Many chemical reactions can occur spontaneously; others require to be catalyzed to proceed at a significant rate. Catalysts are molecules that reduce the magnitude of the energy barrier required to be overcame for a substance to be converted chemically into another. Thermodynamically, the magnitude of this energy barrier can be conveniently expressed in terms of the free-energy change. As depicted in Fig. 1.1, catalysts reduce the magnitude of this barrier by virtue of its interaction with the substrate to form an activated transition complex that delivers the product and frees the catalyst. The catalyst is not consumed or altered during the reaction so, in principle, it can be used indefinitely to convert the substrate into product; in practice, however, this is limited by the stability of the catalyst, that is, its capacity to retain its active structure through time at the conditions of reaction.


Ionic Liquid Fabry Disease Organic Medium Alkaline Protease Enzyme Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelson PH (1999) A potential phosphate crisis. Science 283(5410):2015Google Scholar
  2. Abi án O, Mateo C, Fern ández-Lorente G et al. (2001) Stabilization of immobilized en-zymes against water soluble organic cosolvents and generation of hyper-hydrophilic micro-environments surrounding enzyme molecules. Biocatal Biotransfor 19:489-504Google Scholar
  3. Abi án O, Graz ú V, Hermoso J et al. (2004) Stabilization of penicillin G acylase from Escherichia coli: site-directed mutagenesis of the protein surface to increase multipoint covalent attachment. Appl Env Microbiol 70(2):1249-1251Google Scholar
  4. Abu-Reesh I, Faqir N (1996) Simulation of glucose isomerase reactor: optimum operating temper-ature. Bioproc Eng 14:205-210Google Scholar
  5. Adamczak M, Hari Krishna S (2004) Strategies for improving enzymes for efficient biocatalysis. Food Technol Biotechnol 42(4):251-264Google Scholar
  6. Adams M, Kelly R (1998) Finding and using hyperthermophilic ezymes. TIBTECH 16:329-332Google Scholar
  7. Adlercreutz P, Iborra JL, Schmid E et al. (1994) Applications. In: Cabral JMS, Boros DBL, Tramper J (eds). Applied biocatalysis. Harwood Acad Publ, Chur, pp 108-156Google Scholar
  8. Aehle W (2003) Enzymes in industry: production and applications. Wiley-VCH, Weinheim, 484 ppGoogle Scholar
  9. Aguilera JM (1994) Identifying opportunities for engineering applications in agriculture, food and nutrition biochemistry in Latin America. In: Aguilera JM, San Martín R, Edwardson W (eds). Bioengineering and bioprocesses: needs and opportunities in Latin America. Universidad de Santiago, Chile, pp 9-27Google Scholar
  10. Aitken MD (1993) Waste treatment applications of enzymes: opportunities and obstacles. Chem Eng J 52:B49-B58Google Scholar
  11. Akbar U, Aschenbrenner CD, Harper MR et al. (2007) Direct solubilization of enzyme aggregates with enhanced activity in nonaqueous media. Biotechnol Bioeng 96(6):1030-1039Google Scholar
  12. Alberghina L (2000) Protein engineering in industrial biotechnology. CRC Press, Boca Raton 376 pp. ISBN 9057024128Google Scholar
  13. Alcalde M, Ferrera M, Plou FJ et al. (2006) Environmental biocatalysis: from remediation with enzymes to novel green processes. TIBTECH 24(6):281-287Google Scholar
  14. Alexeeva M, Carr R, Turner NJ (2003) Directed evolution of enzymes: new biocatalysts for asym-metric synthesis Org Biomol Chem 1:4133-4137Google Scholar
  15. Allen G, Lowe G (1973) Investigation of the active site of papain with fluorescent probes. Biochem J 133:679-686Google Scholar
  16. Amorim-Fernandes J, Mcalphine M, Halling P (2005) Operational stability of subtilisin CLECs in organic solvents in repeated batch and continuous operation. Biochem Eng J 24(1):11-15Google Scholar
  17. Anish R, Rahman MS, Rao M (2006) Application of cellulases from an alkalothermophilic Ther-momonospora sp. in biopolishing of denims. Biotechnol Bioeng 96(1):48-56Google Scholar
  18. Anonymous (1979) Nomenclature Committee of the International Union of Biochemistry (NC-IUB). Units of Enzyme Activity. Eur J Biochem 97:319-320Google Scholar
  19. Anonymous (1984) Nomenclature Committee of IUB (NC-IUB) IUB-IUPAC Joint Commission on Biochemical Nomenclature (JCBN). J Biosc Rep 4(2):177-180Google Scholar
  20. Arica MY (2000) Epoxy-derived pHEMA membrane for use bioactive macromolecules immobi-lization: covalently bound urease in a continuous model system. J Appl Polym Sci 77(9):2000-2008Google Scholar
  21. Arnold FH (2001) Combinatorial and computational challenges for biocatalyst design. Nature 409:253-257Google Scholar
  22. Arnold FH, Moore JC (1997) Optimizing industrial enzymes by directed evolution. Adv Biochem Eng Biotechnol 58:1-14Google Scholar
  23. Asano Y (2002) Overview of screening for new microbial catalysts and their uses in organic synthesis-selection and optimization of biocatalysts. J Biotechnol 94:65-72Google Scholar
  24. Ashina Y, Suto M (1993) Development of an enzymatic process for manufacturing acrylamide and recent progress. In: Tanaka A, Tosa T, Kobayashi T (eds). Industrial application of immobilized biocatalysts. Marcel Dekker, New York pp 91-107Google Scholar
  25. Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucl Acid Res 18(20):6069-6074Google Scholar
  26. Ayhan F, Rad AY, Ayhan H (2002) Biocompatibility investigation and urea removal from blood by urease-immobilized HEMA incorporated poly(ethyleneglycol dimethacrylate) microbeads. J Biomed Mat Res 64B(1):13-18Google Scholar
  27. Baker JO, Ehrman CI, Adney WS et al. (1998) Hydrolysis of cellulose using ternary mixtures of purified cellulases. Appl Biochem Biotechnol (70):395-403Google Scholar
  28. Ballesteros A, Bornscheuer U, Capewell A et al. (1995) Enzymes in non-conventional phases. Biocatal Biotransfor 13:1-42Google Scholar
  29. Barberis S, Illanes A (1996) Cat álisis enzim ática en fase org ánica. Ing Quim March:165-173Google Scholar
  30. Barberis S, Quiroga E, Arrib ére MC et al. (2002) Peptide synthesis in aqueous-organic bipha-sic systems catalyzed by a protease isolated from Morrenia brachystephana (Asclepiadaceae). J Mol Catal B: Enzym 17:39-47Google Scholar
  31. Bardy SL, Ng SYM, Carnegie DS et al. (2005) Site-directed mutagenesis analysis of amino acids critical for activity of the type I signal peptidase of the archaeon Methanococcus voltae. J Bacteriol 187(3):1188-1191Google Scholar
  32. Barros EJ, Wehtje E, Adlercreutz P (2000) Mass transfer studies on immobilized α-chymotrypsin biocatalysts prepared by deposition for use in organic medium. Biotechnol Bioeng 59:364-373Google Scholar
  33. Barton LL, Georgi CE, Lineback DR (1972) Effect of maltose on glucoamylase formation by Aspergillus niger. J Bacteriol 111(3):771-777Google Scholar
  34. Barton JW, Reed EK, Davison BH (1997) Gas-phase enzyme catalysis using immobilized lipase for ester production. Biotechnol Tech 11(10):747-750Google Scholar
  35. Bartlett JMS, Stirling D (2003) PCR protocols. Humana Press, Totowa NJ USA, 556 pp. ISBN 0896036278Google Scholar
  36. Barzana E, Klibanov A, Karel M (1987) Enzyme catalyzed, gas-phase reactions. Appl. Biochem Biotechnol 15:25-34Google Scholar
  37. Barzana E, Karel M, Klibanov A (1989) Enzymatic oxidation of ethanol in the gaseous phase. Biotechnol Bioeng 34:1178-1185Google Scholar
  38. Barzana E, García-Garibay M (1994) Production of fish protein concentrates. In: Martin AM (ed). Fisheries processing. Chapman Hall, London, pp 206-222Google Scholar
  39. Basso A, De Martin L, Ebert C et al. (2000) High isolated yields in thermodynamically controlled peptide synthesis in toluene catalysed by thermolysin adsorbed on Cellite R-640. Chem Com-mun 467-468Google Scholar
  40. Basso A, Spizzo P, Toniutti M (2006) Kinetically controlled synthesis of ampicillin and cepa-halexin in highly condensed systems in the absence of a liquid aqueous phase. J Mol Catal B: Enzym 39:105-111Google Scholar
  41. Bedford MR (2000) Exogenous enzymes in monogastric nutrition - their current value and future benefits. Animal Feed Sci Technol 86(1):1-13Google Scholar
  42. Bélafi-Bakó K, Nemestóthy N, Gubicza L (2004) A study on applications of membrane techniques in bioconversion of fumaric acid to L-malic acid. Desalin 162:301-306Google Scholar
  43. Benkovic SJ, Ballesteros A (1997) Biocatalysts - the next generation. TIBTECH 15:385-386Google Scholar
  44. Benković SJ, Hammes-Schiffer S (2003) A perspective on enzyme catalysis. Science 301(5637):1196-1202Google Scholar
  45. Bhargava AK, Lalb H, Pundira CS (1999) Discrete analysis of serum uric acid with immobilized uricase and peroxidase J Biochem Biophys Meth 39(3):125-136Google Scholar
  46. Bhosale SH, Rao MB, Deshpande VV (1996) Industrial aspects of glucose isomerase. Microbiol Rev 60:280-300Google Scholar
  47. Bisswanger H (2004) Practical enzymology. Wiley VCH, Weinheim, 272 ppGoogle Scholar
  48. Bj örup P, Adlercreutz P, Clap és P (1999) Useful methods in enzymatic synthesis of peptides. A comparative study focussing on kinetically controlled synthesis of Ac-Phe-Ala-NH2 catalyzed by α-chymotripsin. Biocatal Biotransfor 17:319-345Google Scholar
  49. Black M, Miller R (2006) Platform chemicals from crops. J Chem Technol Biotechnol 81(11):1725-1728Google Scholar
  50. Boersma YL, Dr öge MJ, Quax WJ (2007) Selection strategies for improved biocatalysts. FEBS J 274(9):2181-2195Google Scholar
  51. Boidin A, Effront J (1917) Process manufacturing diastases and toxins by oxidizing ferments. US Patent 1227525Google Scholar
  52. Boller T, Meier C, Menzler S (2002) Eupergit oxirane acrylic beads: how to make enzymes fit for biocatalysis. Org Proc Res Dev 6(4):509-519Google Scholar
  53. Bommarius AS, Riebel BR (2004) Biocatalysis: fundamentals and applications. Wiley-VCH, Weinheim, Germany, 611 pp. ISBN 3527303448Google Scholar
  54. Bommarius AS, Broering JM (2005) Established and novel tools to investigate biocatalyst stability. Biocatal Biotransfor 23(3/4):125-139Google Scholar
  55. Bordusa F (2002) Proteases in organic synthesis. Chem Rev 102:4817-4867Google Scholar
  56. Bornscheuer UT, Kazlauskas RJ (1999) Hydrolases in organic synthesis. Wiley VCH, Weinheim, 336 ppGoogle Scholar
  57. Bowers LD (1986) Applications of immobilized biocatalysts in chemical analysis Anal. Chem 58(4):513-530Google Scholar
  58. Brakmann S, Johnsson K (eds) (2002) Molecular evolution of proteins: or how to improve enzymes for biocatalysis. Wiley-VCH, Weinheim, 368 ppGoogle Scholar
  59. Brenner S, Johnson M, Bridgham J et al. (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630-634Google Scholar
  60. Brink LES, Tramper J, Luyben KCAM et al. (1988) Biocatalysis in organic media. Enzyme Microb Technol 10:736-743.Google Scholar
  61. Bruggink A (2001) Synthesis of β-lactam antibiotics, Kluwer Acad Publ, Dordrecht, 335 ppGoogle Scholar
  62. Bruggink A, Straathof AJJ, van der Wielen LAM (2003) Fine chemical industry for life sci-ence products: green solutions to chemical challenges. In: Advances in biochemical engineer-ing/biotechnology, vol 80. Springer-Verlag, Berlin, Heidelberg, New York, pp 69-113Google Scholar
  63. Br ühlmann F (1995) Purification and characterization of an extracellular pectate lyase from an Amycolota sp. Appl Environ Hicrobiol 61(10):3580-3585Google Scholar
  64. Bryjak J, Aniulyte J, Liesiene J (2007) Evaluation of man-tailored cellulose-based carriers in glu-coamylase immobilization. Carbohyd Res 342(8):1105-1109Google Scholar
  65. Buchholz K, Kasche V, Bornscheuer UT (2005) Biocatalysts and enzyme technology. Wiley VCH, Weinhein, 448 ppGoogle Scholar
  66. Bucke C (1996) Oligosaccharide synthesis using glycosidases. J Chem Technol Biotechnol 67:217-220Google Scholar
  67. Cammarota MC, Freire DMG (2006) A review on hydrolytic enzymes in the treatment of waste-water with high oil and grease content. Biores Technol 97(17):2195-2210Google Scholar
  68. Canevascini G, Gattlen C (1981) A comparative investigation of various cellulase assay procedures. Biotechnol Bioeng 23(7):1573-1590Google Scholar
  69. Cao L, Fischer A, Bornscheuer UT et al. (1997) Lipase-catalysed solid phase synthesis of sugar fatty acid esters. Biocatal Biotransfor 14:269-283Google Scholar
  70. Cao L, van Langen L, Sheldon, R (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:1-8Google Scholar
  71. Carasik W, Carroll OJ (1983) Development of immobilized enzymes for production of high-fructose corn syrup. Food Technol 37(10):85-91Google Scholar
  72. Caridis KA, Papathanasiou TD (1995). The dynamic performance of an immobilised-urease biore-actor in a recycle loop Bioproc Eng 14(1):41-50Google Scholar
  73. Carrea G, Riva S (2000) Properties and synthetic applications of enzymes in organic solvents. Angew Chem Int Ed 39:2226-2254Google Scholar
  74. Castang S, Shevchik VE, Hugouvieux-Cotte-Pattat N et al. (2004) Crystallization of the pectate lyase PelI from Erwinia chrysanthemi and SAD phasing of a gold derivative. Acta Cryst 60:190-192Google Scholar
  75. Castro GR (1999) Enzymatic activities of proteases dissolved in organic solvents. Enzyme Microb Technol 25:689-694Google Scholar
  76. Castro GR, Knubovets T (2003) Homogeneous biocatalysis in organic solvents and water-organic mixtures. Critic Rev Biotechnol 23(3):195-231Google Scholar
  77. Castro M, Cabral J (1989) Kinetic studies of hydrogenase in AOT reverse micelles. Enzyme Microb Technol 11(6-11)Google Scholar
  78. Castro RC (2000) Properties of soluble α-chymotrypsin in neat glycerol and water. Enzyme Microb Technol 27:143-150Google Scholar
  79. Chaiwut P, Kanasawud P, Halling PJ (2007) Solid-to-solid peptide synthesis by glycyl endopepti-dase. Enzyme Microb Technol 40(4):954-960Google Scholar
  80. Cheetham PSJ (1994) Case studies in applied biocatalysis-from ideas to products. In: Cabral JMS, Boros DBL, Tramper J (eds). Applied biocatalysis. Harwood Acad Publ, Chur, pp 47-108Google Scholar
  81. Chen DH, Leu JC, Huang TC (1994) Transport and hydrolysis of urea in a reactor-separator combining an anion-exchange membrane and immobilized urease. J Chem Technol Biotech-nol 61(4):351-357Google Scholar
  82. Chen JP, Wang HY (1998) Improved properties of bilirubin oxidase by entrapment in alginate-silicate sol-gel matrix. Biotechnol Tech 12(11):851-853Google Scholar
  83. Chen Y, Kang ET, Neoh KG et al. (2000) Covalent immobilization of invertase onto the surface-modified polyaniline from graft copolymerization with acrylic acid. Eur Polym J 36(10):2095-2103Google Scholar
  84. Chen R (2001) Enzyme engineering: rational design versus directed evolution. TIBTECH 19(1):13-14Google Scholar
  85. Chibata I, Tosa T, Sato T (1974) Process for the production of L-aspartic acid. US Patent 3791926. Issued on February 12, 1974Google Scholar
  86. Chibata I, Tosa T, Sato T (1987) Application of immobilized biocatalysts in pharmaceutical and chemical industries. In: Rehm HJ, Reed G (eds). Biotechnology, vol. 7a. Verlag Chemie, Weinhein, pp 653-684Google Scholar
  87. Cho H, Adrio JL, Luengo JM et al. (1998) Elucidation of conditions allowing conversion of peni-cillin G and other penicillins to deacetoxycephalosporins by resting cells and extracts of Strep-tomyces clavuligerus NP1. Proc Natl Acad Sci USA 95(20):11544-11548Google Scholar
  88. Choct M, Hughes RJ, Trimble RP et al. (1995) Non-starch polysaccharide-degrading enzymes increase the performance of broiler chickens fed wheat of low apparent metabolizable energy. J Nutr 125:485-492Google Scholar
  89. Chodorge M, Fourage L, Ullmann C et al. (2005) Rational strategies for directed evolution of biocatalysts - application to Candida antarctica lipase B (CALB) Adv Synth Catal 347:1022-1026Google Scholar
  90. Christensen H, Thyssen HH, Schebye O et al. (1990) Three highly sensitive “bedside” serum and urine tests for pregnancy compared. Clinic Chem 36:1686-1688Google Scholar
  91. Christie RB (1980) The medical use of proteolytic enzymes. In: Wiseman A (ed). Topics in enzyme and fermentation biotechnology 4. Ellis Horwood, Chichester, pp 25-84Google Scholar
  92. Cianci JJ (1986) The market outlook for enzymes. In: Bioprocessing. The world biotech report, vol 2. Part 3. Online International Inc, New York, pp 55-72Google Scholar
  93. Clark DS (2004) Characteristics of nearly dry enzymes in organic solvents: implications for bio-catalysis in the absence of water. Philos Trans R Soc Lond B Biol Sci 359:1299-1307Google Scholar
  94. Colby TD, Bahnson BJ, Chin JK et al. (1998) Active site modifications in a double mutant of liver alcohol dehydrogenase: structural studies of two enzyme-ligand complexes. Biochem 37 (26):9295-9304Google Scholar
  95. Comfort AR, Albert EC, Langer R (1989) Immobilized enzyme cellulose hollow fibers: immobi-lization of heparinase Biotechnol Bioeng 34(11):1366-1373Google Scholar
  96. Convents A, Busch A, Baeck AC (1995) Detergent compositions with high activity cellulase and softening clays. US Patent 5443750. Issued on August 22, 1995Google Scholar
  97. Cooperband LR, Good LW (2002) Biogenic phosphate minerals in manure: implications for phos-phorus loss to surface waters. Environ Sci Technol 36:5075-5082Google Scholar
  98. Coulon D, Ghoul M (1998) The enzymatic synthesis of non-ionic surfactants: the sugar esters-an overview. Agro Food Ind Hi-Tech (July/August):22-26Google Scholar
  99. Coutinho P, Reilly PJ (1997) Glucoamylase structural functional and evolutionary relationships. Proteins 29:334-347Google Scholar
  100. Cowan D (1996) Industrial enzyme technology. TIBTECH 14:177-178Google Scholar
  101. Crabb WD, Mitchinson C (1997) Enzymes involved in the processing of starch to sugars. TIBTECH 15:349-352Google Scholar
  102. Crabb WD, Shetty J (1999) Commodity scale production of sugars from starches. Curr Opin Microbiol 2:252-256Google Scholar
  103. Creighton TE (1993) Proteins 2nd edn. W.H Freeman and Company, New York, 507 ppGoogle Scholar
  104. Dai C, Wang B, Zhao H (2005) Microencapsulation peptide and protein drugs delivery system. Colloids Surf B Biointerf 41(2-3):117-120Google Scholar
  105. Danielsson B (1987) The enzyme thermistor: a versatile instrument for measurements on enzymes, substrates, and cells. Ann NY Acad Sci 501(1):543-544.Google Scholar
  106. Davis B (2003) Chemical modification of biocatalysts. Curr Opin Biotechnol 14:379-386Google Scholar
  107. Davis BG, Boyer V (2001) Biocatalysis and enzymes in organic synthesis. Nat Prod Rep 18:618-640Google Scholar
  108. Davis M (1998) Making a living at the extremes. TIBTECH 16:102-104Google Scholar
  109. Declerck N, Jiyet D, Trosset JY et al. (1995) Hyperthermostable mutants of Bacillus licheni-formis alpha amylase: multiple amino acid replacements and molecular modelling. Protein Eng 8:1029-1037Google Scholar
  110. Declerck N, Machius M, Joyet P et al. (2003) Hyperthermostabilization of Bacillus licheniformis α-amylase and modulation of its stability over a 50 ◦C temperature range Prot Eng 16(4):287-293Google Scholar
  111. Deetz JA, Rozzell J (1988) Enzyme-catalysed reactions in non-aqueous media. TIBTECH 6:15-19Google Scholar
  112. Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol. 5(2):144-51Google Scholar
  113. Dickinson M, Fletcher P (1989) Enzymes in organic solvents. Enzyme Microb Technol 11:55-56Google Scholar
  114. diSioudi B, Grimsley JK, Lai K et al. (1999) Modification of near active site residues in organophosphorus hydrolase reduces metal stoichiometry and alters substrate specificity. Biochem 38(10):2866-2872Google Scholar
  115. Demain AL (1968) Regulatory mechanisms and the industrial production of microbial metabolites. Lloydia 31(4):395-418Google Scholar
  116. Dixon M, Webb EC (1979) Enzymes 3rd ed. Academic Press, New York, 1116 ppGoogle Scholar
  117. Drauz K, Waldmann H (2002) Enzyme catalysis in organic synthesis, vol II. Wiley VCH, Weinhein, Germany, 998 ppGoogle Scholar
  118. Dravis BC, LeJeune KE, Hetro AD et al. (2000) Enzymatic dehalogenation of gas phase substrates with haloalkane dehalogenase. Biotechnol Bioeng 69(3):235-241Google Scholar
  119. D’Souza S (1999) Immobilized enzymes in bioprocess. Curr Sci 77:69-78Google Scholar
  120. Durand J, Teuma E, G ómez M (2007) Ionic liquids as a medoium for enantioselective catalysis. C R Chimie 10:152-177Google Scholar
  121. Duval M, Suciu S, Ferster A et al. (2002) Comparison of Escherichia coli-asparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: results of a ran-domized European Organisation for Research and Treatment of Cancer-Children’s Leukemia Group phase 3 trial. Blood 99(8):2734-2739Google Scholar
  122. Ebert C, Gardossi L, Linda P et al. (1996) Influence of organic solvents on enzyme chemoselectiv-ity and their role in enzyme-substrate interaction. Tetrahedron 52:4867-4876Google Scholar
  123. Eijsink VGH, Bj ørk A, G åseidnes S et al. (2004) Rational engineering of enzyme stability. J Biotechnol 113:105-120Google Scholar
  124. Eisenthal R, Peterson ME, Daniel RM et al. (2006) The thermal behaviour of enzyme activity: implications for biotechnology. TIBTECH 24(7):289-292Google Scholar
  125. Endo J, Tabata M, Okada S, Murachi T (1979) Use of immobilized enzymes in automated clinical analysis: determination of uric acid and glucose using immobilized enzymes in column form. Clin Chim Acta 95(2):411-417.Google Scholar
  126. Enfors SO, Molin N (1978) Enzyme electrodes for fermentation control. Proc Biochem 13:9-24Google Scholar
  127. Erbeldinger M, Ni X, Halling PJ (1998) Effect of water and enzyme concentration on thermolysin-catalyzed solid-to-solid peptide synthesis. Biotechnol Bioeng 59(1):68-72Google Scholar
  128. Eriksson KEL, Akhtar M, Argyropoulos DS et al. (1997) Biotechnology in the pulp and paper industry. Advances in biochemical engineering biotechnology 57. Springer, Berlin, Heidelberg, New York, 339 ppGoogle Scholar
  129. Eschenbrenner E, Cov ès J, Fontecave M (1995) The flavin reductase activity of the flavoprotein component of sulfite reductase from Escherichia coli. J Biol Chem 270(35):20550-20555Google Scholar
  130. Faber K (1997) Biotransformations in organic chemistry. Springer, Berlin, Heidelberg, New York, 402 pp. ISBN 3540616888Google Scholar
  131. Fang TY, Ford C (1998) Protein engineering of Aspergillus awamori glucoamylase to increase its pH optimum. Protein Eng 11:383-388Google Scholar
  132. Faqir N, Abu-Reesh I (1998) Optimum temperature operation mode for glucose isomerase operat-ing at constant glucose conversion. Bioproc Eng 19:11-17Google Scholar
  133. Fonseca M.J, Jagtenberg JC, Haisma HJ et al. (2003) Liposome-mediated targeting of enzymes to cancer cells for site-specific activation of prodrugs: comparison with the corresponding antibody-enzyme conjugate. Pharm Res 20(3) 423-428Google Scholar
  134. Foody B, Tolan JS (1999) Method and enzyme mixture for improved depilling of cotton goods. United States Patent 5866407. Issued on February 2, 1999Google Scholar
  135. Fowler T, Brown RD (1992) The bgl1 gene encoding extracellular beta-glucosidase from Tri-choderma reesei is required for rapid induction of the cellulase complex. Mol Microbiol 6 (21):3225-3235Google Scholar
  136. Furui M, Sakata N, Otsuki O et al. (1988) A bioreactor-crystallizer for L-malic acid production. Biocatal Biotransfor 2(1):69-77Google Scholar
  137. Fusee MC (1987) Industrial production of L-aspartic acid using polyurethane-immobilized cells containing aspartase. Methods Enzymol 136:463-471Google Scholar
  138. Garcia S, Lourenço NMT, Lousa D et al. (2004) A comparative study of biocatalysis in non-conventional solvents: ionic liquids, supercritical fluids and organic media. Green Chem 6:466-470Google Scholar
  139. García-Junceda E, García-García JF, Bastida A et al. (2004) Enzymes in the synthesis of bioactive compounds: the prodigious decades. Bioorg Med Chem 12:1817-1834Google Scholar
  140. Gaseidnes S, Synstad B, Nielsen JE et al. (2003) Rational engineering of the stability and the catalytic performance of enzymes. J Mol Catal B: Enzym 21:3-8Google Scholar
  141. Gekas V, L ópez-Leiva M (1985) Hydrolysis of lactose: a literature review. Proc Biochem 20(1):2-12Google Scholar
  142. Gill I, López-Fandiño R, Jorba X et al. (1996) Biologically active peptides and enzymatic ap-proaches to their production. Enzyme Microb Technol 18:162-183Google Scholar
  143. Godbole S, Decker SR, Nieves RA et al. (1999) Cloning and expression of Trichoderma reesei CBH I in Pichia pastoris. Biotechnol Prog 15(3):828-833Google Scholar
  144. Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extermozymes. Food Technol Biotechnol 42(4):223-235Google Scholar
  145. G ómez-Puyou MT, G ómez-Puyou A (1998) Enzymes in low water systems. Crit Rev Biochem Mol Biol 33:53-89Google Scholar
  146. Gorbhel B, Sellami-Kamoun A, Nasri M (2003) Stability studies of protease from Bacillus cereus BG1. Enzyme Microb Technol 32:513-518Google Scholar
  147. Gorton L, Csoregi E, Dominguez E et al. (1991) Selective detection in flow analysis based on the combination of immobilized enzymes and chemically modified electrodes Anal Chim Acta 250 (1):203-248Google Scholar
  148. Goto CE, Barbosa EP, Kistner LCL et al. (1998) Production of amylase by Aspergillus fumigatus utilizing α-methyl-D-glycoside, a synthetic analogue of maltose, as substrate. FEMS Microbiol Lett 167(2):139-143Google Scholar
  149. Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10(2):141-146Google Scholar
  150. Greenberg NA, Mahoney RR (1981) Immobilisationof lactase (β-galactosidase) for use in dairy processing: a review. Proc. Biochem 16(2):2-49Google Scholar
  151. Greenberg M (1996) Nutritional formula. US Patent 5569458. Issued on Oct 29, 1996Google Scholar
  152. Gulati R, Isar J, Kumar V et al. (2005) Production of a novel alkaline lipase by Fusarium globulo-sum using neem oil, and its applications. Pure Appl Chem 77(1):251-262Google Scholar
  153. Gupta MN, Roy I (2004) Enzymes in organic media: forms, functions and applications Eur J Biochem 271:2573-2583Google Scholar
  154. Gupta R, Gupta K, Saxena RK et al. (1999) Bleach-stable, alkaline protease from Bacillus sp. Biotechnol Lett 21(2):135-138Google Scholar
  155. Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline protease: molecular approaches and indus-trial applications. Appl Microbiol Biotechnol 59:15-32Google Scholar
  156. Gusakov AV, Markov AV, Grishutin SG et al. (2002) Viscometric method for assaying of total endodepolymerase activity of pectinases. J Biochem (Moscow) 67(6):676-682Google Scholar
  157. Guti érrez A, del Río JC, Martínez MJ et al. (2001) The biotechnological control of pitch in paper pulp manufacturing. TIBTECH 19:340-348Google Scholar
  158. Guzm án F, Barberis S, Illanes A (2007). Peptide synthesis: chemical or enzymatic. Electron J Biotechnol 10(2):279-314Google Scholar
  159. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Biores Technol 89(1):17-34Google Scholar
  160. Halld órsd óttir S, Thórólfsdóttir E, Spilliaert R et al. (1998) Cloning, sequencing and overexpres-sion of a Rhodothermus marinus gene encoding a thermostable cellulase of glycosilhydrolase family 12. Appl Microbiol Biotechnol 49:277-284Google Scholar
  161. Halling PJ (2004) What can we learn by studying enzymes in non-aqueous media? Philos Trans R Soc Lond B Biol Sci 359:1287-1296Google Scholar
  162. Han MS, Jung SO, Kim MJ et al. (2004) Fluorometric assay protocol for protease-catalyzed trans-esterification reactions in organic solvents J Org Chem 69(8):2853-2855Google Scholar
  163. Hanbin M, Yang T, Cremer PS (2002) Design and characterization of immobilized enzymes in microfluidic systems. Anal Chem 74:379-385Google Scholar
  164. Hari Krishna S (2002) Developments and trends in enzyme catalysis in non-conventional media. Biotechnol Adv 20:239-267Google Scholar
  165. H äring D, Schreier P (1999) Cross-linked enzyme crystals. Curr Opin Chem Biol 3:35-38Google Scholar
  166. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235-251Google Scholar
  167. Haschemeyer RH, Haschemeyer AEV (1973). Proteins: a guide to study by physical and chemical methods, John Wiley, New York, 358 ppGoogle Scholar
  168. Hemmingsen S (1979) Development of an immobilized glucose isomerase for industrial applica-tions. In: Wingard L, Katchalski-Katzir E, Goldstein L (eds). Applied biochemistry and bio-engineering, vol 2. Academic Press, New York, pp 157-182Google Scholar
  169. Heyman MB (2006) Lactose intolerance in infants, children, and adolescents. Pediatrics 118(3):1279-1286Google Scholar
  170. Hodgson J (1994) The changing bulk biocatalyst market. Biotechnol 12:789-790Google Scholar
  171. Hoffmeister HM, Szabo S, Kastner C et al. (1998) Thrombolytic therapy in acute myocardial in-farction: comparison of procoagulant effects of streptokinase and alteplase regimens with focus on the kallikrein system and plasmin. Circulation 98:2527-2533Google Scholar
  172. Hoondal G, Tiwari R, Dahiya N et al. (2002) Microbial alkaline pectinases and their industrial applications: a review. J Appl Microbiol Biotechnol 59(4-5):409-418Google Scholar
  173. Hudson EP, Eppler RK, Clark DS (2005) Biocatalysis in semi-aqueous and nearly anhydrous con-ditions. Curr Opin Biotechnol 16:637-643Google Scholar
  174. Huisman GW, Gray D (2002) Towards novel processes for the fine-chemical and pharmaceutical industries. Curr Opin Biotechnol 13(4):352-358Google Scholar
  175. Hultin HO (1983) Current and potential uses of immobilized enzymes. Food Technol 37(10):66-82Google Scholar
  176. Hummel W (1999) Large-scale applications of NAD(P)-dependent oxidoreductases: recent devel-opments. TIBTECH 17:487-493Google Scholar
  177. Illanes A (1999) Stability of biocatalysts. Elect J Biotechnol 2:1-9Google Scholar
  178. Illanes A (2000) Biocatalysts for the food industry. In: Lozano JE, A ñ ón C, Parada-Arias E, Barbosa-C ánovas GV (eds). Trends in food engineering. Technomic Publ, Co, Lancaster, pp 287-298Google Scholar
  179. Illanes A, Fajardo A (2001) Kinetically controlled synthesis of ampicillin with immobilized peni-cillin acylase in the presence of organic cosolvents. J Mol Catal B Enzym 11:587-595Google Scholar
  180. Illanes A, Rossi MC (1980) Inducci ón de celulasas de Trichoderma reesei en medios de cultivo definidos. Rev Arg Microbiol 12:79-86Google Scholar
  181. Illanes A, Schaffeld G (1983) Protein enrichment of treated and untreated leached beet cosette. Biotechnol Lett 5(5):305-310Google Scholar
  182. Illanes A, Gentina JC, Marchese MP (1988) Production and stabilization of cellulases from Tri-choderma reesei. MIRCEN J Appl Microbiol Biotechnol 4:407-414Google Scholar
  183. Illanes A, Ruiz A, Zu ñiga M et al. (1990) Immobilization of lactase for the continuous hydrolysis of whey permeate. Bioproc Eng 5:257-262Google Scholar
  184. Illanes A, Zu ñiga ME, Contreras S et al. (1992) Reactor design for the enzymatic isomerization of glucose to fructose. Bioproc Eng 7:199-204Google Scholar
  185. Illanes A, Ruiz A, Zu ñiga ME (1993) An álisis comparativo de dos lactasas microbianas inmovi-lizadas. Alimentos 18(1):26-34Google Scholar
  186. Illanes A, Wilson L, Raiman L (1999) Design of immobilized enzyme reactors for the continuous production of fructose syrup from whey permeate. Bioproc Eng 21:509-515Google Scholar
  187. Illanes A, Wilson L, Tomasello G (2000) Temperature optimization for reactor operation with chitin-immobilized lactase under modulated inactivation. Enzyme Microb Technol 27:270-278Google Scholar
  188. Illanes A, Anjarí S, Altamirano C et al. (2004) Optimization of cephalexin synthesis with immobi-lized penicillin acylase in ethylene glycol medium at low temperatures. J Mol Catal B: Enzym 30:95-103Google Scholar
  189. Illanes A, Wilson L, Caballero E et al. (2006) Crosslinked penicillin acylase aggregates for syn-thesis of β-lactam antibiotics in organic medium. Appl Biochem Biotechnol 133:189-202Google Scholar
  190. Ijima Y, Matoishi K, Terao Y et al. (2005) Inversion of enantioselectivity of asymmetric biocat-alytic decarboxylation by site-directed mutagenesis based on the reaction mechanism. Chem Commun 877-879Google Scholar
  191. Ikeda K, Schiltz E, Fujii T et al. (2005) Phenylalanine ammonia-lyase modified with polyethylene glycol: potential therapeutic agent for phenylketonuria. Amino Acids 29(3):283-287Google Scholar
  192. Imanaka T, Shibazaki M, Takagi M (1986) A new way of enhancing the thermostability of pro-teases Nature 324:695-697Google Scholar
  193. International Union of Biochemistry (1965) Enzyme nomenclature, recommendations 1964 of the International Union of Biochemistry, Elsevier, AmsterdamGoogle Scholar
  194. Ioannou YA, Zeidner KM, Gordon RE et al. (2001) Fabry disease: preclinical studies demonstrate the effectiveness of α-galactosidase replacement in enzyme-deficient mice Amer J Human Gen 68:14-25Google Scholar
  195. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13(4):390-397Google Scholar
  196. Jianrong C, Yuqing M, Nongyueb H et al. (2004) Nanotechnology and biosensors. Biotechnol Adv 22 (7):505-518Google Scholar
  197. Joyet P, Declerck N, Gaillardin C (1992) Hyperthermostable variants of a highly thermostable alpha-amylase. Bio/Technology 10:1579-1583Google Scholar
  198. J ózefiak D, Rutkowski A, Jensen BB et al. (2006) The effect of beta-glucanase supplementation of barley- and oat-based diets on growth performance and fermentation in broiler chicken gas-trointestinal tract. Brit Poult Sci 47(1):57-64Google Scholar
  199. Kallenberg A, van Rantwijk F, Sheldon R (2005) Immobilization of penicillin G acylase: the key to optimum performance. Adv Synth Catal 347:905-926Google Scholar
  200. Kamat S, Beckman E, Russell, A (1995) Enzyme activity in fluids. Critic Rev Biotechnol 15:41-71Google Scholar
  201. Kanerva LT, Klibanov AM (1989) Hammett analysis of enzyme action in organic solvents. J Amer Chem Soc 111:6864-6865Google Scholar
  202. Karma J, Nicell JA (1997) Potential applications of enzymes in waste treatment. J Chem Technol Biotechnol 69:141-153Google Scholar
  203. Kashyap DR, Vohra PK, Chopra S et al. (2001) Applications of pectinases in the commercial sector: a review Biores. Technol 77(3):215-227Google Scholar
  204. Katchalsky-Katzir E (1993) Immobilized enzymes. Learning from past successes and failures. TIBTECH 11:471-478Google Scholar
  205. Kaur J, Sharma R (2006) Directed evolution: an approach to engineer enzymes. Crit Rev Biotech-nol 26:165-199Google Scholar
  206. Kaur P, Kunze G, Satyanarayana T (2007) Yeast phytases: present scenario and future perspectives. Critic Rev Biotechnol 27:93-109Google Scholar
  207. Kawashiro K, Sugahara H, Sugiyama S (1997) Effect of organic solvents on enantioselectivity of protease catalysis. Biotechnol Bioeng 53:26-31Google Scholar
  208. Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61(3):1017-1026Google Scholar
  209. Kirk Wright S, Viola RE (2001) Alteration of the specificity of malate dehydrogenase by chemical modulation of an active site arginine. J Biol Chem 276(33):31151-311551Google Scholar
  210. Klein MD, Langer R (1986) Immobilized enzymes in clinical medicine: an emerging approach to new drug therapies. TIBTECH 4:179-186Google Scholar
  211. Klein AE, Freiberg J, Same S et al. (1989) Rapid colorimetric determination of activity of subtilisin enzymes in cleaning products. Assoc Off Anal Chem 72(6):881-882Google Scholar
  212. Klibanov AM (1977) A new approach to preparative enzymatic synthesis. Biotechnol Bioeng 28:417-421Google Scholar
  213. Klibanov AM (1983) Stabilization of enzymes against thermal inactivation. Adv Appl Microbiol 29:1-28Google Scholar
  214. Klibanov AM (1986) Enzymes that work in organic solvents. Chem Technol 6:354-359Google Scholar
  215. Klibanov AM (1989) Enzymatic catalysis in anhydrous organic solvents. TIBTECH 14(4):141-144Google Scholar
  216. Klibanov AM (1997) Why are enzymes less active in organic solvents than in water? TIBTECH 15:97-101Google Scholar
  217. Klibanov A (2001) Improving enzymes by using them in organic solvents. Nature 409:241-246Google Scholar
  218. Knez Z, Laudani CG, Habulin M et al. (2007) Exploiting the pressure effect on lipase-catalyzed wax ester synthesis in dense carbon dioxide. Biotechnol Bioeng 97(6):1366-1375Google Scholar
  219. Kobayashi M, Nagasawa T, Yamada H (1995) Enzymatic synthesis of acrylamide: a success story not yet over. TIBTECH 10:402-408Google Scholar
  220. Kodama S (1996) Optimal conditions for effective use of acid urease in wine. J Food Sci 61(3):548-552Google Scholar
  221. Koeller KM, Wong CH (2001) Enzymes for chemical synthesis. Nature 409:232-240Google Scholar
  222. Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44(2):98-104Google Scholar
  223. Koskinen AMP, Klibanov AM (1996) Enzymatic reactions in organic media. Blackie Academic & Professional, London, 314 ppGoogle Scholar
  224. Kovalenko GA, Perminova LV, Terent’eva TG et al. (2007) Catalytic properties of glucoamylase immobilized on synthetic carbon material Sibunit. J Appl Biochem Microbiol 43(4):374-378Google Scholar
  225. Krackhardt A, Schwartz S, Thiel E (2000) Targeting folates by carboxypeptidase G2: potential applications in anticancer therapy. Onkologie 23(6):538-543Google Scholar
  226. Krieger N, Bhatnagar T, Baratti J et al. (2004) Non-aqueous biocatalysis in heterogeneous solvent systems. Food Technol Biotechnol 42(4):279-286Google Scholar
  227. Kuhl P, Jakubke HD (1990) Protease-catalyzed synthesis of peptides in biphasic aqueous-organic systems. Pharmazie 45:393-400Google Scholar
  228. Kula MR (2002) Cofactors and coenzymes. In: Drauiz K, Waldmann H (eds). Enzyme catalysis in organic synthesis. Wiley-VC, Weinhein, pp 12-20Google Scholar
  229. Laane C, Boeren S, Vos K et al. (1987) Rules for optimisation of biocatalysis in organic solvents. Biotechnol Bioeng 30:81-87Google Scholar
  230. Lamare S, Legoy M (1993) Biocatalysis in the gas phase. TIBTECH 11:413-418Google Scholar
  231. Laudani CG, Habulin M, Knez Zˇ et al. (2007) Lipase-catalyzed long chain fatty ester synthesis in dense carbon dioxide: kinetics and thermodynamics. J Supercritical Fluids 41:92-101Google Scholar
  232. Lauwers A, Scharpé S (1997) Pharmaceutical enzymes. Marcel Dekker, New York, 401 ppGoogle Scholar
  233. Laval JM, Thomas D, Mazeran PE (2000) Nanobiotechnology and its role in the development of new analytical devices. Analyst 125:29-3Google Scholar
  234. Law BA (2002) Enzymes in the manufacture of dairy products. In: Whitehurst RJ, Law BA (eds). Enzymes in food technology. CRC Press, Boca Raton, pp 76-10Google Scholar
  235. Lawung R, Danielsson, Prachayasittiku V et al. (2001) Calorimetric analysis of cephalosporins using an immobilized TEM-1 b-lactamase on Ni21chelating Sepharose fast flow. Anal Biochem 296:57-62Google Scholar
  236. Lee CM, Bagdasarian M, Zeikus JG (1990) Characterization of Thermoanaerobacter glucose iso-merase in relation to saccharidase synthesis and development of single-step process for sweet-ener production. Appl Environ Microbiol 56:2895-2901Google Scholar
  237. Lee MY, Dordick JS (2002) Enzyme activation for nonaqueous media. Curr Opin Biotechnol 13(4):376-384Google Scholar
  238. Lehninger A (1970) Biochemistry. Worth Publ Inc, New York, 833 ppGoogle Scholar
  239. Leal MCMR, Cammarota MC, Freire MG et al. (2002) Hydrolytic enzymes as coadjuvants in the anaerobic treatment of dairy wastewaters. Braz J Chem Eng 19(2):175-180Google Scholar
  240. Leisola M, Turunen O (2007) Protein engineering: opportunities and challenges. Appl Microbiol Biotechnol 75(6):1225-1232Google Scholar
  241. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. J Appl Microbiol Biotechnol 69(1):1-8Google Scholar
  242. Levitsky VY, Lozano P, Iborra JL (1999) Kinetic analysis of deactivation of immobilized α-chymotripsin by water-miscible organic solvent in kyotorphin synthesis. Biotechnol Bioeng 65:170-175Google Scholar
  243. Liang JF, Li YT, Yang VC (2000) Biomedical application of immobilized enzymes. J Pharm Sci 89(8):979-990Google Scholar
  244. Liese A, Seelbach K, Buchholz A et al. (2006) Lyases. In: Liese A, Seelbach K, Wandrey C (eds). Industrial biotransformations, 2nd edn. Wiley-VCH Verlag, Weinheim, pp 447-503Google Scholar
  245. Lima UA, Basso LC, de Amorim HV (2001) Produçao de etanol. In: Lima UA, Aquarone E, Borzani W, Schmidell W (ed). Biotecnologia industrial. Edgard Bl ücher, Sao Paulo, pp 1-44Google Scholar
  246. Liu SY, Wiegel J, Gherardini FC (1996) Purification and cloning of a thermostable xylose (glucose) isomerase with an acidic ph optimum from Thermoanaerobacterium strain JW/SL-YS 489. J Bacteriol 178(20):5938-5945Google Scholar
  247. Liu YY, Lou WY, Zong MH (2005) Increased enantioselectivity in the enzymatic hydrolysis of amino acid esters in the ionic liquid 1-butyl-3-methyl-imidazolium. Biocatal Biotransfor 23 (2):89-95Google Scholar
  248. Longo MA, Meynial I, Combes D (1995) Chemical and enzymatic glycosylation of enzymes. Modification of their properties. Ann NY Acad Sci 750(1):125-129Google Scholar
  249. L ópez C, Moreira MT, Feijoo G et al. (2004). Dye decolorization by manganese peroxidase in an enzymatic membrane bioreactor. Biotechnol Progs 20:74-81Google Scholar
  250. Lowe CR (1989) Biosensors. Philos Trans R Soc Lond B Biol Sci 324(1224):487-496Google Scholar
  251. L übbe AS, Alexiou C, Bergemann C (2001) Clinical applications of magnetic drug targeting. J Surg Res 95:200-206Google Scholar
  252. Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailabil-ity and the level of iron in rice grains. Theor Appl Genet 102:392-397Google Scholar
  253. Machado MF, Saraiva JM (2005) Thermal stability and activity regain of horseradish peroxidase in aqueous mixtures of imidazolium-based ionic liquids. Biotechnol Lett 27:1233-1239Google Scholar
  254. Maeda H, Chen L, Tsao G (1979) Glucoamylase immobilized on DEAE-cellulose beads in column raction. J Ferment Technol 57:238-243Google Scholar
  255. Maksimenko AM (1998) New strategy of thrombolysis: conjunctive effect of plasminogen activa-tors with different pharmacokinetic profiles. Ann NY Acad Sci 864(1):96-105Google Scholar
  256. Mandels M, Reese ET (1960) Induction of cellulases in fungi by cellobiose. J Bacteriol 79(6):816-826Google Scholar
  257. Mandenius CF, B ülow L, Danielsson B et al. (1985) Monitoring and control of enzymic sucrose hydrolysis using on-line biosensors. Appl Microbiol Biotechnol 21(3-4):135-142Google Scholar
  258. Marsden WL, Gray PP (1986) Enzymatic hydrolysis of cellulase in lignocellulosic materials. CRC Critic Rev Biotechnol 3:235-274Google Scholar
  259. Martínez E, Hough G, Contarini A (1990) Sandiness prevention in dulce de leche by seeding with lactose microcrystals. J Dairy Sci 73:612-616Google Scholar
  260. Marty A, Chulalaksananukul W, Willemot RM et al. (2004) Kinetics of lipase-catalyzed esterifica-tion in supercritical CO2 . Biotechnol Bioeng 39:273-280Google Scholar
  261. Marwaha SS, Kennedy JF (1988) Whey-pollution problems and potential utilization. Int J Food Sci Technol 23:323-336Google Scholar
  262. Mason M (1983) Determination of glucose, sucrose, lactose, and ethanol in foods and beverages, using immobilized enzyme electrodes. J Assoc Off Anal Chem 66(4):981-984Google Scholar
  263. Mateo C, Palomo JM, van Langen L et al. (2004) A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng 86:273-276Google Scholar
  264. Mateo C, Abi án A, Bernedo M et al. (2005) Some special features of glyoxyl supports to immobi-lize proteins. Enzyme Microb Technol 37:456:462Google Scholar
  265. Mateo C, Palomo JM, Fernandez-Lorente G et al. (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451-1463Google Scholar
  266. Matsumoto K (1993) Removal of urea from alcoholic beverages by immobilized acid urease. In: In: Tanaka A, Tosa T, Kobayashi T (eds). Marcel Dekker, New York, pp 255-273Google Scholar
  267. Maurer K (2004) Detergent proteases. Curr Opin Biotechnol 15:330-334Google Scholar
  268. Melanson KJ, Angelopoulos TJ, Zukley LM et al. (2007) Effects of high-fructose corn syrup and sucrose consumption on circulating glucose, insulin, leptin, and ghrelin and on appetite in normal-weight women. Nutrition 23(2):103-112Google Scholar
  269. Mesiano AJ, Beckman E, Russell AJ (1999) Supercritical biocatalysis. Chem Rev 99(2):623-633Google Scholar
  270. Michael-Sinclair P (1965) Enzymes convert starch to dextrose. Chem Eng 72(18):90-96Google Scholar
  271. Miller J, Nagarajan V (2000) The impact of biotechnology on the chemical industry in the 21st century. TIBTECH 18:190-196Google Scholar
  272. Milosavi ć N, Prodanovi ć R, Jovanovi ć S et al. (2007) Immobilization of glucoamylase via its carbohydrate moiety on macroporous poly(GMA-co-EGDMA). Enzyme Microb Technol 40 (5):1422-1426Google Scholar
  273. Mishra A, Debnath M (2002) Effect of pH on simultaneous saccharification and isomerization by glucoamylase and glucose isomerase. Appl Biochem Biotechnol 102-103:193-199Google Scholar
  274. Mislovi čov á D, Masarov á J, Bu čo M et al. (2006) Stability of penicillin G acylase modified with various polysaccharides. Enzyme Microb Technol 39:579-585Google Scholar
  275. Monte WC (1999) Ice cream containing a lactose enzyme: composition and method. US Patent 5942264. Issued on August 24, 1999Google Scholar
  276. Montenecourt BS, Eveleigh DE (1977) Preparation of mutants of Trichoderma reesei with en-hanced cellulase production. Appl Environ Microbiol 34(6):777-782Google Scholar
  277. Moore JC, Arnold FH (1996) Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat Biotechnol 14:458-467Google Scholar
  278. Mori T, Kobayashi A, Okahata Y (1998) Biocatalytic esterification in supercritical carbon dioxide using a lipid-coated lipase. Chem Lett 9:921-922Google Scholar
  279. Mori M, G ómez García R, Belleville MP (2005) A new way to conduct enzymatic synthesis in an active membrane using ionic liquids as catalyst support. Catal Today 104:313-317Google Scholar
  280. Morley KL, Kazlauskas RJ (2005) Improving enzyme properties: when are closer mutations better? TIBTECH 23(5):231-237Google Scholar
  281. Mozhaev VV, Khmelnitsky Y, Sergeeva MV et al. (1989) Catalytic activity and denaturation of enzymes in water/organic cosolvent mixtures. Alpha-chymotrypsin and laccase in mixed wa-ter/alcohol, water/glycol and water/formamide solvents. Eur J Biochem 184:597-602Google Scholar
  282. Nagasawa T, Yamada H (1990) Large-scale bioconversion of nitriles into useful amides and acids. In: Abramowicz DA (ed). Biocatalysis. Van Nostrand Reinhold, New York, pp 277-318Google Scholar
  283. Nasser W, Chalet F, Robert-Baudouy J (1990) Purification and characterization of extracellular pectate lyase from Bacillus subtilis. Biochimie 72(9):689-695Google Scholar
  284. Neidleman SL (1991) Historical perspective on the industrial uses of biocatalysts. In: Dordick JS (ed). Biocatalysts for industry. Plenum Press, New York, pp 21-33Google Scholar
  285. Neuhaus W, Novalin S, Klimacek, M et al. (2006) Optimization of an innovative hollow-fiber process to produce lactose-reduced skim milk. Appl Biochem Biotechnol 134(1):1-14Google Scholar
  286. Nield BS, Willows RD, Torda AE et al. (2002) New enzymes from environmental cassette ar-rays: functional attributes of a phosphotransferase and an RNA-methyltransferase. Protein Sci 13:1651-1659Google Scholar
  287. Nielsen PM, Olsen HS (2002) Enzymic modification of food protein. In: Whitehurst RJ, Law BA (eds). Enzymes in food technology. CRC Press, Boca Raton, pp 109-143Google Scholar
  288. Nilsson H, Mosbach K, Enfors SO et al. (1978) An enzyme electrode for measurement of peni-cillin in fermentation broth: a step toward the application of enzyme electrodes in fermentation control. Biotechnol Bioeng 20(4):527-539Google Scholar
  289. Noor R, Mittal S, Iqbal J (2002) Superoxide dismutase - applications and relevance to human diseases. Med Sci Monit 8(9):210-215Google Scholar
  290. Novalin S, Neuhaus W, Kulbe KD (2005) A new innovative process to produce lactose-reduced skim milk. J Biotechnol 119(2):212-218Google Scholar
  291. O’Fágáin C (1997) Stabilizing protein function. Springer-Verlag, Berlin 200 ppGoogle Scholar
  292. O’Fágáin C (2003) Enzyme stabilization - recent experimental progress. Enzyme Microb Technol 33:137:149Google Scholar
  293. Ogino H, Uchiho T, Yokoo J et al. (2001) Role of intermolecular disulfide bonds of the organic solvent stable PST-01 protease in its organic solvent stability. Appl Environ Microbiol 67:942-947Google Scholar
  294. Okamoto S, Eltis LD (2007) Purification and characterization of a novel nitrile hydratase from Rhodococcus sp. RHA1. Molec Microbiol 65(3):828-838Google Scholar
  295. O’Learys M, Brummund W (1974) PH jump studies of glutamate decarboxylase. Evidence for a pH-dependent conformation change. The J Biol Chem 249(12):3737-3745Google Scholar
  296. Olsen HS (2002) Enzymes in starch modification. In: Whitehurst RJ, Law BA (eds). Enzymes in food technology. CRC Press, Boca Raton, pp 200-22Google Scholar
  297. Olsen T, Kerton F, Marriott R et al. (2006) Biocatalytic esterification of lavandulol in supercritical carbon dioxide using acetic acid as the acyl donor. Enzyme Microb Technol 39(4):621-625Google Scholar
  298. Ottolina G, de Gonzalo G, Carrea G et al. (2005) Enzymatic Baeyer-Villiger oxidation of bicyclic diketones. Adv Synth Catal 347(7-8):1035-104Google Scholar
  299. Ouriel K, Veith FJ, Sasahara AA (1998) Comparison of recombinant urokinase with vascular surgery as initial treatment for acute arterial occlusion of the legs. New Eng J Med 338:1105-1111Google Scholar
  300. Outtrup H, Boyce COL (1990) Microbial proteinases and biotechnology. In: Fogarty WM, Kelly CT (eds). Elsevier, London, New York, pp 133-176Google Scholar
  301. Ovando-Chac ón SL, Waliszeewski KN (2005) Preparativos de celulasas comerciales y aplicaciones en procesos extractivos. Universidad y Ciencia 21(42):113-122Google Scholar
  302. Ozturk DC, Kazan D, Erarslan A (2002) Stabilization and functional properties of Escherichia coli penicillin G acylase by covalent conjugation of anionic polysaccharide carboxymethyl cellulose. World J Microbiol Biotechnol 18:881-888Google Scholar
  303. Padmakumar R, Oriel P (1999) Bioconversion of acrylonitrile to acrylamide using a thermostable nitrile hydratase. Appl Biochem Biotechnol 79(1-3):671-679Google Scholar
  304. Parales RE, Lee K, Resnick SM et al. (2000) Substrate specificity of naphthalene dioxygenase: effect of specific amino acids at the active site of the enzyme. J Bacteriol 182(6):1641-1649Google Scholar
  305. Paramonov BA, Galenko-Yaroshevskii VP, Turkovskii II et al. (2005) Ointments with superoxide dismutase and interleukin-1β: effect on reparative processes and impedance of burn wound. Bull Exp Biol Med 139(1):56-59Google Scholar
  306. Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids - advantages beyond green. Curr Opin Biotechnol 14:432-437Google Scholar
  307. Parmar A, Kumar H, Marwaha S et al. (2000) Advances in enzymatic transformation of penicillins to 6-aminopenicillanic acid (6-APA). Biotechnol Adv 18:289-301Google Scholar
  308. Pasamontes L, Haiker M, Wyss M et al. (1997) Gene cloning, purification, and characteriza-tion of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol 63 (5):1696-1700Google Scholar
  309. Pastores G, Thadhani R (2001) Enzyme-replacement therapy for Anderson-Fabry disease. Lancet 358(9282):601-603Google Scholar
  310. Petkar M, Llai A, Caimi P et al. (2006) Immobilization of lipases for non-aqueous synthesis. J Mol Catal B: Enzym 39:83-90Google Scholar
  311. Petzelbauer I, Splechtna B, Nidetzky B (2002) Development of an ultrahigh-temperature process for the enzymatic hydrolysis of lactose. III. Utilization of two thermostable β-glycosidases in a continuous ultrafiltration membrane reactor and galacto-oligosaccharide formation under steady state condition. Biotechnol Bioneg 77(4):394-404Google Scholar
  312. Pingoud AM (2004) Restriction endonucleases. Springer, Berlin, Heidelberg, New York, 443 ppGoogle Scholar
  313. Polisson C (1992) Type II restriction endonuclease obtainable from Pseudomonas alcaligenes and a process for producing the same. US Patent 5098839. Publication date March 24, 1992Google Scholar
  314. Pollard DJ, Woodley JM (2006) Biocatalysis for pharmaceutical intermediates: the future is now. TIBTECH 25(2):66-73Google Scholar
  315. Poulsen PB (1984) Current application of immobilized enzymes for manufacturing purposes. Biotechnol Gen Eng Rev 1:121-139Google Scholar
  316. Powell KA, Ramer SW, del Cardayr é SB et al. (2001) Directed evolution and biocatalysis. Angew Chem Int Ed 40(21):3948-3959Google Scholar
  317. Price CP (1983) Enzymes as reagents in clinical chemistry. Philos Trans R Soc Lond B Biol Sci 300(1100):411-422Google Scholar
  318. Priolo N, Morcelle del Valle S, Arribere MC et al. (2000) Isolation and characterization of a cys-teine protease from the latex of Araujia hortorum fruits. J Protein Chem 19(1):39-49Google Scholar
  319. Quax W, Mrabet N, Litten R et al. (1991) Enhancing the thermostability of glucose isomerase by protein engineering. Bio/Technology 9:738-742Google Scholar
  320. Quiroga E, Priolo N, Marchese J et al. (2005) Behaviour of araujiain, a cystein phytoprotease, in organic media with low water activity. Electron J Biotechnol 9:18-25Google Scholar
  321. Quiroga E, Camí G, Marchese J et al. (2007) Organic solvents effect on the secondary structure of araujiain hI, in different media. Biochem Eng J 35:198-202Google Scholar
  322. Qin Y, Cabral JMS (2002) Properties and applications of urease. Biocatal Biotransfor 20(1):1-4Google Scholar
  323. Rachman B (1997) Unique features and application of non-animal derived enzymes. Clin Nutr Ins 5 (10):1-4Google Scholar
  324. Rathi P, Bradoo S, Saxena RK et al. (2001) A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Proc Biochem 37:187-192Google Scholar
  325. Reetz MT, Wiesenh öfer W (2004) Liquid poly(ethylene glycol) and supercritical carbon dioxide as a biphasic solvent system for lipase-catalyzed esterification. Chem Commun 2750-2751Google Scholar
  326. Rehdorf J, Kirschner A, Bornscheuer UT (2007) Cloning, expression and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas putida KT2440. Biotechnol Lett 29 (9):1393-1398Google Scholar
  327. Richter ER (1993) Biosensors: applications for dairy food industry. J Dairy Sci 76(10):3114-3117Google Scholar
  328. Roberts S (1998) Preparative biotransformations: the employment of enzymes and whole-cells in synthetic organic chemistry. J Chem Soc Perkin Trans 1:157-170Google Scholar
  329. Roberts S (2000) Preparative biotransformations. J Chem Soc Perkin Trans 1:611-633Google Scholar
  330. Roig M, Kennedy J (1992) Perspectives of chemical modification of enzymes. Critic Rev Biotech-nol 12:391-412Google Scholar
  331. Roy I, Gupta MN (2004) Hydrolysis of starch by a mixture of glucoamylase and pullulanase en-trapped individually in calcium alginate beads. Enzyme Microb Technol 34(1):26-32Google Scholar
  332. Roy JJ, Abraham TE (2006) Preparation and characterization of cross-linked enzyme crystals of laccase. J Mol Catal B: Enzym 38:31-36Google Scholar
  333. R öhm O (1908) Preparation of hides for the manufacture of leather. US Patent 886411Google Scholar
  334. Ru MT, Wu KC, Lindsay JP et al. (2002) Towards more active biocatalysts in organic media: increasing the activity of salt-activated enzymes. Biotechnol Bioeng 75(2):187-196Google Scholar
  335. Russell AJ, Beckman E J (1991) Enzyme activity in supercritical fluids. Appl Biochem Biotechnol 31 (2):197-202Google Scholar
  336. Russell AJ, Beckman E J, Chaudhary AK (1994) Studying enzyme activity in supercritical fluids. Chemtech 24(3):33-37Google Scholar
  337. Ryu DDY, Mandels M (1980) Cellulases: biosynthesis and applications. Enzyme Microb Technol 2:91-102Google Scholar
  338. Sabin RD, Wasserman BPJ (1987) A continuous spectrophotometric screening assay for glucoamy-lase Agric Food Chem 35:649-651Google Scholar
  339. Salleh AB, Basri M, Taib M et al. (2002) Modified enzymes for reactions in organic solvents. Appl Biochem Biotechnol 102-103:349-357Google Scholar
  340. San Martín R, Aguilera JM Hohlberg AI (1988) Effect of cellulose pretreatment on red-algae agar extractability. Carbohyd Polym 8:33-43Google Scholar
  341. Sarkissian CN, Shao Z, Blain F et al. (1999) A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proc Natl Acad Sci USA 96(5):2339-2344Google Scholar
  342. Sato T, Tosa T (1993a) Optical resolution of racemic amino acids by aminoacylase. In: Tanaka A, Tosa T, Kobayashi T (eds). Industrial application of immobilized biocatalysts. Marcel Dekker, New York, pp 1-14Google Scholar
  343. Sato T, Tosa T (1993b) Production of L-aspartic acid. In: Tanaka A, Tosa T, Kobayashi T (eds). Industrial application of immobilized biocatalysts. Marcel Dekker, New York, pp 15-24Google Scholar
  344. Schaffeld G, Bruzzone P, Illanes A et al. (1989) Enzymatic treatment of stickwater from fishmeal industry with the protease from Cucurbita ficifolia. Biotechnol Lett 11(7):521-522Google Scholar
  345. Schmedding DJM, van Gestel MJMC (2002) Enzymes in brewing. In: Whitehurst RJ, Law BA (eds). Enzymes in food technology. CRC Press, Boca Raton, USA, pp 57-75Google Scholar
  346. Schmid A, Dordick JS, Hauer B et al. (2001) Industrial biocatalysis today and tomorrow. Nature 409:258-268Google Scholar
  347. Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths - biocatalysis in industrial synthesis. Science 299(5613):1694-1697Google Scholar
  348. Schoevaart R, Wolbers M, Golubovic M et al. (2004) Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEA). Biotechnol Bioeng 87:754-762Google Scholar
  349. Schubert C (2006) Can biofuels finally take center stage? Nat Biotechnol 24:777-784Google Scholar
  350. Schumacher G, Sizmann D, Haug H et al. (1986) Penicillin acylase from E. coli: unique gene-protein relation. Nucl Acid Res 14(14):5713-5727Google Scholar
  351. Sch ügerl K (2001) Progress in monitoring, modeling and control of bioprocesses during the last 20 years. J Biotechnol 85(2):149-173Google Scholar
  352. Sch ülein M (2000) Protein engineering of cellulases. Biochim Biophys Acta 1543:239-252Google Scholar
  353. Schwedt G, Stein K (1994) Immobilized enzymes as tools in food analysis. Z Lebens Forsch 199 (3):171-182Google Scholar
  354. Scouten WH, Luong JHT, Brown RS (1995) Enzyme or protein immobilization techniques for application in biosensor design. TIBTECH 13:178-185Google Scholar
  355. Scoville JR, Novicova IA (1999) Foaming enzyme spray cleaning composition and method of delivery. US Patent 5998342. Issued on December 7, 1999Google Scholar
  356. Serafini S, Rossi L, Antonelli A et al. (2004) Drug delivery through phagocytosis of red blood cells. Transf Med Hemother 31:92-101Google Scholar
  357. Shaw A, Bott R (1996) Engineering enzymes for stability. Curr Opin Struct Biol 6(4):546-550Google Scholar
  358. Sheehan J, Himmel ME (1999). Enzymes, energy, and the environment: cellulase development in the emerging bioethanol industry. Biotechnol Prog 15(3):817-827Google Scholar
  359. Sheldon RA, Sorgedrager M, Janssen MHA (2007) Use of cross-linked enzyme aggregates (CLEAs) for performing biotransformations. Chem Today 25(1):62-67Google Scholar
  360. Shibatani T, Nishimura N, Nabe K et al. (1974) Enzymatic production of urocanic acid by Achro-mobacter liquidum. Appl Microbiol 27(4):688-694Google Scholar
  361. Shibuya H, Kaneko S, Hayashi K (2000) Enhancement of the thermostability and hydrolytic activ-ity of xylanase by random gene shuffling. Biochem J 349:651-656Google Scholar
  362. Si JQ, Drost-Lustenberger C (2002) Enzymes for bread, pasta and noodle products. In: Whitehurst RJ, Law BA (eds). Enzymes in food technology. CRC Press, Boca Raton, pp 19-56Google Scholar
  363. Sierks M, Svennson B (1994) Protein engineering of the relative specificity of glucoamylase from Aspergillus awamori based on sequence similarities between starch degrading enzymes. Protein Eng 7:1479-1484Google Scholar
  364. Soltys PJ, Mullon C, Langer R (1992) Oral treatment for jaundice using immobilized bilirubin oxidase. Artif Organs 16(4):331-335Google Scholar
  365. Sonkaria S, Boucher G, Fl órez-Alvarez J et al. (2004) Evidence for ‘lock and key’ character in an anti-phosphonate hydrolytic antibody catalytic site augmented by non-reaction centre recogni-tion: variation in substrate selectivity between an anti-phosphonate antibody, an anti-phosphate antibody and two hydrolytic enzymes. Biochem J 381:125-130Google Scholar
  366. Spr össler B, Plainer H (1983) Immobilized lactase for processing whey. Food Technol 37:93-96Google Scholar
  367. Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389-391Google Scholar
  368. Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17(3):315-319Google Scholar
  369. Sugai T (1999) Applications of enzyme- and microorganism-catalyzed reactions to organic syn-thesis. Curr Org Chem 3:373-406Google Scholar
  370. Sutherland TD, Horne I, Weir KM et al. (2004) Enzymatic bioremediation: from enzyme discovery to applications. Clin Exp Pharm Physiol 31(11):817-821Google Scholar
  371. Stevenson D, Stanley R, Furneaux R (1993) Optimization of β-D-galactopyranoside synthesis from lactose using commercially available β-galactosidases. Biotechnol Bioeng 42:657-666Google Scholar
  372. Svendsen A (2000) Lipase protein engineering. Biochim Biophys Acta 1543;223-238Google Scholar
  373. Swi TM (2007) Artificial cells. World Scientific Publ, Singapore, 400 ppGoogle Scholar
  374. Sylvestre J, Chautard H, Cedrone F et al. (2006) Directed evolution of biocatalysts. Org Proc Res Dev 10(3):562-571Google Scholar
  375. Takamine J (1894) Preparing and making taka-koji. US Patents 525820 and 525823Google Scholar
  376. Tang XM, Lakay FM, Shen W et al. (2004) Purification and characterisation of an alkaline protease used in tannery industry from Bacillus licheniformis. Biotechnol Lett 26(18):1421-1424Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Andrés Illanes
    • 1
  1. 1.School of Biochemical EngineeringPontificia Universidad Católica de ValparaísoValparaísoChile

Personalised recommendations