoogle Scholar
  7. Andersson L, Blomberg L, Flegel M et al. (2000) Large-scale synthesis of peptides. Biopolymers 55:227-250CrossRefGoogle Scholar
  8. Arnold F (2001) Combinatorial and computational challenges for biocatalyst design. Nature 409:253-257CrossRefGoogle Scholar
  9. Aso K (1989) Enzymatic approach to the synthesis of a lysine-containing sweet peptide, N -acetyl-L-phenylalanyl-L-lysine. Agr Biol Chem 53:729-733Google Scholar
  10. Baca M, Muir TW, Schn ölzer M et al. (1995) Chemical ligation of cysteine-containing pep-tides: synthesis of a 22 kDa tethered dimer of HIV-1 protease. J Am Chem Soc 117:1881-1887CrossRefGoogle Scholar
  11. Baile C, McLaughlin C, Della-Fera M (1986) Role of cholecystokinin and opioid peptide in control food intake. Physiol Rev 66:172-234Google Scholar
  12. Banfi D, Mutter M, Patiny L (2004) Versatile synthesis of Boc protected hydrazinoacetic acid and its application to the chemoselective ligation of TASP molecules. Protein Peptide Lett 11 (6):539-542CrossRefGoogle Scholar
  13. Barberis S, Illanes A (1996) Cat álisis enzim ática en fase org ánica. Ing Quim March :165-173Google Scholar
  14. Barberis S, Quiroga E, Arrib ére MC et al. (2002) Peptide synthesis in aqueous-organic biphasic systems catalyzed by a protease isolated from Morrenia brachystephana (Asclepiadaceae). J Mol Catal B: Enzym 17:39-47CrossRefGoogle Scholar
  15. Barberis S, Quiroga E, Morcelle S et al. (2006) Study of phytoproteases stability in aqueous-organic biphasic systems using linear free energy relationships. J Mol Catal B: Enzym 38:95-103CrossRefGoogle Scholar
  16. Barlos K, Gatos D (1999) Fluorenylmethyloxycarbonyl/tbutyl-based convergent protein synthe-sis. Biopolymers 51(4):266-278CrossRefGoogle Scholar
  17. Barlos K, Chatzi O, Gatos D et al. (1991) Studies on anchoring of Fmoc-amino acids and peptide cleavage. Internat J Peptide Protein Res 37(6):513-520Google Scholar
  18. Bj örup P, Adlercreutz P, Clap és P (1999) Useful methods in enzymatic synthesis of peptides: a comparative study focusing on kinetically controlled synthesis of Ac-Phe-Leu-NH2 catalyzed by α-chymotrypsin. Biocatal Biotransform 17(5):319-345CrossRefGoogle Scholar
  19. Bordusa F (2002) Proteases in organic synthesis. Chem Rev 102:4817-4867CrossRefGoogle Scholar
  20. Bordusa F, Ullmann D, Elsner C et al. (1997) Substrate mimetics mediated peptide synthesis: an irreversible ligation strategy that is independent of substrate specificity. Angew Chem Int Edit 36:2473-2475CrossRefGoogle Scholar
  21. Brahms S, Brahms J (1980) Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol 138:149-178CrossRefGoogle Scholar
  22. Bray BL (2003) Large-scale manufacture of peptide therapeutics by chemical synthesis. Nature Rev 2:587-593CrossRefGoogle Scholar
  23. Bruckdorfer T, Marder O, Albericio F (2004) From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Curr Pharm Biotechnol 5:29-43CrossRefGoogle Scholar
  24. Cabezas M, Del Campo C, Llama E et al. (1990) Organic reactions catalyzed by insolubilized enzymes. Part II. Influence of structure of the acyl donor in selectivity of α-chymotrypsin. J Mol Catal 62(3):353-367CrossRefGoogle Scholar
  25. Calvo JC, Choconta KC, Diaz D et al. (2003) An alpha helix conformationally restricted peptide is recognized by cervical carcinoma patients’ sera. J Med Chem 46(25):5389-5394CrossRefGoogle Scholar
  26. Cao L, van Rantwijk F, Sheldon R (2000) Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org Lett 2:1361-1364CrossRefGoogle Scholar
  27. Cao L, van Langen L, Sheldon R (2003) Immobilised enzymes: carrier-bound or carrier free? Curr Opin Biotech 14:387-394CrossRefGoogle Scholar
  28. Capellas M, Caminal G, Gonz ález G et al. (1996) Enzymic synthesis of a CCK-8 tripeptide frag-ment in organic media. Biotechnol Bioeng 50:700-708CrossRefGoogle Scholar
  29. Capellas M, Caminal G, Gonz ález G et al. (1997) Enzymatic condensation of cholecystokinin CCK-8 (4-6) and CCK-8 (7-8) peptide fragments in organic media. Biotechnol Bioeng 56 (4):456-463CrossRefGoogle Scholar
  30. Carrea G, Riva S (2000) Properties and synthetic applications of enzymes in organic solvents. Angew Chem Int Edit 39:2226-2254CrossRefGoogle Scholar
  31. Castro R (2000) Properties of soluble α-chymotrypsin in neat glycerol and water. Enzyme Microb Technol 27:143-150CrossRefGoogle Scholar
  32. Chan WC, White PD (2000) Fmoc solid phase peptide synthesis: a practical approach. Oxford University Press, Oxford, 341 ppGoogle Scholar
  33. Chellapan S, Jasmin C, Basheer S et al. (2006) Production, purification and partial characterization of a novel protease from Engyodontium album BTMFS 10 under solid state fermentation. Proc Biochem 41:956-961CrossRefGoogle Scholar
  34. Clap és P, Mata-Alvarez J, Valencia G et al. (1989) Continuous enzymatic synthesis of Z-kyotorphin amide in an enzyme-immobilized fixed-bed reactor. J Chem Technol Biotechnol 45:191-202Google Scholar
  35. Clap és P, Adlercreutz P, Mattiasson B (1990a) Enzymatic peptide synthesis in organic media: a comparative study of water-miscible and water-immiscible solvent systems. J Biotechnol 15 (4):323-338CrossRefGoogle Scholar
  36. Clap és P, Adlercreutz P, Mattiasson B (1990b) Enzymatic peptide synthesis in organic media: nu-cleophile specificity and medium engineering in α-chymotripsin-catalyzed reactions. Biotech-nol Appl Biochem 12:376-386Google Scholar
  37. Clap és P, Caminal G, Feliu JA et al. (2000) Peptide synthesis in non-aqueous media. In: Gupta MN (ed). Methods in non-aqueous enzymology. Birkh äuser, Bassel, pp 110-132Google Scholar
  38. Clap és P, Espelt L, Navarro M et al. (2001) Highly concentrated water-in-oil emulsions as novel reaction media for protease-catalysed kinetically controlled peptide synthesis. J Chem Soc Perk T 2:1394-1399CrossRefGoogle Scholar
  39. Clark D (2004) Characteristics of nearly dry enzymes in organic solvents: implications for bio-catalysis in the absence of water. Philos Trans R Soc London B 359:1299-1307CrossRefGoogle Scholar
  40. Du Vigneaud V, Ressler C, Swan J et al. (1953) The synthesis of an octapeptide amide with the hormonal activity of oxytocin. J Am Chem Soc 75:4879-4880CrossRefGoogle Scholar
  41. Ellman GL (1958) A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys 74:443-450CrossRefGoogle Scholar
  42. Feli ú J, De Mas C, L ópez-Santín J (1995) Studies on papain action in the synthesis of Gly-Phe in two-liquid-phase media. Enzyme Microb Technol 17:882-887CrossRefGoogle Scholar
  43. Filippova I, Lysogorskaya E (2003) Modified proteinases in peptide synthesis in organic media. Bioorg Khim 29(5):544-550Google Scholar
  44. Fischer U, Zeitschel U, Jakubke H (1991) Chymotrypsin-catalyzed peptide synthesis in an acetonitrile-water-system: studies on the efficiency of nucleophiles. Biomed Biochim Acta 50 (10-11):S131-S135Google Scholar
  45. Fit é M, Clap és P, L ópez-Santín J et al. (2002) Integrated process for the enzymatic synthesis of the octapeptide PhAcCCK-8. Biotechnol Progr 18:1214-1220CrossRefGoogle Scholar
  46. Floersheimer A, Kula M, Schuetz H et al. (1989) Continuous production of kyotorphin. Biotechnol Bioeng 33(11):1400-1405CrossRefGoogle Scholar
  47. Frank R (2002) The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports: principles and applications. J Immunol Meth 267(1):13-26CrossRefGoogle Scholar
  48. Gill I, Valivety R (2002) Pilot-scale enzymatic synthesis of bioactive oligopeptides in eutectic-based media. Org Proc Res Develop 6(5):684-691CrossRefGoogle Scholar
  49. Gill I, López-Fandiño R, Vulfson E (1995) Enzymatic oligopeptide synthesis using a minimal protection strategy: sequential assembly of a growing oligopeptide chain. J Am Chem Soc 117 (23):6175-6177CrossRefGoogle Scholar
  50. Gill I, López-Fandiño R, Jorba X et al. (1996) Biologically active peptides and enzymatic ap-proaches to their production. Enzyme Microb Technol 18:162-183CrossRefGoogle Scholar
  51. Grunberg R, Domgall I, Gunther R et al. (2000) Peptide bond formation mediated by substrate mimetics. Eur J Biochem 267:7024-7030CrossRefGoogle Scholar
  52. Guis án J, Polo E, Aguado J et al. (1997) Immobilization-stabilization of thermolysin onto activated agarose gels. Biocatal Biotransfor 15:159-173CrossRefGoogle Scholar
  53. Guzm án F, Jaramillo K, Salazar LM et al. (2003) H-NMR structures of the Plasmodum falci-parum 1758 erythrocyte binding peptide analogues and protection against malaria. Life Sci 71 (23):2773-2785CrossRefGoogle Scholar
  54. Guzm án F, Barberis S, Illanes A (2007) Peptide synthesis: chemical or enzymatic. Electron J Biotechnol 10(2):279-314Google Scholar
  55. Halling PJ (1994) Thermodynamic predictions for biocatalysis in nonconventional media: the-ory, tests, and recommendations for experimental design and analysis. Enzyme Microb Technol 16:178-206CrossRefGoogle Scholar
  56. Halling PJ, Eichhorn U, Khul P et al. (1995) Thermodynamics of solid-to-solid conversion and application to enzymic peptide synthesis. Enzyme Microb Technol 17:601-606CrossRefGoogle Scholar
  57. Hamel E, Covell DG (2002) Antimitotic peptides and depsipeptides. Curr Med Chem Anti-Cancer Agents 2(1):19-53CrossRefGoogle Scholar
  58. Hou R, Zhang N, Li G et al. (2005) Synthesis of the tripeptide RGD amide by a combination of chemical and enzymatic methods. J Mol Catal B: Enzym 37:9-15CrossRefGoogle Scholar
  59. Hou R, Yang Y, Huang Y et al. (2006a) Alcalase-catalyzed, kinetically controlled synthesis of a precursor dipeptide of RGDS in organic solvents. Prep Biochem Biotech 36(1):93-105CrossRefGoogle Scholar
  60. Hou R, Yang Y, Li G et al. (2006b) Synthesis of a precursor dipeptide of RGDS (Arg-Gly-Asp-Ser) catalysed by the industrial protease alcalase. Biotechnol Appl Biochem 44(2):73-80CrossRefGoogle Scholar
  61. Houghten RA (1985) General method for the rapid solid-phase synthesis of large numbers of pep-tides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci USA 82(15):5131-5135CrossRefGoogle Scholar
  62. Houghten RA, Wilson DB, Pinilla C (2000) Drug discovery and vaccine development using mixture-based synthetic combinatorial libraries. Drug Discov Today 5:276-285CrossRefGoogle Scholar
  63. Hudson E, Eppler, Clark D (2005) Biocatalysis in semi-aqueous and nearly anhydrous conditions. Curr Opin Biotech 16:637-643CrossRefGoogle Scholar
  64. Illanes A, Fajardo A (2001) Kinetically controlled synthesis of ampicillin with immobilized peni-cillin acylase in the presence of organic cosolvents. J Mol Catal B: Enzym 11(4-6):587-595CrossRefGoogle Scholar
  65. Illanes A, Wilson L (2003) Enzyme reactor design under thermal inactivation. Crit Rev Biotechnol 23 (1):61-93CrossRefGoogle Scholar
  66. Illanes A, Anjarí S, Altamirano C et al. (2004) Optimization of cephalexin synthesis with immobi-lized penicillin acylase in ethylene glycol medium at low temperatures. J Mol Catal B: Enzym 30:95-103CrossRefGoogle Scholar
  67. Jakubke H, Kuhl P, Konnecke A (1985) Basic principles of protease-catalyzed peptide bond for-mation. Angew Chem Int Edit 24:85-93CrossRefGoogle Scholar
  68. Johnson EC, Malito E, Shen Y et al. (2007) Insights from atomic-resolution X-ray structures of chemically synthesized HIV-1 protease in complex with inhibitors. J Mol Biol 373(3):573-586CrossRefGoogle Scholar
  69. Kasche V (1996) Proteases in peptide synthesis. In: Beynon R, Nond J (eds). Proteolytic enzymes -a practical approach. IRL Press, Oxford, pp 125-143Google Scholar
  70. Kimmerlin T, Seebach D (2005) A100 years of peptide synthesis: ligation methods for peptide and protein synthesis with applications to β-peptide assemblies. J Pept Res 65:229-260CrossRefGoogle Scholar
  71. Kimura Y, Nakanishi K, Matsuno R (1990a) Enzymatic synthesis of precursor of Leu-enkephalin in water-immiscible organic solvent systems. Enzyme Microb Tech 12:272-280CrossRefGoogle Scholar
  72. Kimura Y, Muraya K, Araki Y et al. (1990b) Synthesis peptides consisting of essential amino acids by a reactor system using three proteinases and an organic solvent. Agr Biol Chem 54:3331-3333Google Scholar
  73. Klibanov A (1997) Why are enzymes less active in organic solvents than in water? TIBTECH 15:97-101Google Scholar
  74. Kumar D, Bhalla T (2005) Microbial proteases in peptide synthesis: approaches and applications. Appl Microbiol Biotechnol 68:726-736CrossRefGoogle Scholar
  75. Lei H, Chen L, Li X et al. (2004) The preparation of catalytically active papain immobilized on magnetic composite microspheres. Enzyme Microb Technol 35:15-21CrossRefGoogle Scholar
  76. Lioy E, Suarez J, Guzman F et al. (2001) Synthesis, biological, and immunological properties of cyclic peptides from Plasmodium falciparum merozoite surface protein-1. Angewand Chem Internat Ed 40(14):2631-2635CrossRefGoogle Scholar
  77. Liu P, Gui-Ling T, Kin-Sing L et al. (2002) Full enzymatic synthesis of a precursor of bioactive pentapeptide OGP (10-14) in organic solvents. Tetrahed Lett 43:2423-2425CrossRefGoogle Scholar
  78. Lloyd-Williams P, Giralt E (2000). Solid-phase convergent approaches to the synthesis of native peptides and proteins. In: Kates SA, Albericio F (eds). Solid-phase synthesis: a practical guide. Marcel Dekker, New York, pp 377-418Google Scholar
  79. Lombard C, Saulnier J, Wallach J (2005) Recent trends in protease-catalyzed peptide synthesis. Protein Peptide Lett 12:621-629CrossRefGoogle Scholar
  80. Lou W, Zong M, Wu H (2004) Enhanced activity, enantioselectivity and stability of papain in asymmetric hydrolysis of D ,L-p-hydroxyphenylglycine methyl ester with ionic liquid. Biocatal Biotransform 22(3):171-176CrossRefGoogle Scholar
  81. Lu YA, Tam JP (2005) Peptide ligation by a reversible and reusable C-terminal thiol handle. Org Lett 7(22):5003-5006CrossRefGoogle Scholar
  82. Manabe K, Mori Y, Wakabayashi T et al. (2000) Organic synthesis inside particles in water: Lewis acid-surfactant-combined catalysts for organic reactions in water using colloidal dispersions as reaction media. J Am Chem Soc 122:7202-7207CrossRefGoogle Scholar
  83. Meng L, Joshi R, Eckstein H (2006) Application of enzymes for the synthesis of the cholecys-tokinin pentapeptide (CCK-5): a contribution to green chemistry. Chimica Oggi 24(3):50-53Google Scholar
  84. Merrifield B (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149-2154CrossRefGoogle Scholar
  85. Merrifield B (1986) Solid phase synthesis. Science 232:341-347CrossRefGoogle Scholar
  86. Merrifield B (1996) The chemical synthesis of proteins. Protein Sci 5:11947-11951CrossRefGoogle Scholar
  87. Mesiano A, Beckman E, Russell A (1999) Supercritical biocatalysis. Chem Rev 99:623-634CrossRefGoogle Scholar
  88. Miyazawa T, Nakajo S, Nishikawa M et al. (2001a) Chymotrypsin-catalysed peptide synthesis via the kinetically controlled approach using activated esters as acyl donors in organic solvents with low water content: incorporation of non-protein amino acids into peptides. J Chem Soc Perk 1:82-86CrossRefGoogle Scholar
  89. Miyazawa T, Tanaka K, Ensatsu E et al. (2001b) Broadening of the substrate tolerance of α-chymotrypsin by using the carbamoylmethyl ester as an acyl donor in kinetically controlled peptide synthesis. J Chem Soc Perk T 1 1:87-93Google Scholar
  90. Murakami Y, Yoshida T, Hayashi S et al. (2000) Continuous enzymatic production of peptide precursor in aqueous/organic biphasic medium. Biotechnol Bioeng 69:57-65CrossRefGoogle Scholar
  91. Nakanishi K, Takeuchi A, Matsuno R (1990) Long term continuous synthesis of aspartame precur-sor in a column reactor with an immobilized thermolysin. Appl Microbiol Biot 32:633-636CrossRefGoogle Scholar
  92. Nardin EH, Calvo-Calle JM, Oliveira GA et al. (1998). Plasmodium falciparum polyoximes: highly immunogenic synthetic vaccines constructed by chemoselective ligation of repeat B-cell epi-topes and a universal T-cell epitope of CS protein. Vaccine 16:590-600CrossRefGoogle Scholar
  93. Nilsson B, Soellner M, Raines R (2005) Chemical synthesis of proteins. Annu Rev Biophys Biomol Struct 34:91-118CrossRefGoogle Scholar
  94. Obreg ón WD, Arrib ére MC, Morcelle Del Valle S et al. (2001) Two new cysteine endopeptidases obtained from the latex of Araujia hortorum fruits. J Protein Chem 20:317-325CrossRefGoogle Scholar
  95. Ogino H, Uchiho T, Yokoo J et al. (2001) Role of intermolecular disulfide bonds of the organic solvent stable PST-01 protease in its organic solvent stability. Appl Environ Microb 67:942-947CrossRefGoogle Scholar
  96. Park S, Kazlauskas R (2003) Biocatalysis in ionic liquids - advantages beyond green technology. Curr Opin Biotechnol 14:432-437CrossRefGoogle Scholar
  97. Patarroyo JH, Guzman F (2004) Peptideos sinteticos como vacinas. In: De Almeida MR, Borem A, Franco GR (eds). Biotecnologia e saude. Ed. Folha de Viçosa, Viçosa, pp 113-139Google Scholar
  98. Patarroyo ME, Amador R, Clavijo P et al. (1988) A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature 332:158-161CrossRefGoogle Scholar
  99. Priolo N, Morcelle Del Valle S, Arrib ére MC et al. (2000) Isolation and characterization of cysteine protease from the latex of Araujia hortorum fruits. J Prot Chem 19:39-49CrossRefGoogle Scholar
  100. Quiroga E, Priolo N, Marchese J et al. (2005) Behaviour of araujiain, a new cystein phytoprotease, in organic media with low water content. Electron J Biotechnol 9:18-25CrossRefGoogle Scholar
  101. Quiroga E, Priolo N, Marchese J et al. (2006) Stability of araujiain, a novel plant protease, in different organic systems. Acta Farmacol Bonaer 24(2):204-208Google Scholar
  102. Rance M, Sorensen OW, Bodenhausen G et al. (1983) Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. Biochem Biophys Res Commun 117 (2):479-485CrossRefGoogle Scholar
  103. Richards A, Gill I, Vulfson E (1993) Continuous enzymatic production of oligopeptides: synthesis of an enkephalin pentapeptide in a multistage bioreactor. Enzyme Microb Technol 15(11):928-935CrossRefGoogle Scholar
  104. Sarabia F, Chammaa S, Ruiz, AS et al. (2004) Chemistry and biology of cyclic depsipeptides of medicinal and biological interest. Curr Med Chem 11(10):1309-1332Google Scholar
  105. Schmid A, Dordick J, Hauer B et al. (2001) Industrial biocatalysis today and tomorrow. Nature 409:258-268CrossRefGoogle Scholar
  106. Schwartz GJ, Netterville L, McHugh P et al. (1991) Gastric loads potentiate inhibition of food intake produced by a cholecystokinin analogue. Am J Physiol Reg 261(5 30-5):R1141-R1146Google Scholar
  107. Schwarz A, Wandrey C, Steinke D et al. (1992) A two-step enzymatic synthesis of dipeptides. Biotechnol Bioeng 39(2):132-140CrossRefGoogle Scholar
  108. Sinisterra J, Alcantara A (1993) Synthesis of peptides catalyzed by enzymes: a practical overview. J Mol Catal 84(3):327-364CrossRefGoogle Scholar
  109. Stewart JM, Young JD (1984) Solid phase peptide synthesis, 2nd edn. Pierce Chemical Company, Rockford, 176 ppGoogle Scholar
  110. Takagi H, Hirai K, Maeda Y et al. (2000) Engineering subtilisin E for enhanced stability and activity in polar organic solvents. J Biochem Tokyo 127:617-625Google Scholar
  111. Tam JP, Heath WF, Merrifield B (1983) SN2 deprotection of synthetic peptides with a low con-centration of HF in dimethyl sulfide: evidence and application in peptide synthesis. J Am Chem Soc 105(21):6442-6456CrossRefGoogle Scholar
  112. Tam JP, Lu Y, Liu CF et al. (1995) Peptide synthesis using unprotected peptides through orthogonal coupling methods. Proc Natl Acad Sci USA 92(26):12485-12489CrossRefGoogle Scholar
  113. Thormann M, Thurst S, Hofmann H et al. (1999) Protease-catalyzed hydrolysis of substrate mimet-ics (inverse substrates): a new approach reveals a new mechanism. Biochemistry 38(19):6056-6062CrossRefGoogle Scholar
  114. Thurst S, Koksche B (2003) Protease-catalysed peptide synthesis for the site specific incorporation of alpha-fluoroalkyl amino acids into peptides. J Org Chem 68:2290-2296CrossRefGoogle Scholar
  115. Trusek-Holownia A (2003) Synthesis of Z-Ala-Phe.OMe, the precursor of bitter dipeptide in the two-phase ethyl acetate-water system catalysed by thermolysin. J Biotechnol 102:153-163CrossRefGoogle Scholar
  116. Tuchscherer G, Mutter M (1996) Template assisted protein de novo design. Pure Appl Chem 68 (11):2153-2162CrossRefGoogle Scholar
  117. van Unen D, Engbersen F, Reinhoudt D (1998) Large acceleration of α-chymotrypsin-catalyzed dipeptide formation by 18-crown-6 in organic solvents. Biotechnol Bioeng 59:553-556CrossRefGoogle Scholar
  118. van Unen D, Engbersen F, Reinhoudt D (2001) Studies on the mechanism of crown-ether-induced activation of enzymes in non-aqueous media. Biotechnol Bioeng 75:154-158CrossRefGoogle Scholar
  119. van Unen D, Engbersen F, Reinhoudt D (2002) Why do crown ethers activate enzymes in organic solvents. Biotechnol Bioeng 77:248-255CrossRefGoogle Scholar
  120. Villanueva M, Collins S, Jensen R et al. (1982) Structural requirements for action of cholecys-tokinin on enzyme secretion from pancreatic acini. Am J Phys 242(4):G416-422Google Scholar
  121. Walsh G (2005) Therapeutic insulins and their large scale manufacture. Appl Microbiol Biotechol 67:151-159CrossRefGoogle Scholar
  122. West J, Hennen W, Lalonde J et al. (1990) Enzymes as synthetic catalysts: mechanistic and active-site considerations of natural and modified chymotrypsin. J Am Chem Soc 112:5313-5320CrossRefGoogle Scholar
  123. Wilson L, Illanes A, Abi án O et al. (2004a) Co-aggregation of penicillin G acylase and polyionic polymers: an easy methodology to prepare enzyme biocatalysts stable in organic media. Bio-macromolecules 5:852-857Google Scholar
  124. Wilson L, Illanes A, Pessela B et al. (2004b) Encapsulation of crosslinked penicillin G acylase aggregates in Lentikats: evaluation of a novel biocatalyst in organic media. Biotechnol Bioeng 86:558-562CrossRefGoogle Scholar
  125. Xiang H, Xiang G, Lu Z et al. (2004) Total enzymatic synthesis of cholecystokinin CCK-5. Amino Acids 27(1):101-105CrossRefGoogle Scholar
  126. Yan LZ, Dawson PE (2001) Synthesis of peptides and proteins without cysteine residues by native chemical ligation combined with desulfurization. J Am Chem Soc 123(4):526-533CrossRefGoogle Scholar
  127. Yin H, Frederick KK, Liu D et al. (2006) Arylamide derivatives as peptidomimetic inhibitors of calmodulin. Org Lett 8(2):223-225CrossRefGoogle Scholar
  128. Zaks A, Dodds D (1997) Application of biocatalysis and biotransformations to the synthesis of pharmaceuticals. Drug Discov Today 2:513-531CrossRefGoogle Scholar
  129. Abian A, Wilson L, Mateo C (2002) Preparation of artificial hyper-hydrophilic micro-environments (polymeric salts) surrounding enzyme molecules. New enzyme derivatives to be used in any reaction medium. J Mol Catal B: Enzym 19-20:295-303CrossRefGoogle Scholar
  130. Abian A, Mateo C, Fern ández-Lorente G et al. (2003) Improving the industrial production of 6-APA: enzymatic hydrolysis of penicillin G in the presence of organic solvents. Biotechnol Prog 19:1639-1642CrossRefGoogle Scholar
  131. Abraham EP, Newton GGF (1961) The structure of cephalosporin C. Biochem J 79(2):377-393Google Scholar
  132. Aguirre C, Toledo M, Medina V et al. (2002) Effect of cosolvent and pH on the kinetically con-trolled synthesis of cephalexin with immobilised penicillin acylase. Proc Biochem 38(3):351-360CrossRefGoogle Scholar
  133. Aharonowitz Y, Cohen G (1981) The microbiological production of pharmaceuticals. Scientific Amer 245(3):141-152Google Scholar
  134. Alkema WB, de Vries E, Floris R et al. (2003) Kinetics of enzyme acylation and deacylation in the penicillin acylase-catalyzed synthesis of β-lactam antibiotics. Eur J Biochem 270:3674-3683CrossRefGoogle Scholar
  135. Alvaro G, Fern ández-Lafuente R, Blanco RM et al. (1990) Immobilization-stabilization of peni-cillin acylase from E. coli. Appl Biochem Biotech 26:186-195CrossRefGoogle Scholar
  136. Alvaro G, Fern ández-Lafuente R, Rosell CM et al. (1992) Penicillin G acylase from Kluyvera citrophila. New choice as industrial enzyme. Biotechnol Lett 14(4):285-290CrossRefGoogle Scholar
  137. Arroyo M, Torres-Guzm án R, de la Mata I et al. (2000) Activation and stabilization of penicillin V acylase from Streptomyces lavendulae in the presence of glycerol and glycols. Biotechnol Prog 16:368-371CrossRefGoogle Scholar
  138. Babu PSR, Panda T (1991) The role of phenylacetic acid in biosynthesis of penicillin amidase in E. coli. Bioproc Eng 6:71-74CrossRefGoogle Scholar
  139. Báez-Vásquez MA, Adrio JL, Piret JM et al. (1999) Further studies on the bioconversion of peni-cillin G into deacetoxycephalosporin G by resting cells of Streptomyces clavuligerus NP-1. Appl Biochem Biotechnol 81:145-152CrossRefGoogle Scholar
  140. Baldaro E (1991) Effect of temperature on enzymatic synthesis of cephalosporins. In: Pandit U (ed). Chemistry in healthcare and technology. Plenum Press, New York, pp 237-240Google Scholar
  141. Basso A, Biffi S, De Martin L et al. (2001) Quantitative acylation of amino compounds catalysed by penicillin acylase in organic solvent at controlled water activity. Croatica Chem Acta 74(4):757-762Google Scholar
  142. Basso A, De Martin L, Ebert C et al. (2003) Organically modified xerogels as novel tailor-made supports for covalent immobilisation of enzymes (penicillin G acylase). Tetrahed Lett 44:5889-5891CrossRefGoogle Scholar
  143. Basso A, Spizzo P, Toniutti M et al. (2006) Kinetically controlled synthesis of ampicillin and cephalexin in highly condensed systems in the absence of a liquid aqueous phase. J Mol Catal B: Enzym 39:105-111CrossRefGoogle Scholar
  144. Batchelor FR, Doyle FP, Nayler JHC et al. (1959) Synthesis of penicillin: 6-amino penicillanic acid in penicillin fermentations. Nature 183:257-258CrossRefGoogle Scholar
  145. Bruggink A (2001) Synthesis of β-lactam antibiotics. Kluwer Acad Publ, Dordrecht, 335 ppGoogle Scholar
  146. Bruggink A, Roos EC, de Vroom E (1998) Penicillin acylase in the industrial production of β-lactam antibiotics. Org Proc Res Develop 2:128-133CrossRefGoogle Scholar
  147. Bryjak J, Trochimczuk AW (2006) Immobilization of lipase and penicillin acylase on hydrophobic carriers. Enzyme Microb Technol 39:573-578CrossRefGoogle Scholar
  148. Cao L, van Rantwijk F, Sheldon RA (2000) Cross-linked enzymes aggregates: a simple and effec-tive method for the immobilization of penicillin acylase. Org Lett 2:1361-1364CrossRefGoogle Scholar
  149. Cao L, van Langen LM, van Rantwijk F et al. (2001) Cross-linked aggregates of penicillin acylase: robust biocatalysts for the synthesis of β-lactam antibiotics. J Mol Catal B Enzym 11:665-670CrossRefGoogle Scholar
  150. Cao L, van Langen LM, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:1-8CrossRefGoogle Scholar
  151. Chisti Y, Moo-Young M (1991) Fermentation technology, bioprocessing, scale-up and manufac-ture. In: Moses V, Cape RE (eds). Biotechnology: the science and the business. Harwood Aca-demic, New York, pp 167-209Google Scholar
  152. Crawford L, Stepan PC, McAda JA et al. (1995) Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Bio/Technology 13:58-62CrossRefGoogle Scholar
  153. de los Ríos AP, Hernández-Fernández FJ, Rubio M et al. (2007) Stabilization of native penicillin G acylase by ionic liquids. J Chem Technol Biotechnol 82:190-195CrossRefGoogle Scholar
  154. Demain A (1991) Production of beta-lactam antibiotics and its regulation. Proc Natl Sci Counc Repub China B 15(4):251-265Google Scholar
  155. Demain A, Cho H, Piret JM et al. (2002) Penicillin conversion. US Patent 6383773. Issued on May 7,2002Google Scholar
  156. Diender MB, Straathof AJ, Heijnen JJ (1998) Predicting enzyme catalyzed reaction equilibria in cosolvent-water mixtures as function of pH and solvent composition. Biocatal Biotransform 16:275-289CrossRefGoogle Scholar
  157. Diender MB, Straathof AJJ, van der Does T (2000) Course of pH during the formation of amoxi-cillin by a suspension-to-suspension reaction. Enzyme Microb Technol 27:576-582CrossRefGoogle Scholar
  158. Duggleby HJ, Tolley SP, Hill CP et al. (1995) Penicillin acylase has a single-amino-acid catalytic centre. Nature 373:264-268CrossRefGoogle Scholar
  159. Ebert C, Gardossi L, Linda P (1996) Control of enzyme hydration in penicillin acylase catalysed synthesis of amide bond. Tetrahed Lett 37(52):9377-9380CrossRefGoogle Scholar
  160. Elander RP (2003) Industrial production of β-lactam antibiotics. Appl Microbiol Biotechnol 61(5-6):385-392Google Scholar
  161. Erbeldinger M, Ni X, Halling PJ (1998) Effect of water and enzyme concentration on thermolysin-catalyzed solid-to-solid peptide synthesis. Biotechnol Bioeng 59(1):68-72CrossRefGoogle Scholar
  162. Fern ández-Lafuente R, Alvaro G, Blanco RM et al. (1991) Equilibrium controlled synthesis of cephalotin in water-cosolvent systems by stabilized penicillin acylase. Appl Biochem Biotech-nol 27:277-289CrossRefGoogle Scholar
  163. Fern ández-Lafuente R, Rosell CM, Guisan JM (1995) The use of stabilized penicillin acylase derivatives improves the design of kinetically controlled synthesis. J Mol Catal A: Chemical 101:91-97CrossRefGoogle Scholar
  164. Fern ández-Lafuente R, Rosell CM, Guisan JM (1996a) Dynamic reaction design of enzymic bio-transformations in organic media: equilibrium-controlled synthesis of antibiotics by penicillin G acylase. Biotechnol Appl Biochem 24:139-143Google Scholar
  165. Fern ández-Lafuente R, Rosell CM, Piatkowska B et al. (1996b) Synthesis of antibiotics (cephalo-glycin) catalyzed by penicillin G acylase: evaluation and optimization of different synthetic approaches. Enzyme Microb Technol 19:9-14CrossRefGoogle Scholar
  166. Fern ández-Lafuente R, Rosell CM, Guisan JM (1998) The presence of methanol exerts a strong and complex modulation of the synthesis of different antibiotics by immobilized penicillin G acylase. Enzyme Microb Technol 23:305-310CrossRefGoogle Scholar
  167. Fernandez-Lafuente R, Rosell C, Caanan-Haden L et al. (1999) Facile synthesis of artificial en-zyme nano-environments via solid-phase chemistry of immobilized derivatives: dramatic stabi-lization of penicillin acylase versus organic solvents. Enzyme Microb Technol 24:96-103CrossRefGoogle Scholar
  168. Ferreira JS, Straathof AJJ, Franco TT et al. (2004) Activity and stability of immobilized penicillin acylase at low pH values. J Mol Catal B: Enzym 27:29-35CrossRefGoogle Scholar
  169. Fit é M, Capellas M, Benaiges MD et al. (1997) N -protection of amino acid derivatives catalyzed by penicillin G acylase. Biocatal Biotransform 15:317-332Google Scholar
  170. Fuganti C, Graselli P, Seneci PF et al. (1986) Immobilised benzylpenicillin acylase: application to the synthesis of optically active forms of carnitin and propanolol. Tetrahed Lett 27:2061-2062CrossRefGoogle Scholar
  171. Gabor EM, de Vries EJ, Janssen DB (2005) A novel penicillin acylase from the environmental gene pool with improved synthetic properties. Enzyme Microb Technol 36:182-190CrossRefGoogle Scholar
  172. Gavrilescu M, Chisti Y (2005) Biotechnology - a sustainable alternative for chemical industry. Biotechol Adv 23:471-499CrossRefGoogle Scholar
  173. Giordano RC, Ribeiro M, Giordano RL (2006) Kinetics of β-lactam antibiotics synthesis by penicillin acylase (PGA) from the viewpoint of the industrial enzymatic reactor optimization. Biotechnol Adv 24:27-41CrossRefGoogle Scholar
  174. Gonçalves LRB, Fern ández-Lafuente R, Guisan JM et al. (2000) A kinetic study of synthesis of amoxicillin using penicillin acylase immobilized on agarose. Appl Biochem Biotechnol 84-86:931-945CrossRefGoogle Scholar
  175. Gonçalves LR, Fern ández-Lafuente R, Guisan JM et al. (2002) The role of 6-aminopenicillanic acid on the kinetics of amoxicillin enzymatic synthesis catalyzed by penicillin G acylase immo-bilized onto glyoxyl agarose. Enzyme Microb Technol 31:464-471CrossRefGoogle Scholar
  176. Gorziglia G, Altamirano C, Conejeros R et al. (2002). Determination of kinetic parameters in the synthesis of ampicillin with immobilized penicillin acylase. Annals of the XV Chilean Congress of Chemical Engineering, Punta Arenas, October 2002, pp 107-112.Google Scholar
  177. Guisan JM, Alvaro G, Fern ández-Lafuente R (1990) Immobilization-stabilization of penicillin G acylase. An integrated approach. Ann NY Acad Sci 613:552-559CrossRefGoogle Scholar
  178. Svedas VK (2004) PH stability of penicillin acylase from Escherichia coli. Biochem 69(12):1700-1705Google Scholar
  179. Hernández-Jústiz O, Fernández-Lafuente R, Terreni M et al. (1998) Use of aqueous two-phase systems for in-situ extraction of water soluble antibiotics during their synthesis by enzymes immobilized on porous supports. Biotechnol Bioeng 59:73-79CrossRefGoogle Scholar
  180. Hernández-Jústiz O, Terreni M, Pagani G et al. (1999) Evaluation of different enzymes as catalysts for the production of β-lactam antibiotics following a kinetically controlled strategy. Enzyme Microb Technol 25:336-343CrossRefGoogle Scholar
  181. Hsu JS, Yang YB, Deng CH et al. (2004) Shuffling of expandase genes to enhance substrate speci-ficity for penicillin G. Appl Environ Microbiol 70(10):6257-6263CrossRefGoogle Scholar
  182. Hyun CK, Kim JH, Ryu DD (1993) Enhancement effect of water activity on enzymatic synthesis of cephalexin. Biotechnol Bioeng 42:800-806CrossRefGoogle Scholar
  183. Illanes A, Fajardo A (2001) Kinetically controlled synthesis of ampicillin with immobilized peni-cillin acylase in the presence of organic cosolvents. J Mol Catal B: Enzym 11:587-595.CrossRefGoogle Scholar
  184. Illanes A, Torres R, Cartagena O et al. (1993) Evaluation of penicillin acylase production by two strains of Bacillus megaterium. Biol Res 26:357-364Google Scholar
  185. Illanes A, Acevedo F, Gentina JC et al. (1994) Production of penicillin acylase from Bacillus megaterium in complex and defined media. Proc Biochem 29(4):263-270CrossRefGoogle Scholar
  186. Illanes A, Wilson L, Tomasello G (2000) Temperature optimization for reactor operation with chitin-immobilized lactase under modulated inactivation. Enzyme Microb Technol 27:270-278CrossRefGoogle Scholar
  187. Illanes A, Anjarí S, Arrieta R et al. (2002) Optimization of yield in the kinetically controlled synthesis of ampicillin with immobilized penicillin acylase in organic media. Appl Biochem Biotechnol 97:165-179.CrossRefGoogle Scholar
  188. Illanes A, Cabrera Z, Wilson L et al. (2003) Synthesis of cephalexin in ethylene glycol with glyoxyl-agarose immobilised penicillin acylase: temperature and pH optimisation. Proc Biochem 39:111-117CrossRefGoogle Scholar
  189. Illanes A, Anjarí S, Altamirano C et al. (2004) Optimization of cephalexin synthesis with immobi-lized penicillin acylase in ethylene glycol medium at low temperatures. J Mol Catal B: Enzym 30:95-103CrossRefGoogle Scholar
  190. Illanes A, Altamirano C, Fuentes M et al. (2005a) Synthesis of cephalexin in organic medium at high substrate concentrations and low enzyme to substrate ratio. J Mol Catal B: Enzym 35:45-51CrossRefGoogle Scholar
  191. Illanes A, Rodríguez F, Bahamondes C et al. (2005b) Determination of lumped kinetic parame-ters and their thermal dependence for the synthesis of cephalexin with immobilized penicillin acylase in organic medium. Biochem Eng J 24:209-215CrossRefGoogle Scholar
  192. Illanes A, Wilson L, Caballero E et al. (2006) Crosslinked penicillin acylase aggregates for syn-thesis of β-lactam antibiotics in organic medium. Appl Biochem Biotechnol 133:189-202.CrossRefGoogle Scholar
  193. Illanes A, Wilson L, Altamirano C et al. (2007a) Production of cephalexin in organic medium at high substrates concentrations with CLEA of penicillin acylase and PGA-450. Enzyme Microb Technol 40:195-203CrossRefGoogle Scholar
  194. Illanes A, Wilson L, Corrotea O et al. (2007b) Synthesis of cephalexin with immobilized penicillin acylase at very high substrate concentrations in fully aqueous medium. J Mol Catal B: Enzym 47:72-78CrossRefGoogle Scholar
  195. Ishimura F, Seijo H (1991) Immobilization of penicillin acylase using porous polyacrilonitrile fibers. J Ferment Bioeng 71:140-143CrossRefGoogle Scholar
  196. Jager SAW, Jekel PA, Janssen DB (2007) Hybrid penicillin acylases with improved properties for synthesis of β-lactam antibiotics. Enzyme Microb Technol 40:1335-1344CrossRefGoogle Scholar
  197. Janssen MHA (2006) ISBN:909020 7546
  198. Jiang Y, Xia H, Guo C et al. (2007) Enzymatic hydrolysis of penicillin in mixed ionic liquids/water two-phase system. Biotechnol Prog 23:829-835Google Scholar
  199. Kallenberg A, van Rantwijk F, Sheldon R (2005) Immobilization of penicillin G acylase: the key to optimum performance. Adv Synth Catal 347:905-926CrossRefGoogle Scholar
  200. Kasche V (1985) Ampicillin and cephalexin synthesis catalyzed by E. coli penicillin amidase. Yield increase due to substrate recycling. Biotechnol Lett 7(12):877-882CrossRefGoogle Scholar
  201. Kasche V (1986) Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of β-lactam antibiotics, peptides and other condensation products. Enzyme Microb Technol 8:4-16CrossRefGoogle Scholar
  202. Kemperman GJ, de Gelder FJ, Dommerholt PC et al. (1999) Clathrate-type complexation of cephalosporins with β-naphthol. Chem Eur J 5:2163-2168CrossRefGoogle Scholar
  203. Kheirolomoom A, Ardjmand M, Fazelina H et al. (2001) Clarification of penicillin acylase reaction mechanism. Proc Biochem 36:1095-1101CrossRefGoogle Scholar
  204. Kim MG, Lee SB (1996) Penicillin acylase-catalyzed synthesis of β-lactam antibiotics in water-methanol mixtures: effect of cosolvent content and chemical nature of substrate on reaction rates and yields. J Mol Catal B: Enzym 1:201-211CrossRefGoogle Scholar
  205. Kohsaka M, Demain AL (1976) Conversion of penicillin N to cephalosporin(s) by cell-free extracts of Cephalosporium acremonium. Biochem Biophys Res Commun 70(2):465-473CrossRefGoogle Scholar
  206. Koreishi M, Tani K, Ise Y et al. (2007) Enzymatic synthesis of β-lactam antibiotics and N -fatty-acylated amino compounds by the acyl transfer reaction catalyzed by penicillin V acylase from Streptomyces mobaraensis. Biosci Biotechnol Biochem 71(6):1582-1586CrossRefGoogle Scholar
  207. Kupka JY, Shen, YQ, Wolfe S et al. (1983) Partial purification and properties of the alpha-ketoglutarate-linked ring expansion enzyme of beta-lactam biosynthesis of Cephalosporium acremonium. FEMS Microbiol Lett 16:1-6Google Scholar
  208. Kurochkina VB, Nys PS (2002) Kinetic and thermodynamic approach to design of processes for enzymatic synthesis of betalactams. Biocatal Biotransform 20(1):35-41CrossRefGoogle Scholar
  209. Lee SB, Ryu DDY (1982) Reaction kinetics and mechanism of penicillin amidase: a comparative study of computer simulation. Enzyme Microb Technol 4:35-38CrossRefGoogle Scholar
  210. Lin WJ, Kuo BY, Chou CP (2001) A biochemical engineering approach for enhancing production of recombinant penicillin acylase in Escherichia coli. Bioproc Biosys Eng 24:239-247CrossRefGoogle Scholar
  211. Lindsay JP, Clark DS, Dordick JS (2004) Combinatorial formulation of biocatalyst preparation for increased activity in organic solvents: salt activation of penicillin amidase. Biotechnol Bioeng 85 (5):553-560CrossRefGoogle Scholar
  212. Liu SL, Wei DZ, Song QX et al. (2006) Effect of organic cosolvent on kinetic resolution of tert-leucine by penicillin G acylase from Kluyvera citrophila. Bioproc Biosyst Eng 28:285-289CrossRefGoogle Scholar
  213. L ópez-Gallego F, Betancor L, Hidalgo A et al. (2004) Optimization of an industrial biocatalyst of glutaryl acylase: stabilization of the enzyme by multipoint covalent attachment onto new amino-epoxy Sepabeads. J Biotechnol 111:219-227CrossRefGoogle Scholar
  214. L ópez-Serrano P, Cao L, van Rantwijk F et al. (2002) Cross-linked enzyme aggregates with en-hanced activity: application to lipases. Biotechnol Lett 24:1379-1383CrossRefGoogle Scholar
  215. Lummer K, Rieks A, Galunsky B et al. (1999) PH dependence of penicillin amidase enantioselec-tivity for charged substrates. Biochim Biophys Acta 1433:327-334Google Scholar
  216. Maeda K, Fang A, Demain AL et al. (1995) The substrate specificity of deacetoxycephalosporin C synthase (“expandase”) of Streptomyces clavuligerus is extremely narrow. Enzyme Microb Technol 17(3):231-234CrossRefGoogle Scholar
  217. Marín M, Gudiol F (2003). Antibi óticos betalact ámicos. Enferm Infecc Microbiol Clin 21(1):42-55CrossRefGoogle Scholar
  218. Martín L, Prieto MA, Cort és E et al. (1995) Cloning and sequencing of the pac gene encoding the penicillin G acylase of Bacillus megaterium ATCC 14945. FEMS Microbiol Lett 125(2-3):287-292CrossRefGoogle Scholar
  219. Mateles RI (1998) Penicillin: a paradigm for biotechnology. Candida Corp, Illinois, 114 ppGoogle Scholar
  220. Mateo C, Palomo JM, van Langen L et al. (2004) A new mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng 86:273-276CrossRefGoogle Scholar
  221. Mateo C, Abian A, Bernedo M et al. (2005) Some special features of glyoxyl supports to immobi-lize proteins. Enzyme Microb Technol 37:456:462Google Scholar
  222. Matsumoto K (1993) Production of 6-APA, 7-ACA and 7-ADCA by immobilized penicillin and cephalosporin amidases. In: Tanaka A, Tosa T, Kobayashi T (eds). Industrial application of immobilized biocatalysts. Marcel Dekker, New York, pp 67-88Google Scholar
  223. McDougall B, Dunnill P, Lilly MD (1982) Enzymic acylation of 6-aminopenicillanic acid. Enzyme Microb Technol 4:114-115CrossRefGoogle Scholar
  224. Meevootisom V, Saunders J (1987) Cloning and expression of penicillin acylase genes from over-producing strains of Escherichia coli and Bacillus megaterium. Appl Microbiol Biotechnol 25:372-378CrossRefGoogle Scholar
  225. Michels PC, Khmelnitsky YL, Dordick JS et al. (1998) Combinatorial biocatalysis: a natural ap-proach to drug discovery. TIBTECH 16(5):210-215Google Scholar
  226. Mislovi čova D, Mas árov á J, Bu čko M et al. (2006) Stability of penicillin acylase modified with various polysaccharides. Enzyme Microb Technol 39:579-585CrossRefGoogle Scholar
  227. Montes T, Graz ú V, Manso I et al. (2007) Improved stabilization of genetically modified peni-cillin G acylase in the presence of organic cosolvents by coimmobilization of the enzyme with polyethyleneimine. Adv Synth Catal 349:459-464CrossRefGoogle Scholar
  228. Nam DH, Kim C, Ryu DDY (1985) Reaction kinetics of cephalexin synthesizing enzyme from Xanthomonas citri. Biotechnol Bioeng 27:953-960CrossRefGoogle Scholar
  229. Newton GGF, Abraham EP (1955) Cephalosporin C, a new antibiotic containing sulphur and D-α-aminoadipic acid. Nature 175:548CrossRefGoogle Scholar
  230. Nierstrasz VA, Schro ën CGPH, Bosma R et al. (1999) Thermodynamically controlled synthesis of cefamandole. Biocatal Biotransform 17:209-223CrossRefGoogle Scholar
  231. Novella IS, Fargues C, Grevillot G (1994) Improvement of extraction of penicillin acylase by a combined use of chemical methods. Biotechnol Bioeng 44:379-382CrossRefGoogle Scholar
  232. Ospina S, L ópez-Munguía A, Gonz ález R et al. (1992) Characterization and use of a penicillin acylase biocatalyst. J. Chem Technol Biotechnol 53:205-214Google Scholar
  233. Ospina SS, Merino E, Ramírez OT et al. (1995) Recombinant whole cell penicillin acylase bio-catalyst: production, characterization and use in the synthesis and hydrolysis of antibiotics. Biotechnol Lett 17:615-620CrossRefGoogle Scholar
  234. Ospina S, Barzana E, Ramírez OT (1996) Effect of pH in the synthesis of ampicillin by penicillin acylase. Enzyme Microb Technol 19:462-469CrossRefGoogle Scholar
  235. Ozturk DC, Kazan D, Erarslan A (2002) Stabilization and functional properties of Escherichia coli penicillinG acylase by covalent conjugation of anionic polysaccharide carboxymethyl cellulose. World J Microbiol Biotechnol 18:881-888CrossRefGoogle Scholar
  236. Pan JL, Syu MJ (2004) A thermal study on the use of immobilized penicillin G acylase in the formation of 7-amino-3-deacetoxy cephalosporanic acid from cephalosporin G. J Chem Technol Biotechnol 79(10):1050-1056CrossRefGoogle Scholar
  237. Pan JL, Syu MJ (2005) Kinetic study on substrate and product inhibitions for the formation of 7-amino-3-deacetoxy cephalosporanic acid from cephalosporin G by immobilized penicillin acylase. Biochem Eng J 23:203-210CrossRefGoogle Scholar
  238. Parmar A, Kumar H, Marwaha SS et al. (1998) Recent trends in the enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid (7-ACA). Critic Rev Biotechnol 18(1):1-12CrossRefGoogle Scholar
  239. Parmar A, Kumar H, Marwaha S et al. (2000) Advances in enzymatic biotransformation of penicillins to 6-aminopenicillanic acid (6-APA). Biotechnol Adv 18:289-301CrossRefGoogle Scholar
  240. Rajendhran J, Krishnakumar V, Gunasekaran P (2003) Production of penicillin G acylase from Bacillus sp: effect of medium components. World J Microbiol Biotechnol 19:107-110CrossRefGoogle Scholar
  241. Rajendhran J, Gunasekaran P (2004) Recent biotechnological interventions for developingim-proved penicillin G acylases. J Biosci Bioeng 97(1):1-13Google Scholar
  242. Rajendhran J, Gunasekaran P (2007a) Application of cross-linked enzyme aggregates of Bacillus badius penicillin acylase for the production of 6-aminopenicillanic acid. Lett Appl Microbiol 44:43-49CrossRefGoogle Scholar
  243. Rajendhran J, Gunasekaran P (2007b) Molecular cloning and characterization of thermostable β-lactam acylase with broad substrate specificity from Bacillus badius. J Biosci Bioeng 103 (5):457-463CrossRefGoogle Scholar
  244. Ramírez OT, Zamora R, Espinoza G et al. (2004) Kinetic study of penicillin acylase production by recombinant E. coli in batch cultures. Proc Biochem 29:197-206CrossRefGoogle Scholar
  245. Rocchietti S, San Vicente-Urrutia A, Pregnolato M et al. (2002) Influence of the enzyme derivative preparation and substrate structure on the enantioselectivity of penicillin G acylase. Enzyme Microb Technol 31:88-93CrossRefGoogle Scholar
  246. Roche D, Prasad K, Repic O (1999) Enantioselective acylation of β-aminoesters using penicillin G acylase in organic solvents. Tetrahed Lett 40:3665-3668CrossRefGoogle Scholar
  247. Rolinson GN, Batchelor FR, Butterworth D et al. (1960) Formation of 6-aminopenicillanic acid from penicillin by enzymatic hydrolysis. Nat Lond 187:236-237CrossRefGoogle Scholar
  248. Rolinson GN, Geddes AM (2007) The 50th anniversary of the discovery of 6-aminopenicillanic acid (6-APA). Internatl J Antimicrob Agents 29:3-8CrossRefGoogle Scholar
  249. Rosell CM, Fern ández-Lafuente R, Guis án JM (1993) Resolution of racemic mixtures by synthesis reactions catalyzed by immobilized derivatives of the enzyme penicillin G acylase. J Mol Catal 84:365-371CrossRefGoogle Scholar
  250. Rosell CM, Terreni M, Fern ández-Lafuente R et al. (1998) A criterion for the selection of monophasic solvents for enzymatic synthesis. Enzyme Microb Technol 23:64-69CrossRefGoogle Scholar
  251. Roy JJ, Abraham TE (2004) Strategies in making cross-linked enzyme crystals. Chem Rev 104 (9):3705-3721CrossRefGoogle Scholar
  252. Schro ën CGP, Nierstrasz VA, Kroon PJ et al. (1999) Thermodynamically controlled synthesis of β-lactam antibiotics. Equilibrium concentrations and side-chain properties. Enzyme Microb Tech-nol 24:489-506CrossRefGoogle Scholar
  253. Schro ën CGPH, Nierstrasz VA, Moody HM et al. (2001a) Modelling of the enzymatic kinetic syn-thesis of cephalexin-influence of substrate concentration and temperature. Biotechnol Bioeng 73:171-178CrossRefGoogle Scholar
  254. Schro ën CGPH, Mohy Eldin MS, Janssen AE et al. (2001b) Cephalexin synthesis by immobi-lized penicillin acylase under non-isothermal conditions: reduction of diffusion limitation. J Mol Catal B: Enzym 15:163-172CrossRefGoogle Scholar
  255. Schro ën CGPH, Nierstrasz VA, Bosma R et al. (2002a) Integrated reactor concept for the enzymatic kinetic synthesis of cephalexin. Biotechnol Bioeng 80:144-154CrossRefGoogle Scholar
  256. Schro ën CGPH, Fretz CB, De Bruin VH et al. (2002b) Modelling of the enzymatic kinetically con-trolled synthesis of cephalexin. Influence of diffusional limitation. Biotechnol Bioeng 80:331-340CrossRefGoogle Scholar
  257. Senerovic L, Stankovic N, Spizzo P et al. (2005) High level production and covalent immobiliza-tion of Providencia rettgeri penicillin G acylase (PAC) from recombinant Pichia pastoris for the development of a novel and stable biocatalyst of industrial applicability. Biotechnol Bioeng 93 (2):344-354CrossRefGoogle Scholar
  258. Sheldon RA, van Rantwijk F, van Langen LM et al. (2001) Biocatalysts and biocatalysis in the syn-thesis of β-lactam antibiotics. In: Bruggink A (ed). Synthesis of β-lactam antibiotics. Kluwer Acad Publ, Dordrecht, pp 103-148Google Scholar
  259. Shewale J, Sivaraman H (1989) Penicillin acylase: enzyme production and its application in the manufacture of 6-APA. Proc Biochem 24(4):146-154Google Scholar
  260. Shewale J, Deshpande S, Sudhakaran V et al. (1990) Penicillin acylase: applications and potentials. Proc Biochem 26:97-103Google Scholar
  261. Shewale JG, Sudhakaran V (1997) Penicillin V acylase: its potential in the production of 6-aminopenicillanic acid. Enz Microb Technol 20:402-410CrossRefGoogle Scholar
  262. Stapley EO, Jackson M, Hernandez S et al. (1972) Cephamycins, a new family of β-lactam antibi-otics I. Production by Actinomycetes, including Streptomyces lactamdurans sp. n1. Antimicrob Agents Chemother 2(3):122-131Google Scholar
  263. Sudhakaran V, Desphande B, Ambedkar S et al. (1992) Molecular aspects of penicillin and cephalosporin acylases. Proc Biochem 27:131-143CrossRefGoogle Scholar
  264. Svedas VK, Savchenko MV, Beltser AI et al. (1996) Enantioselective penicillin acylase-catalyzed reactions. Ann NY Acad Sci 799:659-669CrossRefGoogle Scholar
  265. Terreni M, Pagani G, Ubiali D et al. (2001) Modulation of penicillin acylase properties via immo-bilization techniques: one-pot chemoenzymatic synthesis of cephamandole from cephalosporin C. Bioorg Med Chem Lett 11:2429-2432CrossRefGoogle Scholar
  266. Terreni M, Ubiali D, Pagani G et al. (2005) Penicillin G acylase catalyzed acylation of 7-ACA in aqueous two-phase systems using kinetically and thermodynamically controlled strate-gies: improved enzymatic synthesis of 7-[(1-hydroxy-1-phenyl)-sacetamido]-3acetoxymethyl-Δ3 -cephem-4-carboxylic acid. Enzyme Microb Technol 36:672-679CrossRefGoogle Scholar
  267. Travascio P, Zito E, de Maio A et al. (2002) Advantages of using non-isothermal bioreactors for the enzymatic synthesis of antibiotics: the penicillin G acylase as enzyme model. Biotechnol Bioeng 79:334-346CrossRefGoogle Scholar
  268. Ulijn RV, Janssen AEM, Moore BD et al. (2001) Predicting when precipitation-driven synthesis is feasible: applications to biocatalysis. Chem Eur J 7:2089-2098.CrossRefGoogle Scholar
  269. Ulijn RV, De Martin L, Halling PJ et al. (2002a) Enzymatic synthesis of β-lactam antibiotics via direct condensation. J Biotechnol 99(3):215-222CrossRefGoogle Scholar
  270. Ulijn RV, De Martin L, Gardossi L et al. (2002b) Solvent selection for solid-to-solid synthesis. Biotechnol Bioeng 80(5):509-515CrossRefGoogle Scholar
  271. Valle F, Balb ás P, Merino E et al. (1991) The role of penicillin amidases in nature and industry. Trends Biochem Sci 16:36-40CrossRefGoogle Scholar
  272. Vandamme E (1981) Use of microbial enzymes and cell preparations to synthesise oligopeptide antibiotics. J Chem Technol Biotechnol 31:637-659CrossRefGoogle Scholar
  273. van de Sandt EJ, de Vroom E (2000) Innovations in cephalosporin and penicillin production: paint-ing the antibiotics industry green. Chimica Oggi 18:72-75Google Scholar
  274. van der Klein PAM, Castelijns J, Hirs HGJ et al. (1996) Ring expansion of norpenicillin to 3-norcephalosporin. Rec Trav Chim Pays-Bas 115:185-190Google Scholar
  275. van der Weilken LA, Ottens M, Straathof JJ (2001) Process technology and process integration in the preparation of penicillins. In: Bruggink A (ed). Synthesis of β-lactam antibiotics. Kluwer Acad Publ, Dordrecht, pp 153-205Google Scholar
  276. van Langen LM, Oosthoek NHP, Guranda DT et al. (2000) Penicillin acylase-catalyzed resolution of amines in aqueous organic solvents. Tetrahed Asymm 11:4593-4600CrossRefGoogle Scholar
  277. Verweij J, de Vroom E (1993) Industrial transformations of penicillins and cephalosporins. Recl Trav Chim Pays-Bas 112:66-81Google Scholar
  278. Wang T, Zhu H, Ma X et al. (2006) Structure-based stabilization of an enzyme: the case of peni-cillin acylase from Alcaligenes faecalis. Prot Pept Lett 13:177-183CrossRefGoogle Scholar
  279. Wang Z, Wang L, Xu JH et al. (2007a) Enzymatic hydrolysis of penicillin G to 6-aminopenicillanic acid in cloud point system with discrete countercurrent experiment. Enzyme Microb Technol 41:121-126CrossRefGoogle Scholar
  280. Wang J, Zhang Q, Huang H et al. (2007b) Increasing synthetic performance of penicillin G acylase from Bacillus megaterium by site-directed mutagenesis. Appl Microbiol Biotechnol 74:1023-1030Google Scholar
  281. Wegman M, Janssen M, van Rantwijk F et al. (2001) Towards biocatalytic synthesis of β-lactam antibiotics. Adv Synth Catal 343:559-576CrossRefGoogle Scholar
  282. Wegman MA, van Langen LM, van Rantwijk F et al. (2002) A two-step one-pot enzymatic syn-thesis of cephalexin from D-phenylglycine nitrile. Biotechnol Bioeng 79:356-361CrossRefGoogle Scholar
  283. Wei DZ, Zhu JH, Cao JX (2002) Enzymatic synthesis of cephalexin in aqueous two-phase systems. Biochem Eng J 11:95-99CrossRefGoogle Scholar
  284. Wei DZ, Yang L (2003) Effect of ethylene glycol on the synthesis of ampicillin using immobilized penicillin acylase. J Chem Technol Biotechnol 78:431-436CrossRefGoogle Scholar
  285. Wei D, Yang L, Song Q (2003) Effect of temperature on the enzymatic synthesis of cefaclor with in situ product removal. J Mol Catal B Enzym 26:99-104CrossRefGoogle Scholar
  286. Wilson L, Illanes A, Abian O et al. (2002) Encapsulation of very soft cross-linked enzyme aggre-gates CLEAs in very rigid LentiKats. FAL Agric Res 241:121-125Google Scholar
  287. Wilson L, Illanes A, Abian O et al. (2004a) Co-aggregation of penicillin G acylase and polyionic polymers: an easy methodology to prepare enzyme biocatalysts stable in organic media. Bio-macromolecules 5:852-857Google Scholar
  288. Wilson L, Illanes A, Pessela CB et al. (2004b) Encapsulation of crosslinked penicillin G acylase aggregates in Lentikats: evaluation of a novel biocatalyst in organic media. Biotechnol Bioeng 86 (5):558-562CrossRefGoogle Scholar
  289. Yang L, Wei Z (2003) Enhanced enzymatic synthesis of a semi-synthetic cephalosporin, cefaclor, with in situ product removal. Biotechnol Lett 25:1195-1198CrossRefGoogle Scholar
  290. Yang S, Zhou L, Tang H et al. (2002) Rational design of a more stable penicillin G acylase against organic cosolvent. J Mol Catal B Enzym 18:285-290CrossRefGoogle Scholar
  291. Yang Y, Biedendieck R, Wang W et al. (2006) High yield recombinant penicillin G amidase pro-duction and export into the growth medium using Bacillus megaterium. Microb Cell Fact 5:36CrossRefGoogle Scholar
  292. Svedas VK (2000) Kinetics of ampicillin synthesis catalyzed by penicillin acylase from E. coli in homogeneous and heterogeneous systems. Biochemistry (Moscow) 65:1367-1375CrossRefGoogle Scholar
  293. Svedas VK (2002) Penicillin acylase-catalyzed solid-state ampicillin synthesis. Adv Synth Catal 344(8):894-898CrossRefGoogle Scholar
  294. Youshko MI, van Langen LM, de Vroom E et al. (2000) Penicillin acylase-catalyzed synthesis of ampicillin in “aqueous solution-precipitate” system. High substrate concentration and supersat-uration effect. J Mol Catal B Enzym 10:509-515CrossRefGoogle Scholar
  295. Youshko MI, van Langen LM, de Vroom E et al. (2001) Highly efficient synthesis of ampicillin in an “aqueous solution precipitate” system: repetitive addition of substrates in a semicontinuous process. Biotechnol Bioeng 73: 426-430CrossRefGoogle Scholar
  296. Youshko MI, Chilov GG, Shcherbakova TA et al. (2002) Quantitative characterization of the nu-cleophile reactivity in penicillin acylase-catalyzed acyl transfer reaction. Biochim Biophys Acta 1599:134-140Google Scholar
  297. Youshko MI, Bukhanov AL, Svedas VK (2003) Study of the nucleophile binding in the penicillin acylase active center. Kinetic analysis. Biochemistry (Moscow) 68(3):334-338CrossRefGoogle Scholar
  298. Youshko MI, Moody H, Bukhanov A et al. (2004) Penicillin acylase-catalyzed synthesis of β-lactam antibiotics in highly condensed aqueous systems: beneficial impact of kinetic substrate supersaturation. Biotechnol Bioeng 85:323-329CrossRefGoogle Scholar
  299. Zhang WG, Wei DZ, Yang XP et al. (2006) Penicillin acylase catalysis in the presence of ionic liquids. Bioproc Biosyst Eng 29:379-383CrossRefGoogle Scholar
  300. Zhang Y, Wei D, Li D et al. (2007) Optimisation of enzymatic synthesis of cefaclor with in situ product removal and continuous acyl donor feeding. Biocatal Biotransform 25(1):59-64CrossRefGoogle Scholar
  301. Aires-Barros MR, Cabral JMS (1991) Selective separation and purification of two lipases from Chromobacterium viscosum using AOT reversed micelles. Biotechnol Bioeng 38:1302-1307CrossRefGoogle Scholar
  302. Aires-Barros MR, Taipa MA, Cabral JMS (1994) Isolation and purification of lipases. In: Wooley P, Petersen SB (eds). Lipases - their structure, biochemistry and application. Cambridge University Press, Cambridge, pp 243-270Google Scholar
  303. Alc ántara AR, Domínguez de María P, Fern ández M et al. (2004) Resolution of racemic acids, esters and amines by Candida rugosa lipase in slightly hydrated organic media. Food Technol Biotechnol 42(4):343-354Google Scholar
  304. Allen LH (2000) Pitch control in pulp mills. In: Back EL and Allen LH (eds). Pitch control, wood resin and deresination. TAPPI Press, Norcross, pp 265-288Google Scholar
  305. Alvarez L (2005) Immobilization of Alcaligenes sp. lipase QL for its use in the selective trans-esterification of stanols from a mixture of wood stanols and sterols. MSc Thesis, School of Biochemical Engineering, Universidad Cat ólica de Valparaíso, Valparaíso, 190 ppGoogle Scholar
  306. Al-Zuhair S (2007) Production of biodiesel: possibilities and challenges. Biofuels Bioprod Bioref 1 (1):57-66CrossRefGoogle Scholar
  307. Anderson RE, Hedlund GB, Jensson V (1999) Thermal inactivation of a heat resistant lipase pro-duced by the psychrotrophic bacterium Pseudomonas fluorescens. J Dairy Sci 62:361-367CrossRefGoogle Scholar
  308. Ando M, Sanaka T, Nihei H (1999) Eicosapentanoic acid reduces plasma levels of remnant lipopro-teins and prevents in vivo peroxidation of LDL in dialysis patients. J Am Soc Nephrol 10:2177-2184Google Scholar
  309. Archelas A, Furstoss R (1997) Synthesis of enantiopure epoxides through biocatalytic approaches. Annu Rev Microbiol 51:491-525CrossRefGoogle Scholar
  310. Arnold FH (2001) Combinatorial and computational challenges for biocatalyst design. Nature 409:253-257CrossRefGoogle Scholar
  311. Arroyo M, Sanchez-Montero JM, Sinisterra JV (1999) Thermal satabilization of immobilized li-pase B from C. antarctica on different supports: effect of water activity on enzymatic activity in organic media. Enzyme Microb Technol 24:3-12CrossRefGoogle Scholar
  312. Balcao VM, Paiva AL, Malcata FX (1996) Bioreactors with immobilized lipases: state of the art. Enzyme Microb Technol 18:392-398CrossRefGoogle Scholar
  313. Bandmann N, Collet E, Leijen J et al. (2000) Genetic engineering of the Fusarium solani pisi lipase cutinase for enhanced partitioning in PEG-phosphate aqueous two-phase system. J Biotechnol 79:161-172CrossRefGoogle Scholar
  314. Bastida A, Sabuquillo P, Armisen P et al. (1998) A single step purification, immobilization and hy-peractivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnol Bioeng 58:486-492CrossRefGoogle Scholar
  315. Beaton JM (1978) Preparation of sterol substrates for bioconversion. US Patent 4124607. Issued on November 7, 1978Google Scholar
  316. Berglund P (2001) Controlling lipase enantioselectivity for organic synthesis. Biomol Eng 18: 13-22CrossRefGoogle Scholar
  317. Bloomer S, Adlercreutz P, Mattiasson B (1990) Triglyceride interesterification by lipases. Cocoa butter equivalents from a fraction of palm oil. JAOCS 67(8):519-524CrossRefGoogle Scholar
  318. Bornscheuer UT (2002) Methods to increase enantioselectivity of lipases and esterases. Curr Opin Biotechnol 13(6):543-547CrossRefGoogle Scholar
  319. Bradoo S, Saxena RK, Gupta R (1999) Two acidothermolerant lipases from new variants of Bacil-lus sp. World J Microbiol Biotechnol 15:87-91CrossRefGoogle Scholar
  320. Brady L, Brzozowski AM, Derewenda ZS et al. (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343:767-770CrossRefGoogle Scholar
  321. Brzozowski AM, Derewenda U, Derewenda ZS et al. (1991) A model for interfacial activation in lipases from the structure of fungal lipase-inhibitor complex. Nature 351:491-494CrossRefGoogle Scholar
  322. Cameron PA, Davison BH, Frymier PD et al. (2002) Direct transesterification of gases by “dry” immobilized lipase. Biotechnol Bioeng 78(3):251-256CrossRefGoogle Scholar
  323. Cardenas J, Alvarez E, de Castro-Alvarez MS et al. (2001) Screening and catalytic activity in organic synthesis of novel fungal and yeast lipases. J Mol Catal B: Enzym 14:111-123CrossRefGoogle Scholar
  324. Cernia E, Palocci C, Soro (2000) Solvent engineering modulates stereoselectivity of microbial lipase. In: Alberghina L (ed). Protein engineering in industrial biotechnology. Harwood Acad-emic Publishers, Newark, pp 135-146Google Scholar
  325. Cos O, Resina D, Ferrer P et al. (2005) Heterologous production of Rhizopus oryzae lipase in Pichia pastoris using the alcohol oxidase and formaldehyde dehydrogenase promoters in batch and fed-batch cultures. Biochem Eng J 26:86-94CrossRefGoogle Scholar
  326. Cowan D (1996) Industrial enzyme technology. TIBTECH 14:177-178Google Scholar
  327. Cui Y, Wei D, Yu J (1997) Lipase-catalyzed esterification in organic solvent to resolve racemic naproxen. Biotechnol Lett 19:865-868CrossRefGoogle Scholar
  328. De Crescenzo G, Ducret A, Trani M et al. (2000) Enantioselective esterification of racemic keto-profen in non-aqueous solvent under reduced pressure. J Mol Catal B: Enzym 9(1-3):49-56CrossRefGoogle Scholar
  329. de Lathouder KM, Marques Fl ó T, Kapteijn F et al. (2005) A novel structured bioreactor: develop-ment of a monolithic stirrer reactor with immobilized lipase. Catal Today 105:443-447CrossRefGoogle Scholar
  330. de Oliveira D, Di Luccio M, Faccio C et al. (2004) Optimization of enzymatic production of biodiesel from castor oil in organic solvent medium. Appl Biochem Biotechnol 115(1-3):771-780Google Scholar
  331. Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144-151CrossRefGoogle Scholar
  332. Derewenda U, Brzozowski AM, Lawson DM et al. (1992) Catalysis at the interface: the anatomy of a conformational change in a trglyceride lipase. Biochemistry 31:1532-1541CrossRefGoogle Scholar
  333. Dong H, Gao S, Han S et al. (1999) Purification and characterization of a Pseudomonas sp. lipase and its properties in non aqueous media. Appl Microbiol Biotechnol 30:251-256Google Scholar
  334. Donova MV, Dovbnya DV, Sukhodolskaya GV et al. (2004) Microbial conversion of sterol-containing soybean oil production waste. J Chem Technol Biotechnol 80(1):55-60CrossRefGoogle Scholar
  335. Dosanjh NS, Kaur J (2002) Immobilization, stability and esterification studies of a lipase from a Bacillus sp. Biotechnol Appl Biochem 36:7-12CrossRefGoogle Scholar
  336. Du W, Xu Y, Liu D et al. (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B: Enzym 30(3-4):125-129CrossRefGoogle Scholar
  337. Ducret A, Trani M, Lortie R (1998) Lipase catalysed enantioslective esterification of ibuprofen in organic solvent under controlled water activity. Enzyme Microb Technol 22:212-216CrossRefGoogle Scholar
  338. Elibol M, Ozer D (2001) Influence of oxygen transfer on lipase production by Rhizopus arrhizus. Proc Biochem 36:325-329CrossRefGoogle Scholar
  339. Faber K (1997) Biotransformations in organic chemistry. Springer, Berlin, Heidelberg, New York, 402 ppGoogle Scholar
  340. Ferrer P, Montesinos JL, Valero F et al. (2001) Production of native and recombinant lipases by Candida rugosa: a review. Appl Biochem Biotechnol 95:221-255CrossRefGoogle Scholar
  341. Fregapane G, Sarney DB, Vulfson EN (1991) Enzymic solvent-free synthesis of sugar acetal fatty acid esters. Enzyme Microb Technol 13(10):796-800CrossRefGoogle Scholar
  342. Fuenzalida M, Markovits A, Martínez I (2006) Process for producing sterol or stanol esters by enzymatic transesterification in solvent and water free media. EP 1285969 B1. Issued on No-vember 10, 2006Google Scholar
  343. Fujii R, Nakagawa Y, Hiratake J et al. (2005) Directed evolution of Pseudomonas aeruginosa lipase for improved amide-hydrolyzing activity. Protein Eng Des Sel 18(2):93-101CrossRefGoogle Scholar
  344. Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:406-416Google Scholar
  345. Ghanem A, Aboul-Enein HY (2004) Lipase-mediated chiral resolution of racemates in organic solvents. Tetrahed Assym 15(21):331-3351Google Scholar
  346. Ghanem A, Aboul-Enein HY (2005) Application of lipases in kinetic resolution of racemates. Chirality 17:1-15CrossRefGoogle Scholar
  347. Ghanem EH, Al-Sayeed HA, Saleh KM (2000) An alkalophilic thermostable lipase produced by a new isolate of Bacillus alcalophilus. World J Microbiol Biotechnol 16:459-464CrossRefGoogle Scholar
  348. Gotor V (2002) Lipases and (R)-oxynitrilases: useful tools in organic synthesis. J Biotechnol 96:35-42CrossRefGoogle Scholar
  349. Gulati R, Isar J, Kumar V et al. (2005) Production of a novel alkaline lipase by Fusarium globulo-sum using neem oil, and its applications. Pure Appl Chem 77(1):251-262CrossRefGoogle Scholar
  350. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763-781CrossRefGoogle Scholar
  351. Guti érrez A, del Río JC, Martínez J et al. (2001) The biotechnological control of pitch in paper pulp manufacturing. TIBTECH 19(9):340-348Google Scholar
  352. Ha SH, Lan MN, Lee SH et al. (2007) Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzyme Microb Technol 41:480-483CrossRefGoogle Scholar
  353. Hari Krishna S, Karanth NG (2002) Lipases and lipase-catalyzed esterification reactions in non-aqueous media. Catal Rev 44(4):499-591CrossRefGoogle Scholar
  354. Hasan F, Shah AA, Hameed A (2006) Industrial applications of lipases. Enzyme Microb Technol 39:235-251CrossRefGoogle Scholar
  355. Hatti-Kaul R, T örnvall U, Gustafsson L et al. (2007) Industrial biotechnology for the production of bio-based chemicals - a cradle-to-grave perspective. TIBTECH 25(3):119-124Google Scholar
  356. Henne A, Schmitez RA, Gottschalk G et al. (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on E. coli. Appl Environ Microbiol 66:3113-3116CrossRefGoogle Scholar
  357. Hilal N, Nigmatullin R, Alpatova A (2004) Immobilization of cross-linked lipase aggregates within microporous polymeric membranes. J Membrane Sci 238(1-2):131-141CrossRefGoogle Scholar
  358. Hiol A, Jonzo MD, Rugani N et al. (2000) Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzyme Microb Technol 26:421-430CrossRefGoogle Scholar
  359. Hong MC, Chang MC (1998) Purification and characterization of an alkaline lipase from a newly isolated Acinetobacter radioresistens CMC-1. Biotechnol Lett 20:1027-1029CrossRefGoogle Scholar
  360. Hong Y, Wang TW, Hudak KA et al. (2000) An ethylene-induced cDNA encoding a lipase ex-pressed at the onset of senescence. Plant Biol 97:8717-8722Google Scholar
  361. Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications: an overview. Appl Biochem Biotechnol 118(1-3):155-170CrossRefGoogle Scholar
  362. Houssam ER, Perrard A, Pierre AC (2004) Application of lipase encapsulated in silica aerogels to a transesterification reaction in hydrophobic and hydrophilic solvents: bi-bi ping-pong kinetics. J Mol Catal B: Enzym 30(3-4):137-150CrossRefGoogle Scholar
  363. Hsu AF, Jones KC, Foglia TA et al. (2004) Transesterification activity of lipases immobilized in a phyllosilicate sol-gel matrix. Biotechnol Lett 26:917-921CrossRefGoogle Scholar
  364. Hung TC, Giridhar R, Chiou SH et al. (2003) Binary immobilization of Candida rugosa lipase on chitosan. J Mol Catal B: Enzym 26:69-78CrossRefGoogle Scholar
  365. Iso M, Chen B, Eguchi M et al. (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B: Enzym 16:53-58CrossRefGoogle Scholar
  366. Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. TIBTECH 16:396-403Google Scholar
  367. Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures and biotechnological applications of lipases. Annu Rev Microbiol 53:315-351CrossRefGoogle Scholar
  368. Jaeger KE, Eggert T, Eipper A et al. (2001) Directed evolution and the creation of enantioselective biocatalyst. Appl Microbiol Biotechnol 55:519-530CrossRefGoogle Scholar
  369. Jandacek RJ, Whiteside JA, Holcombe BN et al. (1987) The rapid hydrolysis and efficient absorp-tion of triglycerides with octanoic acid in the 1 and 3 positions and long-chain fatty acid in the 2 position. Am J Clin Nutr 45:940-945Google Scholar
  370. Jensen RG (1983) Detection and determination of lipase (acylglycerol hydrolase) activity from various sources. Lipids 18:650-657CrossRefGoogle Scholar
  371. Jensen RG, Hamosh M (1996) Selectivity of lipases, types and determination. In: Malcata FK (ed). Engineering of/with lipases. Kluwer Academic Publishers, Dordrecht, pp 17-29Google Scholar
  372. Johansson A (1982) By-product recovery and valorization in the kraft industry - a review of current trends in the recovery and use of turpentine and tall-oil derivatives. Biomass 2(2):103-113CrossRefGoogle Scholar
  373. Kamal A, Chouhan G (2004) Chemoenzymatic synthesis of enantiomerically pure 1,2-diols em-ploying immobilized lipase in the ionic liquid [bmim]PF6 . Tetrahed Lett 45:8801-8805CrossRefGoogle Scholar
  374. Kazlauskas RJ, Bornscheuer UT (1998) Biotransformations with lipases. In: Rehm HJ, Pihler G, Stadler A et al. (eds). Biotechnology, vol. 8. Wiley-VCH, New York, pp 37-192Google Scholar
  375. Kirchner G, Scollar P, Klibanov AM (1985) Resolution of racemic mixtures via lipase catalysis in organic solvents. J Am Chem Soc 107:1012-1016CrossRefGoogle Scholar
  376. Klibanov AM (1997) Why are enzymes less active in organic solvents than in water? TIBTECH 15:97-101Google Scholar
  377. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241-246CrossRefGoogle Scholar
  378. Koeller KM, Wong CH (2001) Enzymes for chemical synthesis. Nature 409:232-240CrossRefGoogle Scholar
  379. Knothe G, van Gerpen J, Krahl J (2005) The biodiesel handbook. AOCS Press, Champaign, 304 ppCrossRefGoogle Scholar
  380. Koskinen AMP, Klibanov AM (1996) Enzymatic reactions in organic media. Blackie Academic Professional, London, 314 ppGoogle Scholar
  381. Kovac A, Scheib H, Pleiss J et al. (2000) Molecular bases of lipase stereoselectivity. Eur J Lipid Sci Technol 102(1):61-77CrossRefGoogle Scholar
  382. Krishnakant S, Madamwar D (2001) Ester synthesis by lipase immobilized on silica and mi-croemulsion based organo-gels (MBGs). Proc Biochem 36:607-611CrossRefGoogle Scholar
  383. Kumari V, Shah S, Gupta MN (2007) Preparation of biodiesel by lipase-catalyzed transesterifica-tion of high free fatty acid containing oil from Madhuca indica. Energy Fuels 21(1):368-372CrossRefGoogle Scholar
  384. Laane C, Boeren S, Vos K et al. (1987) Rules for optimizaion of biocatalysis in organic solvents. Biotechnol Bioeng 30:81-87CrossRefGoogle Scholar
  385. Lalonde JJ, Govardhan C, Khalaf N et al. (1995) Crystals of Candida rugosa lipase: highly efficient catalyst for the resolution of chiral esters. J Am Chem Soc 117:6845-6849CrossRefGoogle Scholar
  386. Lau RM, Rantwijk FV, Seddon KR et al. (2000) Lipase-catalyzed reactions in ionic liquids. Org Lett 2:4189-4192CrossRefGoogle Scholar
  387. Laudani CG, Habulin M, Knez Zˇ et al. (2007) Immobilized lipase-mediated long-chain fatty acid esterification in dense carbon dioxide: bench scale packed-bed reactor study. J Supercrit Fluids 41:74-81CrossRefGoogle Scholar
  388. Lee OW, Koh YS, Kim KJ et al. (1999) Isolation and characterization of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol Lett 179:393-400CrossRefGoogle Scholar
  389. Lee SY, Hubbe MA, Saka S (2006) Prospects for biodiesel as a byproduct of wood pulping - a review. BioResources 1(1):150-171Google Scholar
  390. Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothe-coides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98(4):764-771CrossRefGoogle Scholar
  391. Li ZY, Ward OP (1993) Enzyme catalysed production of vegetable oils containing omega-3 polyun-staurated fatty acid. Biotechnol Lett 15:185-188CrossRefGoogle Scholar
  392. Lichtenstein AH, Deckelbaum RJ (2001) Stanol/sterol ester-containing foods and blood cholesterol levels. Circulation 103:1177Google Scholar
  393. Lieberman R, Ollis D (1975) Hydrolysis of particulate tributyrin in a fluidized lipase reactor. Biotechnol Bioeng 17:1401-1419CrossRefGoogle Scholar
  394. Linko YY, L äms ä M, Wu X et al. (1998) Biodegradable products by lipase biocatalysis. J Biotech-nol 66(1):41-50Google Scholar
  395. Litthauer D, Ginster A, Skein EVE (2002) Pseudomonas luteola lipase: a new member of the 320-residue Pseudomonas lipase family. Enzyme Microb Technol 30:209-215CrossRefGoogle Scholar
  396. L ópez-Serrano P, Cao L, van Rantwijk F et al. (2002) Cross-linked enzyme aggregates with en-hanced activity: application to lipases. Biotechnol Lett 24:1379-1383CrossRefGoogle Scholar
  397. Lorenz P, Liebeton K, Niehaus (2002) Screening for novel enzymes for biocatalytic processes: ac-cessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol 13:572-577CrossRefGoogle Scholar
  398. Lowrier A, Drtina GJ, Klibanov AM (1996) On the issue of interfacial activation of lipase in nonaqueous media. Biotechnol Bioeng 50(1):1-5CrossRefGoogle Scholar
  399. Luo Y, Zheng Y, Jiang Z et al. (2006) A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Appl Microbiol Biotechnol 73(2):349-355CrossRefGoogle Scholar
  400. Ma F, Hanna MA (1999) Biodiesel production: a review. Biores Technol 70:1-15CrossRefGoogle Scholar
  401. Magnusson A, Hult K, Holmquists M (2001) Creation of an enantioselective hydrolase by engi-neered substrate-assisted catalysis. J Am Chem Soc 123:4354-4355CrossRefGoogle Scholar
  402. Manjon A, Iborra JL, Arocas A (1991) Short-chain flavour ester synthesis by immobilized lipase in organic media. Biotechnol Lett 13:339-345CrossRefGoogle Scholar
  403. Margolin A (1996) Novel crystalline catalysts. TIBTECH 14:223-230Google Scholar
  404. Markovits A, Chamy R, Illanes A et al. (2004) Upgrading of residues from Kraft cellulose process by the production of aromas, pharmaceuticals and nutraceuticals by enzyme biocatalysis. Final Report, Project FONDEF D00I 1096, CONICYT, Chile.Google Scholar
  405. Martinelle M, Holmquist M, Hult K (1995) On the interfacial activation of Candida antarctica li-pase A and B as compared with Humicola lanuginose lipase. Biochim Biophys Acta 1258:272-276Google Scholar
  406. Martínez I, Markovits A, Chamy R et al. (2004) Lipase-catalyzed solvent-free transesterification of wood sterols. Appl Biochem Biotechnol 112:55-62CrossRefGoogle Scholar
  407. Matsumoto T, Takahashi S, Kaieda M et al. (2001) Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Appl Microbiol Biotechnol 57(4):515-520CrossRefGoogle Scholar
  408. Maurer K (2004) Detergent proteases. Curr Opin Biotechnol 15:330-334CrossRefGoogle Scholar
  409. Misset O, Gerritse G, Jaeger KE et al. (1994) The structure-function relationship of the lipases from Pseudomonas aeruginosa and Bacillus subtilis. Protein Eng 7(4):523-529CrossRefGoogle Scholar
  410. Muralidhar RV, Chirumamilla RR, Marchant R et al. (2002) Understanding lipase stereoselectivity. World J Microbiol Biotechnol 18:81-97CrossRefGoogle Scholar
  411. Nakagawa Y, Hasegawa A, Hiratake J et al. (2007) Engineering of Pseudomonas aeruginosa li-pase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases. Protein Eng Des Sel 20(7):339-346CrossRefGoogle Scholar
  412. Nardini M, Lang DA, Liebeton K et al. (2000) Crystal structure of Pseudomonas aeruginosa li-pase in the open conformation. The prototype for family L1 of bacterial lipases. J Biol Chem 275:31219-31225CrossRefGoogle Scholar
  413. Nguyen TT (1999) The cholesterol-lowering action of plant stanol esters. J Nutrit 129:2109-2112Google Scholar
  414. Oh BC, Kim HK, Lee JK et al. (1999) Staphylococcus haemolyticus lipase: biochemical properties, substrate specificity and gene cloning. FEMS Microbiol Lett 179:385-392CrossRefGoogle Scholar
  415. Ollis DL, Shea E, Cygler M et al. (1992) The α/β hydrolase fold. Protein Eng 5:197-211CrossRefGoogle Scholar
  416. Omar IC, Hayashi M, Nagai S (1987) Purification and some properties of a thermostable lipase from Humicda lanuqinosa No 3. Agric Biol Chem 51(1):37-45Google Scholar
  417. Ong AL, Kamaruddin AH, Bhatia S (2005) Current technologies for the production of (S)-ketoprofen: process perspective. Proc Biochem 40(11):3526-3535CrossRefGoogle Scholar
  418. Os ório NM, Gusm ão JH, da Fonseca MM et al. (2005) Lipase-catalysed interesterification of palm stearin with soybean oil in a continuous fluidised-bed reactor. Eur J Lipid Sci Technol 107(7-8):455-463CrossRefGoogle Scholar
  419. Ottonson J, Rotticci-Mulder JC, Rotticci D et al. (2001) Rational design of enantioselective en-zymes requires consideration of entropy. Protein Sci 10:1769-1774CrossRefGoogle Scholar
  420. Palekar AA, Vasudevan PT, Yan S (2000) Purification of lipase: a review. Biocatal Biotransform 18:177-200CrossRefGoogle Scholar
  421. Palomo JM, Fernandez-Lorente G, Mateo C et al. (2002) Modulation of the enantioselectivity of li-pases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enzyme Microb Technol 31:775-783CrossRefGoogle Scholar
  422. Palomo JM, Mu ñoz G, Fern ández-Lorente G et al. (2003) Modification of Mucor miehei lipase properties via directed immobilization on different heterofunctional epoxy resins. Hydrolytic resolution of (R,S)-2-butyroyl-2-phenylacetic acid. J Mol Catal B: Enzym 21:201-210CrossRefGoogle Scholar
  423. Palomo JM, Ortiz C, Fern ández-Lorente G et al. (2005) Lipase-lipase interaction as a new tool to immobilize and modulate the lipase properties. Enzyme Microb Technol 36:447-454CrossRefGoogle Scholar
  424. Park EY, Sato M, Kojima S (2006) Fatty acid methyl ester production using lipase-immobilizing silica particles with different particle sizes and different specific surface areas. Enzyme Microb Technol 39(4):889-896CrossRefGoogle Scholar
  425. Patklar SA, Bjorkling F (1994) Lipase inhibitors. In: Woolley P, Petersen SB (eds). Lipasetheir structure, biochemistry and application. Cambridge University Press, Cambridge, pp 207-224Google Scholar
  426. P érez C, Falero A, Luu Duc H et al. (2006) A very efficient bioconversion of soybean phytosterols mixtures to androstanes by mycobacteria. J Ind Microbiol Biotechnol 33(8):719-723CrossRefGoogle Scholar
  427. Petkar M, Lali M, Caimi P et al. (2006) Immobilization of lipases for non-aqueous synthesis. J Mol Catal B: Enzym 39:83-90CrossRefGoogle Scholar
  428. Petrounia LP, Arnold FH (2000) Designed evolution of enzymatic properties. Curr Opin Biotechnol 11:325-330CrossRefGoogle Scholar
  429. Petschen I, Malo EA, Bosch MP et al. (1996) Highly enantioselective synthesis of long chain alkyl trifluormethyl carbinols and β-thiotrio-fluormethyl carbinols through lipases. Tetrahed Asymm 7:2135-2143CrossRefGoogle Scholar
  430. Pleiss J, Fisher M, Peiker M et al. (2000) Lipase engineering database. Understanding and exploit-ing sequence-structure-function relationships. J Mol Catal B: Enzym 10:491-508CrossRefGoogle Scholar
  431. Plou, FJ, Cruces, MA, Ferrer, M et al. (2002) Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent. J Biotechnol 96:55-66CrossRefGoogle Scholar
  432. Pope LE, Khalil, MH, Marcelletti JF (1999) Treatment of hyperproliferative skin disorders with C18 to C26 alphatic alcohols. US Patent 5948822. Issued on July 9, 1999Google Scholar
  433. Queiroz JA, Garcia FAP, Cabral JMS (1995) Hydrophobic interaction chromatography of Chro-mobacterium viscosum lipase. J Chromatogr A 707:137-142CrossRefGoogle Scholar
  434. Queiroz JA, Tomaz CT, Cabral JMS (2001) Hydrophobic interaction chromatography of proteins. J Biotechnol 87:143-159CrossRefGoogle Scholar
  435. Rashid N, Shimada Y, Ekazi S et al. (2001) Low-temperature lipase from psychrotropic Pseudomonas sp. strain KB700A. Appl Environ Microbiol 67:4064-4069CrossRefGoogle Scholar
  436. Rathi P, Saxena RK, Gupta R (2001) A novel alkaline lipase from Burkholderia cepacia for deter-gent formulation. Proc Biochem 37:187-192CrossRefGoogle Scholar
  437. Reetz MT, Zonta A, Simpelkamp J (1996) Efficient immoblization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol Bioeng 49:527-534CrossRefGoogle Scholar
  438. Reetz MT (2001) Combinatorial and evolution-based methods in the creation of enantioselective catalyst. Angew Chem Int Ed 40: 284-310CrossRefGoogle Scholar
  439. Reetz MT (2002) Lipases as practical biocatalysts. Curr Opin Chem Biol 6(2):145-150CrossRefGoogle Scholar
  440. Reyes HR, Hill CG, Amundson CH (1994) Interesterification reactions catalyzed by a lipase im-mobilized on a hydrophobic support. J Food Proc Preserv 18(2):119-132CrossRefGoogle Scholar
  441. Roberts SM (1998) Preparative biotransformations: the employment of enzymes and whole-cells in synthetic organic chemistry. J Chem Soc Perkin Trans 1:157-170CrossRefGoogle Scholar
  442. Roberts SM, Williamson NM (1997) Use of enzymes for the preparation of biologically active natural products and analogues in optically active form. Curr Org Chem 1:1-20Google Scholar
  443. Rotticci D, Rotticci-Mulder JC, Denman S et al. (2001) Improved enantioselectivity of a lipase by rational protein engineering. Chem Bio Chem 2:766-770Google Scholar
  444. Royon D, Daza M, Ellenrieder G et al. (2007) Enzymatic production of biodiesel from cotton seed oil using t -butanol as a solvent. Biores Technol 98(3):648-653CrossRefGoogle Scholar
  445. Rubin B, Dennis EA (1997) Lipases part B. Enzyme characterization and utilization. Methods in Enzymology, vol. 286. Academic Press, San Diego, 563 ppCrossRefGoogle Scholar
  446. Salis A, Sanjust E, Solinas V et al. (2003) Characterisation of Accurel MP1004 polypropylene powder and its use as a support for lipase immobilization. J Mol Catal B: Enzym 24-25: 75-82CrossRefGoogle Scholar
  447. Salis A, Monduzzi M, Solinas V (2007) Use of lipases for the production of biodiesel. In: Po-laina J, Mac Cabe AP (eds). Industrial enzymes structure, function and applications. Springer, Netherlands, pp 317-339Google Scholar
  448. Saxena RK, Ghosh PK, Gupta R et al. (1999) Microbial lipases: potential biocatalysts for the future industry. Curr Sci 77:101-115Google Scholar
  449. Saxena RK, Sheoran A, Giri B et al. (2003) Purification strategies for microbial lipases. J Microbiol Meth 52:1-18CrossRefGoogle Scholar
  450. Schmidt-Dannert C (1999) Recombinant lipases for biotechnological applications. Bioorg Med Chem 7:2123-2130CrossRefGoogle Scholar
  451. Schoevaart R, Wolbers MW, Golubovic M et al. (2004) Preparation, optimization and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol Bioeng 87:754-762CrossRefGoogle Scholar
  452. Schulz T, Plesis J, Schmid RD (2000) Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model. Protein Sci 9:1053-1062CrossRefGoogle Scholar
  453. Secundo F, Carrea, G, Tarabiono C et al. (2006) The lid is a structural and functional determinant of lipase activity and selectivity. J Mol Catal B: Enzym 39:166-170CrossRefGoogle Scholar
  454. Seitz EW (1974) Industrial application of microbial lipases: a review. JAOCS 51(2):12-16CrossRefGoogle Scholar
  455. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization and application of lipases. Botechnol Adv 19:627-662CrossRefGoogle Scholar
  456. Sharma R, Soni SK, Vohra RM et al. (2002) Production of extracellular alkaline lipase from a Bacillus sp. RSJ1 and its application in ester hydrolysis. Ind J Microbiol 42:49-54Google Scholar
  457. Sharon C, Furugoh S, Yamakido T et al. (1998) Purification and characterization of a lipase from Pseudomonas aeruginosa KKA-5 and its role in castor oil hydrolysis. J Ind Microbiol Biotech-nol 20:304-307CrossRefGoogle Scholar
  458. Shibamoto H, Matsumoto T, Fukuda H et al. (2004) Molecular engineering of Rhizopus oryzae lipase using a combinatorial protein library constructed on the yeast cell surface. J Mol Catal B: Enzym 28(4-6):235-239CrossRefGoogle Scholar
  459. Shimada Y, Watanabe Y, Sugihara A et al. (2002) Enzymatic alcoholysis for biodiesel fuel produc-tion and application of the reaction to oil processing. J Mol Catal B: Enzym 17(3-5):133-142CrossRefGoogle Scholar
  460. Smith LC, Faustinella F, Chan L (1992) Lipases: three dimensional structure and mechanism of action. Curr Opin Struct Biol 2:490-496CrossRefGoogle Scholar
  461. Soares CMF, De Castro HF, Santana MHA et al. (2002) Intensification of lipase performance for long-term operation by immobilization on controlled pore silica in presence of polyethylene glycol. Appl Biochem Biotechnol 98-100:863-874CrossRefGoogle Scholar
  462. Soumanou MM, Bornschener UT, Menge U (1997) Synthesis of structured triglycerides from peanut oil with immobilized lipase. JAOCS 74:427-433CrossRefGoogle Scholar
  463. Soumanou MM, Bornscheuer UT (2003) Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb Technol 33(1):97-103CrossRefGoogle Scholar
  464. Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548-556CrossRefGoogle Scholar
  465. Sugihara A, Tani T, Tominaga Y (1991) Purification and characterization of a novel thermostable lipase from Bacillus sp. J Biochem 109:211-216Google Scholar
  466. Sunitha S, Kanjilal S, Reddy PS (2007) Ionic liquids as reaction medium for lipase-catalyzed methanolysis of sunflower oil. Biotechnol Lett 29:1881-1885CrossRefGoogle Scholar
  467. Sunna A, Hunter L, Hutton C et al. (2002) Biochemical characterization of a recombinant ther-moalkalophilic lipase and assessment of its substrate enantioselectivity. Enzyme Microb Tech-nol 31:472-476CrossRefGoogle Scholar
  468. Svendsen A (2000) Lipase protein engineering. Biochim Biophys Acta 1543:223-238Google Scholar
  469. Taipa MA, Aires-Barros MR, Cabral JMS (1992) Purification of lipases. J Biotechnol 26:111-142CrossRefGoogle Scholar
  470. Takagi Y, Teramoto J, Kihara H et al. (1996) Thiacrown ether as regulator of lipase-catalyzed trans-sterification in organic media - practical optical resolution of allyl alcohols. Tetrahed Lett 37:4991-4992CrossRefGoogle Scholar
  471. Terstappen GC, Gerts AJ, Kula MR (1992) The use of detergent-based aqueous two phase systems for the isolation of extracellular proteins: purification of a lipase from Pseudomonas cepacia. Biotechnol Appl Biochem 16:228-235Google Scholar
  472. Thompson CA, Delaquis PJ, Mazza G (1999) Detection and measurement of microbial lipase activity: a review. Critic Rev Food Sci Nutr 39(2):165-187CrossRefGoogle Scholar
  473. Tobin MB, Gustafsson C, Huisman GW (2000) Directed evolution: the ‘rational’ basis for ‘irra-tional’ design. Curr Opin Struc Biol 10:421-427CrossRefGoogle Scholar
  474. Tombs MP (1995) Enzymes in the processing of fats and oils. In: Tucker GA, Woods LFJ (eds). Enzymes in food processing. Blackie Academic Professional, London, UK, pp 268-291Google Scholar
  475. Tombs MP, Blake GG (1982) Stability and inhibition of Aspergillus and Rhizopus lipases. Biochim Biophys Acta 700:81-89Google Scholar
  476. Undurraga D, Markovits A, Erazo S (2001) Cocoa butter equivalent through enzymic interesterifi-cation of palm oil midfraction. Proc Biochem 36:933-939CrossRefGoogle Scholar
  477. van Gerpen J (2005) Biodiesel processing and production. Fuel Proc Technol 86(10):1097-1107CrossRefGoogle Scholar
  478. van Kappen MD, Egmond MR (2000) Directed evolution: from a staphyloccal lipase to a phos-pholipase. Eur J Lipid Sci Technol 102:717-726CrossRefGoogle Scholar
  479. van Tilbeurgh H, Egloff MP, Martinez C et al. (1993) Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature 362: 814-820CrossRefGoogle Scholar
  480. Verger R (1997) Interfacial activation of lipases: facts and artifacts. TIBTECH 15:32-38Google Scholar
  481. Vicente MLC, Aires-Barros MR, Cabral JMS (1990) Purification of Chromobacterium viscosum lipases using reverse micelles. Biotechnol Techn 4:137-142CrossRefGoogle Scholar
  482. Villeneuve P, Muderhwa JM, Graille J et al. (2000) Customizing lipases for biocatalysis: a survey of chemical, physical and molecular approaches. J Mol Catal B: Enzym 9:113-148CrossRefGoogle Scholar
  483. Vulfson EN (1994) Industrial applications of lipases. In: Woolley P, Peterson SB (eds). Lipases: their structure, biochemistry and applications. Cambridge University Press, Cambridge, pp 271-288Google Scholar
  484. Wang Y, Srivastava KC, Shen GJ et al. (1995) Thermostable alkaline lipase form a newly isolated Bacillus strain, A30-1 (ATCC 5384). J Ferment Bioeng 79:433-438CrossRefGoogle Scholar
  485. Wasserscheid P, Keim W (2000) Ionic liquids - new “solutions” for transition metal catalysis. Angew Chem 39(21):3772-3789CrossRefGoogle Scholar
  486. Watanabe K, Ueji SI (2001) Dimethyl sulfoxide as a co-solvent dramatically enhances the enan-tioselectivity in lipase-catalysed resolutions of 2-phenoxypropionic acyl derivatives. J Chem Soc Perkin Trans 1:1386-1390CrossRefGoogle Scholar
  487. Wehtje E, Adlercreutz (1997) Water activity and substrate concentration effects on lipase activity. Biotechnol Bioeng 55:798-806CrossRefGoogle Scholar
  488. Wilson L, Fern ández-Lorente G, Fern ández-Lafuente R et al. (2006) CLEAs of lipases and poly-ionic polymers: a simple way of preparing stable biocatalysts with improved properties. Enzyme Microb Technol 39:750-755CrossRefGoogle Scholar
  489. Wiseman A (1995) Introduction to principles. In: Wiseman A (ed). Handbook of enzyme biotech-nology, 3rd edn. Ellis Horwood Ltd, Cornwall, pp 3-8Google Scholar
  490. Xin JY, Li SB, Xu Y et al. (2001) Dynamic enzymatic resolution of naproxen methyl ester in a membrane bioreactor. J Chem Technol Biotechnol 76(6):579-585CrossRefGoogle Scholar
  491. Xu X, Balchen S, Jonsson GA et al. (2000) Production of structured lipids by lipase-catalyzed interesterification in a flat membrane reactor. J Am Oil Chem Soc 77:1035-1041CrossRefGoogle Scholar
  492. Yadav GD, Devi KM (2004) Immobilized lipase-catalysed esterification and transesterification reactions in non-aqueous media for the synthesis of tetrahydrofurfuryl butyrate: comparison and kinetic modeling. Chem Eng Sci 59(2):373-383CrossRefGoogle Scholar
  493. Yamada H, Sorimachi Y, Tagawa T (2007) Operation optimization of lipase-catalyzed biodiesel production. J Chem Eng Japan 40(7):571-574CrossRefGoogle Scholar
  494. Yu H, Wu J, Ching CB (2004) Kinetic resolution of ibuprofen catalyzed by Candida rugosa lipase in ionic liquids. Chirality 17(1):16-21Google Scholar
  495. Yu HW, Chen H, Wang X et al. (2006) Cross-linked enzyme aggregates (CLEAs) with controlled particles: application to Candida rugosa lipase. J Mol Catal B: Enzym 43(1-4):124-127CrossRefGoogle Scholar
  496. Zaks A, Klibanov AM (1988) Enzymatic catalysis in non-aqueous solvents. J Biol Chem 263:3192-3196Google Scholar
  497. Bi Y, Zhou M, Hu H et al. (2001) Oxidation of long chain primary alcohols to acids over the quaternary ammonium peroxotungstophosphate catalyst system. React Kin Catal 72(1):73-82CrossRefGoogle Scholar
  498. Bommarius AS, Drauz K, Hummel W et al. (1994) Some new developments in reductive amination with cofactor regeneration. Biocatal Biotransform 10:37-47CrossRefGoogle Scholar
  499. Chenault HK, Simon ES, Whitesides GM (1988) Cofactor regeneration for enzyme-catalysed syn-thesis. Biotechnol Gen Eng Rev 6:221-241Google Scholar
  500. Clymer J (2006). Composiciones y m étodos para el tratamiento de enfermedades gastrointestinales. Patente Mexicana No. 06001477 A.Google Scholar
  501. Devaux-Basseguy R, Bergel A, Comtat M (1997) Potential applications of NAD(P)-dependent oxidoreductases in synthesis: a survey. Enzyme Microb Technol 20:248-258CrossRefGoogle Scholar
  502. El-Zahab B, Donnelly D, Wang P (2008) Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes. Biotechnol Bioeng 99(3):508-514CrossRefGoogle Scholar
  503. Godjevargova T, Dayal R, Turmanova S (2004) Gluconic acid production in bioreactor with immo-bilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange mem-brane. Macromol Biosci 4:950-956CrossRefGoogle Scholar
  504. Hirakawa H, Kamiya N, Kawarabayashi Y et al. (2004) Properties of an alcohol dehydrogenase from the hyperthermophilic Archaeon Aeropyrum pernix K1. J Biosci Bioeng 97(3):202-206Google Scholar
  505. Hummel W (1990) Enzyme-catalyzed synthesis of optically pure R(+)-phenylethanol. Biotechnol Lett 12:403-408CrossRefGoogle Scholar
  506. Hummel W (1997) New alcohol dehydrogenases for the synthesis of chiral compounds. Adv Biochem Eng Biotechnol 58:145-184Google Scholar
  507. Hummel W (1999) Large-scale applications of NAD(P)-dependent oxidoreductases: recent devel-opments. TIBTECH 17:487-492Google Scholar
  508. Hummel W, Kula M (1989) Dehydrogenases for the synthesis of chiral compounds. Eur J Biochem 184:1-13CrossRefGoogle Scholar
  509. Hummel W, Sch ütte H, Kula MR (1985) D-2-Hydroxyisocaproate dehydrogenase from Lactobacil-lus casei. A new enzyme suitable for stereospecific reduction of 2-ketocarboxylic acids. Appl Microbiol Biotechnol 21:7-15CrossRefGoogle Scholar
  510. Kawakami K, Nagamatsu S, Ishii M et al. (1986) Enzymatic formation of propylene bromohydrin from propylene by glucose oxidase and lactoperoxidase. Biotechnol Bioeng 28: 1007-1013CrossRefGoogle Scholar
  511. Kim MJ, Whitesides GM (1988) L-lactate dehydrogenase: substrate specificity and use as a catalyst in the synthesis of homochiral 2-hydroxy acids. J Am Chem Soc 110:2959-2962CrossRefGoogle Scholar
  512. Kobayashi S, Higashimura H (2003) Oxidative polymerization of phenols revisited. Prog Polym Sci (Oxford) 28:1015-1048CrossRefGoogle Scholar
  513. Lin C, Yang MC (2003) Cholesterol oxidation using hollow fiber dialiyser immobilised with cholesterol oxidase: preparation and properties. Biotechnol Prog 19:361-364CrossRefGoogle Scholar
  514. Liu W, Wang P (2007) Cofactor regeneration for sustainable enzymatic biosynthesis. Biotechnol Adv 25(4):369-384CrossRefGoogle Scholar
  515. L ópez-Gallego F, Betancor L, Hidalgo A et al. (2005) Preparation of a robust biocatalyst of D-amino acid oxidase on Sepabeads supports using the glutaraldehyde crosslinking method. En-zyme Microb Technol 37(7):750-756CrossRefGoogle Scholar
  516. Maekawa M (1995) Properties of enzymes for enzyme immunoassay. Nippon Rinsho. Japan J Clin Med 53:2154-2159Google Scholar
  517. Malherbe D F, du Toit M, Cordero-Otero R et al. (2003) Expression of the Aspergillus niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applications in wine production. Appl Microbiol Biotechnol 61:502-511Google Scholar
  518. Nielsen J, Raschke T, Riedel H (2005) Cosmetic and dermatological preparations in the form of o/ω-emulsions containing sterols and/or C12-C40 fatty acids. US Patent 0037036Google Scholar
  519. Al Pilone M S, Pollegioni L (2002) D-amino acid oxidase as an industrial biocatalyst. Biocatal Bio-transform 20:145-159CrossRefGoogle Scholar
  520. Tishkov VI, Popov VO (2004) Catalytic mechanism and application of formate dehydrogenase. Biochemistry (Moscow) 69:1252-1267CrossRefGoogle Scholar
  521. van der Donk WA, Zhao H (2003) Recent developments in pyridine nucleotide regeneration Cur-rent Opin Biotechnol 14:421-426CrossRefGoogle Scholar
  522. Vasic-Racki D, Jonas M, Wandrey C et al. (1989) Continuous (R)-mandelic acid production in an enzyme membrane reactor. Appl Microbiol Biotechnol 31:215-222CrossRefGoogle Scholar
  523. Wilson R, Clavering C, Hutchinson A (2003) Paramagnetic bead based enzyme electrochemilumi-nescence immunoassay for TNT. J Electroanal Chem 557(15):109-118CrossRefGoogle Scholar
  524. Yoshiro M. (2001) Lubricant for medicine or candy tablet. Japanese Patent 055342Google Scholar
  525. Antonietti M (2001) Surfactants for novel templating applications. Curr Opin Colloid Interface Sci 6:244-248CrossRefGoogle Scholar
  526. Ardao I, Benaiges MD, Caminal G et al. (2006) One step purification-immobilization of fuculose-1-phosphate aldolase, a class II dependent aldolase, by using metal-chelate supports. Enzyme Microb Technol 39:22-27CrossRefGoogle Scholar
  527. Asano N, Nash RJ, Molyneux RJ et al. (2000) Sugar-mimic glycosidase inhibitors: natural occur-rence, biological activity and prospects for therapeutic application. Tetrahed Asymm 11:1645-1680CrossRefGoogle Scholar
  528. Azema L, Bringaud F, Blonski C et al. (2000) Chemical and enzymatic synthesis of fructose ana-logues as probes for import studies by the hexose transporter in parasites. Bioorg Med Chem 8:717-722CrossRefGoogle Scholar
  529. Babu YS, Chand P, Bantia S et al. (2000) Bcx-1812 (rwj-270201): discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J Med Chem 43:3482-3486CrossRefGoogle Scholar
  530. Budde CL, Khmelnitsky YL (1999) Aldolase stability in the presence of organic solvents. Biotech-nol Lett 21:77-80CrossRefGoogle Scholar
  531. Calveras J, Bujons J, Parella T et al. (2006) Influence of N -amino protecting group on aldolase-catalyzed aldol additions of dihydroxyacetone phosphate to amino aldehydes. Tetrahedron 62:2648-2656CrossRefGoogle Scholar
  532. Castillo JA, Calveras J, Casas J et al. (2006) Fructose-6-phosphate aldolase in organic synthesis: preparation of D-fagomine, N -alkylated derivatives, and preliminary biological assays. Org Lett 8:6067-6070CrossRefGoogle Scholar
  533. Chen L, Dumas DP, Wong CH (1992) Deoxyribose 5-phosphate aldolase as a catalyst in asymmet-ric aldol condensation. J Am Chem Soc 114:741-748CrossRefGoogle Scholar
  534. Chenevert R, Dasser M (2000) Chemoenzymatic synthesis of the microbial elicitor-(-)syringolide via a fructose 1,6-diphosphate aldolase-catalyzed condensation reaction. J Org Chem 65:4529-4531CrossRefGoogle Scholar
  535. Clap és P, Espelt L, Navarro MA et al. (2001) Highly concentrated water-in-oil emulsions as novel reaction media for protease-catalyzed kinetically controlled peptide synthesis. J Chem Soc Perkin Trans 2:1394-1399Google Scholar
  536. Dreyer MK, Shulz GE (1996) Refined high resolution structure of the metal-ion dependent L-fuculose-1-phosphate aldolase (Class II) from E. coli. Acta Crystallogr D 52:1082-1091CrossRefGoogle Scholar
  537. De Santis G, Liu JJ, Clark DP et al. (2003) Structure-based mutagenesis approaches toward ex-panding the substrate specificity of D-2-deoxyribose-5-phosphate aldolase. Bioorg Med Chem 11:43-52CrossRefGoogle Scholar
  538. Durany O, de Mas C, L ópez-Santín J (2005) Fed-batch production of recombinant fuculose-1-phosphate aldolase in E. coli. Proc Biochem 40:707-716CrossRefGoogle Scholar
  539. Espelt L, Clap és P, Esquena J et al. (2003a) Enzymatic carbon-carbon bond formation in water-in-oil highly concentrated (gel emulsions). Langmuir 19:1337-1346CrossRefGoogle Scholar
  540. Espelt L, Parella T, Bujons J et al. (2003b) Stereoselective aldol additions catalyzed by dihydrox-yacetone phosphate dependent aldolases in emulsion systems. Chem Eur J 9:4887-4899CrossRefGoogle Scholar
  541. Espelt L, Bujons J, Parella T et al. (2005) Aldol additions of dihydroxyacetone phosphate to N -Cbz-amino aldehydes catalyzed by L-fuculose-1-phosphate aldolase in emulsion systems: in-version of stereoselectivity as a function of the acceptor aldehyde. Chem Eur J 11:1392-1401CrossRefGoogle Scholar
  542. Fessner WD, Sinerius G, Schneider A et al. (1991) Enzymes in organic synthesis. Part I. Diastere-oselectivity, enzymatic aldol addition with L-rhamnulose and L-fuculose-1-phosphate aldolases from E. coli. Angew Chem Int Ed Engl 30:555-58CrossRefGoogle Scholar
  543. Fessner WD, Walter CH (1997) Enzymatic C C bond formation in asymmetric synthesis. Top Curr Chem 184:97-194Google Scholar
  544. Fessner WD (1998) Enzyme mediated C C bond formation. Curr Opin Chem Biol 2:85-97CrossRefGoogle Scholar
  545. Fessner WD (2000) Enzymatic asymmetric synthesis using aldolases. In: Patel RN (ed). Stereose-lective biocatalysis. Marcel Dekker, New York, pp 239-265Google Scholar
  546. Fessner WD, Gosse C, Jaeschke G et al. (2000) Enzymes in organic synthesis. Short enzymatic synthesis of L-fucose analogs. Eur J Org Chem 1:125-132CrossRefGoogle Scholar
  547. Fessner WD, Helaine V (2001) Biocatalytic synthesis of hydroxylated natural products using al-dolases and related enzymes. Curr Opin Biotechnol 12:574-586CrossRefGoogle Scholar
  548. Fujii M, Miura T, Kajimoto T et al. (2000) Facile synthesis of 3,4-dihydroxyprolines as an appli-cation of the L-threonine aldolase-catalyzed aldol reaction. Synlett 1046-1048Google Scholar
  549. Garcia-Junceda E, Shen GJ, Sugai T et al. (1995) A new strategy for the cloning, overexpression and one step purification of three DHAP-dependent aldolases: rhamnulose-1-phosphate aldolase, fuculose 1-phosphate aldolase and tagatose 1-phosphate aldolase. Bioorg Med Chem 3:945-953CrossRefGoogle Scholar
  550. Guanti G, Banfi L, Zannetti MT (2000) Phosphonic derivatives of carbohydrates: chemoenzymatic synthesis. Tetrahed Lett 41:3181-3185CrossRefGoogle Scholar
  551. Guisan JM, Fern ández-Lafuente R, Rodríguez V et al. (1993) Enzyme stabilization by multipoint covalent attachment to activated preexisting supports. In: van den Tweel WJJ, Harder A, Buite-laar RM (eds). Stability and stabilization of enzymes, vol. 47. Elsevier, Amsterdam, pp 55-62Google Scholar
  552. Henderson I, Garcia-Junceda E, Liu KK et al. (1994) Cloning, overexpression and isolation of the type II FDP aldolase from E. coli for specificity study and synthetic application. Bioorg Med Chem 2:837-843CrossRefGoogle Scholar
  553. Holmberg K (1997) Microemulsions in biotechnology In: Solans C, Kunieda H (eds). Industrial applications of microemulsions. Marcel Dekker, New York, pp 69-95Google Scholar
  554. Jung SH, Jeong JH, Miller P et al. (1994) An efficient multigram-scale preparation of dihydroxyacetone phosphate. J Org Chem 59:7182-7184CrossRefGoogle Scholar
  555. Kunieda H, Rajagopalan V, Kimura E et al. (1994) Nonequilibrium structure of water in oil gel emulsions. Langmuir 10:2570-2577CrossRefGoogle Scholar
  556. Liu JQ, Dairi T, Itoh N et al. (2000a) Diversity of microbial threonine aldolases and their applications. J Mol Catal 10:107-115CrossRefGoogle Scholar
  557. Liu JQ, Odani M, Yasuoka T et al. (2000b) Gene cloning and overproduction of low-specificity D-threonine aldolase from Alcaligenes xylosoxidans and its application for production of a key intermediate for parkinsonism drug. Appl Microbiol Biotechnol 54:44-51CrossRefGoogle Scholar
  558. Machajewski TD, Wong CH (2000) The catalytic asymmetric aldol reaction. Angew Chem Int Ed Engl 39:1352-1374CrossRefGoogle Scholar
  559. Mahrwald R (2004) Modern aldol reactions, vol. 1. Enolates, organocatalysis, biocatalysis and natural product synthesis. Wiley-VCH, Weinheim, 335 ppGoogle Scholar
  560. Phillips SA, Thornalley PJ (1993) The formation of methylglyoxal from triose phosphates. Eur J Biochem 212:101-105CrossRefGoogle Scholar
  561. Pinsach J, de Mas C, L ópez-Santín J (2006) A simple feedback control of Escherichia coli growth for recombinant aldolase production in fed-batch mode. Biochem Eng J 29:235-242Google Scholar
  562. Pons R, Erra P, Solans C et al. (1993) Viscoelastic properties of gel-emulsions: their relationship with structure and equilibrium properties. J Phys Chem 97:12320-12324CrossRefGoogle Scholar
  563. Princen HM (1979) Highly concentrated emulsions. I. Cylindrical systems. J Colloid Interface Sci 71:55-66CrossRefGoogle Scholar
  564. Princen HM, Kiss AD (1986) Rheology of foams and highly concentrated emulsions. III. Static shear modulus. J Colloid Interface Sci 112:427-437CrossRefGoogle Scholar
  565. Ramsaywak PC, Labb é G, Siemann S et al. (2004) Molecular cloning, expression, purification, and characterization of fructose 1,6-bisphosphate aldolase from Mycobacterium tuberculosis -a novel Class II A tetramer. Protein Expres Purif 37:220-228CrossRefGoogle Scholar
  566. Richard JP (1993) Mechanism for the formation of methylglyoxal from triosephosphates. Biochem Soc T 21:549-553Google Scholar
  567. Samland AK, Sprenger GA (2006) Microbial aldolases as C C bonding enzymes-unknown treasures and new developments. Appl Microbiol Biotechnol 71:253-264CrossRefGoogle Scholar
  568. Sauve V, Sygusch J (2001) Molecular cloning, expression, purification, and characterization of fructose-1,6-bisphosphate aldolase from Thermus aquaticus. Protein Expres Purif 21:293-302CrossRefGoogle Scholar
  569. Sch ürmann M, Sprenger GA (2001) Fructose-6-phosphate aldolase is a novel class I aldolase from Escherichia coli and is related to a novel group of bacterial transaldolases. J Biol Chem 276:11055-11061CrossRefGoogle Scholar
  570. Sch ürmann M, Sch ürmann M, Sprenger GA (2002) Fructose 6-phosphate aldolase and 1-deoxy-D-xylulose 5-phosphate synthase from Escherichia coli as tools in enzymatic synthesis of 1-deoxysugars. J Mol Catal B: Enzym 19:247-252CrossRefGoogle Scholar
  571. Shelton CM, Toone EJ (1995) Differential dye-ligand chromatography as a general purification protocol for 2-keto-3-deoxy-6-phosphogluconate aldolases. Tetrahed Asymm 6:207-211CrossRefGoogle Scholar
  572. Silvestri MG, Desantis G, Mitchell M et al. (2003) Asymmetric aldol reactions using aldolases. Top Stereochem 23:267-342CrossRefGoogle Scholar
  573. Sobolov SB, Bartoszko-Malik A, Oeschger TR et al. (1994) Crosslinked enzyme crystals of fructose diphosphate aldolase: development as a biocatalyst for synthesis. Tetrahed Lett 35:7751-7754Google Scholar
  574. Solans C, Pons R, Kunieda H (1998) Gel emulsions - relationship between phase behavior and formation. In: Binks BP (ed). Modern aspects of emulsion science. The Royal Society of Chemistry, Cambridge, UK, pp 367-394Google Scholar
  575. Solans C, Pinazo A, Caldero G et al. (2001) Highly concentrated emulsions as novel reaction media. Colloids Surf A 176:101-108CrossRefGoogle Scholar
  576. Steinreiber J, Sch ürmann M, Wolberg M et al. (2007) Overcoming thermodynamic and kinetic limitations of aldolase-catalyzed reactions by applying multienzymatic dynamic kinetic asymmetric transformations. Angew Chem Int Ed 46:1624-1626CrossRefGoogle Scholar
  577. Suau T, Calveras J, Clap és P et al. (2005) Immobilization of fuculose-1-phosphate aldolase from E. coli to glyoxal-agarose gels by multipoint covalent attachment. Biocatal Biotransform 23:241-250CrossRefGoogle Scholar
  578. Suau T, Alvaro G, Benaiges MD et al. (2006) Influence of secondary reactions on the synthetic efficiency of DHAP-aldolases. Biotechnol Bioeng 93:48-55CrossRefGoogle Scholar
  579. Takayama S, McGarvey GJ, Won CH (1997) Microbial aldolases and transketolases: new biocatalytic approaches to simple and complex sugars. Ann Rev Microbiol 51:285-310CrossRefGoogle Scholar
  580. Tischer W, Ihlenfeldt HG, Barzu O et al. (2001) Enzymatic synthesis of deoxyribonucleosides from deoxyribose 1-phosphate and nucleobase. Int. Patent WO014566.Google Scholar
  581. Vidal L, Ferrer P, Alvaro G et al. (2005a) Influence of induction and operation mode on recombinant rhamnulose-1-phosphate aldolase production by Escherichia coli using the T5 promoter. J Biotechnol 118:75-87CrossRefGoogle Scholar
  582. Vidal L, Calveras J, Clap és P et al. (2005b) Recombinant production of serine hydroxymethyl transferase from Streptococcus thermophilus and its application in biocatalysis. Appl Microbiol Biotechnol 68:489-497CrossRefGoogle Scholar
  583. Walde P (1996) Enzymic reactions in liposomes. Curr Opin Colloid Interface Sci 1:638-644CrossRefGoogle Scholar
  584. Wasserman HH, Martin SF, Yamamoto Y (1999) Stereoselective carbon-carbon bond forming reactions. Elsevier, Oxford, UK, 417 ppGoogle Scholar
  585. Whalen LJ, Wong CH (2006) Enzymes in organic synthesis: aldolase-mediated synthesis of iminocyclitols and novel heterocycles. Aldrichim Acta 39:63-71Google Scholar
  586. Williams GJ, Woodhall T, Farnsworth LM et al. (2006) Creation of a pair of stereochemically complementary biocatalysts. J Am Chem Soc 128:16238-16247CrossRefGoogle Scholar
  587. Wymer N, Toone EJ (2000) Enzyme-catalyzed synthesis of carbohydrates. Curr Opin Chem Biol 4:110-119CrossRefGoogle Scholar
  588. Zhu W, Li ZY (2000) Synthesis of perfluoroalkylated sugars catalyzed by rabbit muscle aldolase (RAMA) J Chem Soc Perkin Trans 17:1105-1108CrossRefGoogle Scholar
  589. Alleman BC, Logan BE, Gilbertson RL (1995) Degradation of pentachlorophenol by fixed films of white-rot fungi in rotating tube bioreactors. Water Res 29(1):61-67CrossRefGoogle Scholar
  590. Archibald F, Paice MG, Jurasek L (1990) Decolorization of kraft bleachery effluent chromophores by Coriolus (Trametes) versicolor. Enzyme Microb Technol 12:846-853CrossRefGoogle Scholar
  591. Basheer S, Kut OM, Prenosil JE et al. (1993) Development of an enzyme membrane reactor for treatment of cyanide-containing wastewaters from the food industry. Biotechnol Bioeng 41(4):465-473CrossRefGoogle Scholar
  592. Bhunia A, Durani S, Wangikar PP (2001) Horseradish peroxidase catalyzed degradation of indus-trially important dyes. Biotechnol Bioeng 72:562-567CrossRefGoogle Scholar
  593. Bogan BW, Lamar RT (1995) One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 61(7):2631-2635Google Scholar
  594. Bogan BW, Lamar RT, Hammel KE (1996) Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Appl Environ Microbiol 62:1788-1792Google Scholar
  595. Bumpus JA (1989) Biodegradation of polycyclic aromatic hidrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154-158Google Scholar
  596. Chen PJ, Rosenfeldt EJ, Kullman SW et al. (2007) Biological assessments of a mixture of en-docrine disruptors at environmentally relevant concentrations in water following UV/H2 O2 ox-idation. Sci Total Environ 376(1-3):18-26CrossRefGoogle Scholar
  597. Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phane-rochaete chrysosporium. Appl Environ Microbiol 56(4):1114-1118Google Scholar
  598. Dec J, Bollag JM (1995) Effect of various factors on dehalogenation of chlorinated phenols and anilines during oxidative coupling. Environ Sci Technol 29(3):657-663CrossRefGoogle Scholar
  599. D éziel E, Comeau Y, Villemur R (1999) Two-liquid-phase bioreactors for enhanced degradation of hydrophobic/toxic compounds. Biodegradation 10:219-233CrossRefGoogle Scholar
  600. Efroymson RA, Alexander M (1995) Reduced mineralization of low concentrations of phenan-threne because of sequestering in nonaqueous-phase liquids. Environ Sci Technol 29:515-521CrossRefGoogle Scholar
  601. Eibes G, Lu Chau T, Feijoo G et al. (2005) Complete degradation of anthracene by manganese peroxidase in organic solvent mixtures. Enzyme Microb Technol 37(4):365-372CrossRefGoogle Scholar
  602. Eibes G, Cajthaml T, Moreira MT et al. (2006) Enzymatic degradation of anthracene, diben-zothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere 64 (3):408-414CrossRefGoogle Scholar
  603. Eibes G, Moreira MT, Feijoo G et al. (2007) Operation of a two-phase partitioning bioreactor for the oxidation of anthracene by the enzyme manganese peroxidase. Chemosphere 66:1744-1751CrossRefGoogle Scholar
  604. Field JA, Vledder RH, van Zelst JG et al. (1996). The tolerance of lignin peroxidase and manganese-dependent peroxidase to miscible solvents and the in vitro oxidation of anthracene in solvent:water mixtures. Enzyme Microb Technol 18:300-308CrossRefGoogle Scholar
  605. Fujita M, Ike M, Kusunoki K et al. (2002) Removal of color and estrogenic substances by fungal reactor equipped with ultrafiltration unit. Water Sci Technol 2(5-6):353-358Google Scholar
  606. Grabski AC, Grimek HJ, Burges RR (1998) Immobilization of manganese peroxidase from Lentin-ula edodes and its biocatalytic generation of MnIII-chelate as a chemical oxidant of chlorophe-nols. Biotechnol Bioeng 60:204-215CrossRefGoogle Scholar
  607. Guis án JM, Bastida A, Blanco RM et al. (1997) Immobilization of enzymes acting on macromolec-ular substrates. Reduction of steric problems. In: Bickerstaff GF (ed). Methods in biotechnology. Immobilization of enzymes and cells. Humana Press, Totowa, USA, pp 261-275Google Scholar
  608. G ünther T, Sack U, Hofrichter M et al. (1998) Oxidation of PAH and PAH-derivatives by fungal and plant oxidoreductases. J Basic Microbiol 38(2):113-122CrossRefGoogle Scholar
  609. Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydro-carbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261 (36):16948-16952Google Scholar
  610. Heinfling A, Martínez MJ, Martínez AT et al. (1998) Transformation of industrial dyes by man-ganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788-2793Google Scholar
  611. Hofrichter M, Ziegenhagen D, Vares T et al. (1998) Oxidative decomposition of malonic acid as basis for the action of manganese peroxidase in the absence of hydrogen peroxide. FEBS Lett 434:362-366CrossRefGoogle Scholar
  612. Hublik G, Schinner F (2000) Characterization and immobilization of the laccase from Pleurotus ostreatus and its use for the continuous elimination of phenolic pollutants. Enzyme Microb Technol 27:330-336CrossRefGoogle Scholar
  613. Isono Y, Nakajima M (2000) Membrane phase separation of aqueous/alcohol biphase mixture and its application for enzyme bioreactor. Prog Biotechnol 16:63-68CrossRefGoogle Scholar
  614. Jaspers CJ, Jimenez G, Penninckx MJ (1994) Evidence for a role of manganese peroxidase in the decolorization of Kraft pulp bleach plant effluent by Phanerochaete chrysosporium: effects of initial culture conditions on enzyme production. J Biotechnol 37(3):229-234CrossRefGoogle Scholar
  615. Johannes C, Majcherczyk A, Huttermann A (1996) Degradation of anthracene by laccase of Tram-etes versicolor in the presence of different mediator compounds. Appl Microbiol Biotechnol 46 (3):313-317CrossRefGoogle Scholar
  616. Katchalski-Katzir E, Kraemer DM (2000) Eupergit○R C, a carrier for immobilization of enzymes of industrial potential. J Mol Catal B Enzym 10:157-176CrossRefGoogle Scholar
  617. Kelsey LJ, Pillarella MR, Zydney AL (1990) Theoretical analysis of convective flow profiles in a hollow-fiber membrane bioreactor. Chem Eng Sci 45:3211-3220CrossRefGoogle Scholar
  618. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409(11):241-246CrossRefGoogle Scholar
  619. K öhler A, Sch üttoff M, Bryniok D et al. (1994) Enhanced biodegradation of phenanthrene in a biphasic culture system. Biodegradation 5:93-103CrossRefGoogle Scholar
  620. Kotterman MJJ, Rietberg HJ, Hage A et al. (1998) Polycyclic aromatic hydrocarbon oxidation by the white-rot fungus Bjerkandera sp. strain BOS55 in the presence of nonionic surfactants. Biotechnol Bioeng 57(2):220-227CrossRefGoogle Scholar
  621. Krastanov A (2000) Removal of phenols from mixtures by co-immobilized laccase/tyrosinase and Polycar adsorption. J Ind Microbiol Biotechnol 24:383-388CrossRefGoogle Scholar
  622. Kuan IC, Tien M (1993) Stimulation of manganese peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc Natl Acad Sci USA 90:1242-1246CrossRefGoogle Scholar
  623. Lante A, Crapisi A, Krastanov A et al. (2000) Biodegradation of phenols by laccase immobilised in a membrane reactor. Proc Biochem 36(1-2):51-58CrossRefGoogle Scholar
  624. Lee C, Yoon J, von Gunten U (2007) Oxidative degradation of N -nitrosodimethylamine by con-ventional ozonation and the advanced oxidation process ozone/hydrogen peroxide. Water Res 41 (3):581-590CrossRefGoogle Scholar
  625. L ópez C, Mielgo I, Moreira MT et al. (2002) Enzymatic membrane reactors for biodegradation of recalcitrant compounds. Application to dye decolourisation. J Biotechnol 99(3):249-257CrossRefGoogle Scholar
  626. L ópez C, Moreira MT, Feijoo G et al. (2004) Dye decolorization by manganese peroxidase in an enzymatic membrane bioreactor. Biotechnol Prog 20(1):74-81CrossRefGoogle Scholar
  627. L ópez C, Moreira MT, Feijoo G et al. (2007) Dynamic modeling of an enzymatic membrane reactor for the treatment of xenobiotic compounds. Biotechnol Bioeng 97(5):1128-1137CrossRefGoogle Scholar
  628. MacLeod CT, Daugulis AJ (2003) Biodegradation of polycyclic aromatic hydrocarbons in a two-phase partitioning bioreactor in the presence of a bioavailable solvent. Appl Microbiol Biotech-nol 62:291-296CrossRefGoogle Scholar
  629. Majcherczyk A, Johannes C, Huttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol 22(5):335-341CrossRefGoogle Scholar
  630. Marcoux J, D éziel E, Villemur R et al. (2000) Optimization of high-molecular-weight poly-cyclic aromatic hydrocarbons’ degradation in a two-liquid-phase bioreactor. J Appl Microbiol 88 (4):655-662CrossRefGoogle Scholar
  631. M éndez-Paz D, Omil F, Lema JM (2005) Anaerobic treatment of azo dye Acid Orange 7 under batch conditions. Enzyme Microb Technol 36:264-272CrossRefGoogle Scholar
  632. Mielgo I, Moreira MT, Feijoo et al. (2002) Biodegradation of a polymeric dye in a pulsed bed bioreactor by immobilised Phanerochaete chrysosporium. Water Res 36:1896-1901CrossRefGoogle Scholar
  633. Mielgo I, L ópez C, Moreira MT et al. (2003) Oxidative degradation of azo dyes by manganese peroxidase under optimized conditions. Biotechnol Prog 19(2):325-331CrossRefGoogle Scholar
  634. Moen MA, Hammel KE (1994) Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Mi-crobiol 60:1956-1961Google Scholar
  635. Ollikka P, Alhonm äki K, Lepp änen VM et al. (1993) Decolorization of azo, triphenyl methane, het-erocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysospo-rium. Appl Environ Microbiol 59:4010-4016Google Scholar
  636. Palma C, Moreira MT, Feijoo G et al. (1997) Enhanced catalytic properties of MnP by exogenous addition of manganese and hydrogen peroxide. Biotechnol Lett 19(3):263-267CrossRefGoogle Scholar
  637. Pasta P, Carrea G, Monzani E et al. (1999). Chloroperoxidase-catalyzed enantioselective oxida-tion of methyl phenyl sulfide with dihydroxyfumaric acid/oxygen or ascorbic acid/oxygen as oxidants. Biotechnol Bioeng 62(4):489-493CrossRefGoogle Scholar
  638. Pickard MA, Roman R, Tinoco R et al. (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Mi-crobiol 65(9):3805-3809Google Scholar
  639. Prazeres DMF, Cabral JMS (1994) Enzymatic membrane bioreactors and their applications. En-zyme Microb Technol 16:738-750CrossRefGoogle Scholar
  640. Rodakiewicz-Nowak J, Jarosz-Wilkolazka A (2007) Catalytic activity of Cerrena unicolor laccase in aqueous solutions of water-miscible organic solvents - experimental and numerical descrip-tion. J Mol Catal B Enzym 44(2):53-59CrossRefGoogle Scholar
  641. Roper JC, Sarkar JM, Dec J et al. (1995) Enhanced enzymatic removal of chlorophenols in the presence of co-substrates. Water Res 29(12):2720-2724CrossRefGoogle Scholar
  642. Ross AC, Bell G, Halling PJ (2000) Organic solvent functional group effect on enzyme inactivation by the interfacial mechanism. J Mol Catal B Enzym 8:183-192CrossRefGoogle Scholar
  643. Sasaki T, Kajino T, Li B et al. (2001) New pulp biobleaching system involving manganese per-oxidase immobilized in a silica support with controlled pore sizes. Appl Environ Microbiol 67 (5):2208-2212CrossRefGoogle Scholar
  644. Scheibner K, Hofrichter M (1998) Conversion of aminonitrotoluenes by fungal manganese perox-idase. J Basic Microbiol 38(1):51-59CrossRefGoogle Scholar
  645. Steffen KT, Hatakka A, Hofrichter M (2003) Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Stropharia coronilla: role of manganese peroxidase. Appl Environ Microbiol 69(7):3957-3964CrossRefGoogle Scholar
  646. Su árez S, Dodd MC, Omil F et al. (2007) Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: relevance to municipal wastewater ozonation. Water Res 41(12):2481CrossRefGoogle Scholar
  647. Timofeevski SL, Reading NS, Aust SD (1998) Mechanisms for protection against inactivation of manganese peroxidase by hydrogen peroxide. Arch Biochem Biophys 356(2):287-295CrossRefGoogle Scholar
  648. Valli K, Wariishi H, Gold MH (1992) Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 174(7):2131-2137Google Scholar
  649. van Aken B, Agathos SN (2002). Implication of manganese (III), oxalate, and oxygen in the degra-dation of nitroaromatic compounds by manganese peroxidase (MnP). Appl Microbiol Biotech-nol 58(3):345-351CrossRefGoogle Scholar
  650. van Aken B, Godefroid LM, Peres CM et al. (1999) Mineralization of C-14-U-ring labeled 4-hydroxylamino-2,6dinitrotoluene by manganese-dependent peroxidase of the whiterot basid-iomycete Phlebia radiata. J Biotechnol 68(2-3):159-169CrossRefGoogle Scholar
  651. Welty JR, Wicks CE, Wilson RE (1984) Fundamentals of momentum, heat, and mass transfer. John Wiley and Sons, New York, 803 ppGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Sonia Barberis
    • 1
  • Fanny Guzmán
    • 2
  • Andrés Illanes
    • 3
  • Josep López-Santín
    • 4
  • Lorena Wilson
    • 3
  • Gregorio Álvaro
    • 4
  • José M. Guisán
    • 5
  • Roberto Fernández-Lafuente
    • 5
  • César Mateo
    • 5
  • Pere Clapés
    • 6
  • Juan M. Lema
    • 7
  • Gemma Eibes
    • 7
  • Carmen López
    • 7
  • M. Teresa Moreira
    • 7
  • Gumersindo Feijoo
    • 7
  1. 1.Faculty of Chemistry, Biochemistry and PharmacyUniversidad National de San LuisSan LuisArgentina
  2. 2.Institute of BiologyPontificia Universidad Católica de ValparaísoValparaísoChile
  3. 3.School of Biochemical EngineeringPontificia Universidad Católica de ValparaísoValparaísoChile
  4. 4.Chemical Engineering DepartmentUniversitat Autònoma de BarcelonaBarcelonaSpain
  5. 5.Institute of Catalysis and Petroleum ChemistryConsejo Superior de Investigaciones Científicas (CSIC)MadridSpain
  6. 6.Institute for Chemical and Environmental Research (IIQAB)-CSICBarcelonaSpain
  7. 7.Department of Chemical Engineering, School of EngineeringUniversidad de Santiago de CompostelaSpain

Personalised recommendations