Tritium in Streams, Well Waters and Atomic Lakes at the Semi-Palatinsk Nuclear Test Site: Present Status And Future Perspectives

  • P. I. Mitchell
  • L. León Vintró
  • J. G. Howlett
  • M. Burkitbayev
  • N. D. Priest
  • Yu. G. Strilchuk
Part of the NATO Science for Peace and Security Series Series C: Environmental Security book series (NAPSC)

The database on tritium concentrations in streams, atomic lakes, ground waters and well waters at the Semipalatinsk Nuclear Test Site (STS) is by no means extensive, given the scale of nuclear testing undertaken at the site in the past. Here, we highlight the extent of the present database by summarising all of the readily accessible (published) data on tritium levels in the various waters of interest. In addition, we present new data on tritium gathered in the course of fieldwork in 2004 and 2005, by participants in the SEMIRAD 2 Project. We also review the status of present knowledge in regard to the mobility of tritium within and off the STS, by focussing on specific case studies, and offer suggestions as to the shape future research endeavours might take that, in our opinion, would be most cost effective.


tritium streams and lakes ground water Semipalatinsk test site 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li-Xing, Z., Ming-shun, Z. and Gou-Rong, T. (1995) A field study of tritium migration in groundwater. Sci. Tot. Environ. 173/174, 47−51.CrossRefGoogle Scholar
  2. 2.
    Hoffmann, D.C., Daniels, W.R., Wolfsberg, K., Thompson, J.L., Rundburg, R.S., Fraser, S.L. and Daniels, K.S. (1983) A review of a field study of radionuclide migration from an underground nuclear explosion at the Nevada test site. IAEA-CN 43, 469.Google Scholar
  3. 3.
    Smith, D.K. (1998) A recent drilling programme to investigate radionuclide migration at the Nevada Test Site. J. Radioanal. Nucl. Chem. 235(1−2), 159−166.Google Scholar
  4. 4.
    Stead, F.W. (1963) Tritium distribution in ground water around large underground fusion explosions. Science 142(3596), 1163-1165.CrossRefGoogle Scholar
  5. 5.
    NCRP (1979) Tritium in the Environment, Published by the National Council on Radiation Protection and Measurements, Washington, DC. NCRP Report No. 62, pp. 125 .Google Scholar
  6. 6.
    Akhmetov, M.A., Artemev, O.I., Ptitskaya, L.D. and Sinyaev, V.A. (2000) Radiation monitoring of water flows and rehabilitation of Degelen mountain massif at Semipalatinsk test site, Radioecology and Environment Protection, NNC RK Bulletin, Kazakhstan, Issue 3, September 2000, pp. 23−28.Google Scholar
  7. 7.
    Dubasov, Yu. V. (2002) Radionuclides migration from nuclear testing tunnels in Degelen mountain of the former Semipalatinsk Test Site. Proc. International Conference on Radioactivity in the Environment, Monaco, 1-5 September 2002, pp. 290−295.Google Scholar
  8. 8.
    Shkolnik, V.S. (2002) The Semipalatinsk Test Site: Creation, Operation and Conversion, Sandia National Laboratories, SAND 2002-3612P, pp. 396 .Google Scholar
  9. 9.
    Izrael, Yu.A. (2002) Radioactive fallout after Nuclear Explosions and Accidents, Radioactivity in the Environment Series, Amsterdam, Elsevier Science, 3, pp. 281 .Google Scholar
  10. 10.
    Matuschenko, A.M., Tsyrcov, G.A., Chernyshov, A.K., Dubashov, Yu.V., Krasilov, G.A., Logachov, V.A., Smagulov, S.G., Tsaturov, Y.S. and Zelentsov, S.A. (1998) Chronological list of nuclear tests at the Semipalatinsk Test Site and their radiation effects, in: Nuclear Test: long-term consequences in the Semipalatinsk/Altai Region. C.S. Shapiro, V.I. Kisilev and E.V. Zaitsev (eds.), NATO ASI Series, Environment. Springer, 36, pp. 89−97.Google Scholar
  11. 11.
    Doriglasov, V., Dubasov, Yu., Dubkov, Y., Duvnik, V., Krasilov, G.A., Logachev, V., Maltsev, A., Matuschenko, A., Safronov, B., Smagulov, S., Stepanov, Y. and Tsaturov, Y. (1994) The Semipalatinsk and Northern Nuclear Test Sites of the USSR. General Characteristics of Releases and Depositions and Comprehensive Programme of Investigations of Radiological Impact of Nuclear Tests on Surrounding Territories. Abstract, Paper, Corrections and Addendum (V94−III) presented at NATO/SCOPE RADTEST Advanced Research Workshop, Vienna, Austria, 10−14 January, 1994.Google Scholar
  12. 12.
    IAEA (1998) Radiological Conditions at the Semipalatinsk Test Site, Kazakhstan: Preliminary Assessment and Recommendations for Further Studies. Radiological Assessment Report Series, International Atomic Energy Agency, Vienna, pp. 43 .Google Scholar
  13. 13.
    Priest, N.D., Burkitbayev, M., Artemyev, O., Lukashenko, S. and Mitchell, P.I. (2003) Investigation of the Radiological Situation in the Sarzhal Region of the Semipalatinsk Nuclear Test Site. NATO SEMIRAD Project Final Report, Contract SfP-976046(99), February 2003, pp. 103 .Google Scholar
  14. 14.
    Gordeev, S.K., Kvasnikova, E.V. and Ermakov, A.I. (2005) Radionuclide contamination of underground water and soils near the epicentral zone of cratering explosion at the Semipalatinsk test Site. Radioprotection, 40(Suppl. 1), S399−S405.Google Scholar
  15. 15.
    Currie, L.A. (1968) Limits for qualitative detection and quantitative determination. Anal. Chem. 40, 586−93.CrossRefGoogle Scholar
  16. 16.
    Baeza, A., García, E. and Miró, C. (1999) A procedure for the determination of very low activity levels of tritium in water samples. J. Radioanal. Nucl. Chem. 241(1), 93−100.Google Scholar
  17. 17.
    Taylor, C.B. (1977) Tritium enrichment of environmental waters by electrolysis: development of cathodes exhibiting high isotopic separation and precise measurement of tritium enrichment factors. Proc. International Conference of Low-Radioactivity Measurements and Applications, Slovenski Pedagogicke Nakladatelstvo, Bratislava, pp. 131−140.Google Scholar
  18. 18.
    Izrael, Yu., Stukin, E. and Ter-Saakov, A. et al. (1970) Radioactive contamination of natural environments from underground nuclear explosions and prediction methods. Hydrometeoizdat, Leningrad, pp. 67.(in Russian).Google Scholar
  19. 19.
    Konovalov, V.E., Pestov, E.Y., Artemjev, O.I. and Larin, V.N. (2000) Influence of the stabilization of hydrological regime on the ecology of the Degelen mountain (on the results of 1996/97 research). Radioecology and Environment Protection, NNC RK Bulletin, Kazakhstan, Issue 3, September 2000, pp. 148−52.Google Scholar
  20. 20.
    Artemev, O.I., Akhmetov, M.A. and Ptitskaya, L.D. (2001) Radioactive contamination of former Semipalatinsk test site area. Radioecology and Environment Protection, NNC RK Bulletin, Kazakhstan, Issue 3, September 2001, pp. 12−19.Google Scholar
  21. 21.
    Kazachevskiy, I.V. et al. (2005) The results of radioecological investigations of the main surface water objects of the former Semipalatinsk nuclear test site’. Proc. First International Nuclear Chemistry Congress, Kusadasy, Turkey, 22−29 May 2005.Google Scholar
  22. 22.
    Subbotin, S. (2006) Radioactive contamination of groundwater at Degelen Site, STS. Proc. NATO Advanced Research Workshop on Radiological Risks in Central Asia, Almaty, 20−22 June 2006.Google Scholar
  23. 23.
    Kuzin, L.E. and Putilov, I.B. (2003) Short-term forecast of radioactivity carryover from tunnels with water manifestation at the Degelen Mountain Massif. Proc. International Conference on Semipalatinsk Test Site - Radiation Heritage and Problems of Non-Proliferation, Kurchatov, 7-9 October, 2003, Article No. 12, 6 pp. (in Russian)Google Scholar
  24. 24.
    Mitchell, P.I., León Vintró, L., Omarova, A., Burkitbayev, M., Jiménez Nápoles, H. and Priest, N.D. (2005) Tritium in well waters, streams and atomic lakes in the East Kazakhstan Oblast of the Semipalatinsk Nuclear Test Site. J. Radiol. Prot. 25, 141−148.CrossRefGoogle Scholar
  25. 25.
    Bolsunovska, A.Ya. and Bondareva, L.G. (2003) Tritium in surface waters of the Yenisei River Basin. J. Environ. Radioact. 66, 285−294.Google Scholar
  26. 26.
    Makhonko, K., Kim, V., Kozlova, E., Volokitin, A., Mazurina, Z., Chumichev, V., Nikitin, A. and Katrich, I. (2001) Generalised data on radioactive contamination of natural environments. Byulleten po Atomnoi Energii (Bulletin for Atomic Energy). TsNIIatominform 10, 26−32. (in Russian)Google Scholar
  27. 27.
    Pujol, L.I. and Sánchez-Cabeza, J.A. (2000) Natural and artificial radioactivity in surface waters of the Ebro river basin (Northeast Spain). J. Environ. Radioact. 51, 181−210.CrossRefGoogle Scholar
  28. 28.
    Hadzigehovic, M., Miljevic, N., Sipka, V. and Golobocanin, D. (1992) Environmental tritium of the Danube basin in Yugoslavia. Environ. Poll. 77(1), 23−30.Google Scholar
  29. 29.
    EC (2001) Environmental radioactivity in the European Communities 1994. M. De Cort, S. Valdé, J. Van ‘t Klooster and G. Ponti (eds.), Office for Official Publications of the European Communities, EUR 18663 EN, 80 pp.Google Scholar
  30. 30.
    Villa, M. and Manjón, G. (2004) Low-level measurements of tritium in water. Appl. Radiat. Isot. 61, 319−323.CrossRefGoogle Scholar
  31. 31.
    Howlett, J.G. (2006) Personal communication.Google Scholar
  32. 32.
    Golikova, N.V., Artemyev, O.I., Larin, V.N. and Dontsova, G.A. (2003) Study of natural sorbents of Semipalatinsk region. Radioecology and Environment Protection, NNC RK Bulletin, Kazakhstan, Issue 3, September 2003, pp. 61−64.Google Scholar
  33. 33.
    León Vintró, L., Mitchell, P.I., Omarova, A., Burkitbayev, M., Jiménez Nápoles, H. and Priest, N.D. (in press) Americium, plutonium and uranium contamination and speciation in well waters, streams and atomic lakes in the Sarzhal Region of the Semipalatinsk nuclear test site, Kazakhstan. J. Environ. Radioact. Google Scholar
  34. 34.
    WHO (2003) World Health Organisation’s Guidelines for Drinking Water Quality Third Edition, Chapter 9 (Draft), 17 February 2003.Google Scholar
  35. 35.
    Smith, D.K., Knapp, R.B., Rosenburg, N.D. and Thompson, A.F.B. (2003) International Cooperation to Address the Radioactivity Legacy in States of the Former Soviet Union, Preprint, UCRL-JC-154149, Lawerence Livermore National Laboratory and US Department of Energy (available electronically at
  36. 36.
    Grosche, B. (2005) Progress in assessing the public health impact from residues of nuclear bomb testing in Kazakhstan. J. Radiol. Prot. 25, 123−124.CrossRefGoogle Scholar
  37. 37.
    Straume, T., Marchetti, A.A., Anspaugh, L.R., Khrouch, V.T., Gavrilin, Y.I., Shinkarev, S.M., Drozdovitch, V.V., Ulanovsky, A.V., Korneev, S.V., Brekeshev, M.K., Leonov, E.S., Voigt, G., Panchenko, S.V. and Minenko, V.F. (1996) The feasibility of using 129I to reconstruct 131I deposition from the Chernobyl reactor accident. Health Phys. 71(5), 733−740.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • P. I. Mitchell
    • 1
  • L. León Vintró
    • 1
  • J. G. Howlett
    • 1
  • M. Burkitbayev
    • 2
  • N. D. Priest
    • 3
  • Yu. G. Strilchuk
    • 4
  1. 1.UCD School of PhysicsUniversity College DublinIreland
  2. 2.Department of Inorganic ChemistryAl-Farabi Kazakh National UniversityKazakhstan
  3. 3.School of Health and Social SciencesMiddlesex UniversityUK
  4. 4.Institute of Radiation Safety and EcologyNational Nuclear CentreKazakhstan

Personalised recommendations