Skip to main content

Microbial Life in Extreme Environments: Linking Geological and Microbiological Processes

  • Chapter
Book cover Links Between Geological Processes, Microbial Activities&Evolution of Life

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 4))

Abstract

The last decade has seen extraordinary growth of Geomicrobiology, the interdisciplinary field between Geology and Microbiology. Microorganisms have been studied in numerous extreme environments on Earth, ranging from crystalline rocks from the deep subsurface, hypersaline lakes, to dry deserts and deep-ocean hydrothermal vent systems. This chapter reviews several active research frontiers in Geomicrobiology that demonstrate the importance of linking geological and microbiological processes in such studies: deep continental subsurface microbiology, microbial ecology in saline lakes, microbial formation of dolomite, geomicrobiology in dry deserts, fossil DNA and its use in paleoenvironmental reconstruction, and microbial weathering of oceanic crust. The author has no intention to provide a comprehensive review of all areas of Geomicrobiology, as this daunting task deserves a dedicated book on its own.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrajano TA, Sturchio NC, Kennedy BM, Lyon GL, Muehlenbachs K, Bohlke JK (1990) Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. App Geochem 5:625–630

    Google Scholar 

  • Acinas SG, Anton J, Rodriguez-Valera F (1999) Diversity of free-living and attached bacteria in offshore western Mediterranean waters as depicted by analysis of genes encoding 16S rRNA. Appl Environ Microbiol 65:514–522

    Google Scholar 

  • Aloisi G, Pierre C, Rouchy JM, Foucher JP, Woodside J, Party MS (2000) Methane-related authigenic carbonates of eastern Mediterranean Sea mud volcanoes and their possible relation to gas hydrate destabilisation. Earth Planet Sci Lett 184:321–338

    Google Scholar 

  • Alt JC, Shanks WCI (1998) Sulfur in serpentinized oceanic peridotites: Serpentinization processes and microbial sulfate reduction. J Geophys Res 103:9917–9929

    Google Scholar 

  • Amend JP, Teske A (2005) Expanding frontiers in deep subsurface microbiology. Palaeogeog Palaeoclimat Palaeoecol 219:131–155

    Google Scholar 

  • Aragno M (1992) Aerobic, chemolithoautotrophic, thermophilic bacteria. In Kristjansson JK (ed) Thermophilic bacteria, CRC Press, Boca Raton, pp 77–103

    Google Scholar 

  • Aubrey A, Cleaves HJ, Chalmers JH, Skelley AM, Mathies RA, Grunthaner FJ, Ehrenfreund P, Bada JL (2006) Sulfate minerals and organic compounds on Mars. Geology 34:357–360

    Google Scholar 

  • Bach W, Edwards KJ (2003) Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta 67:3871–3887

    Google Scholar 

  • Baker PA, Burns SJ (1985) The occurrence and formation of dolomite in organic-rich continental margin sediments. Am Assoc Pet Geol Bull 69:1917–1930

    Google Scholar 

  • Baker PA, Kastner M (1981) Constraints on the formation of sedimentary dolomite. Science 213:214–216

    Google Scholar 

  • Baliga NS, Bjork SJ, Bonneau R, Pan M, Iloanusi C, Kottemann MCH, Hood L, DiRuggiero J (2004) Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res 14:1025–1035

    Google Scholar 

  • Banciu H, Sorokin DY, Rijpstra WIC, Damste JSS, Galinski EA, Takalchi S, Muyzer G, Kuenen JG (2005) Fatty acid, compatible solute and pigment composition of obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria from soda lakes. FEMS Microbiol Lett 243: 181–187

    Google Scholar 

  • Banerjee NR, Furnes H, Muehlenbachs K, Staudigel H, de Wit M (2006) Preservation of similar to 3.4–3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton Greenstone Belt, South Africa. Earth Planet Sci Lett 241:707–722

    Google Scholar 

  • Banfield JF, Cervini-Silva J, Nealson KM (2005) Molecular geomicrobiology. The Mineralogical Society of America, Chantilly, VA, 294p

    Google Scholar 

  • Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily, and monophyly from environmental rDNA sequences. Proc Natl Acad Sci USA 17:9188–9193

    Google Scholar 

  • Belyakova EV, Rozanova EP, Borzenkov IA, Tourova TP, Pusheva MA, Lysenko AM, Kolganova TV (2006) The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen. nov., sp nov., isolated from an oil field. Microbiology 75:161–171

    Google Scholar 

  • Beman JM, Francis CA (2006) Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahia del Tobari, Mexico. Appl Environ Microbiol 72:7767–7777

    Google Scholar 

  • Benlloch S, Lopez-Lopez A, Casamayor EO, Ovreas L, Goddard V, Daae FL, Smerdon G, Massana R, Joint I, Thingstad F, Pedros-Alio C, Rodriguez-Valera F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360

    Google Scholar 

  • Berndt ME, Allen DE, Seyfried WE (1996) Reduction of CO2 during serpentinization of olivine at 300ˆC and 500 bar. Geology 24:351–354

    Google Scholar 

  • Bernhard AE, Colbert D, McManus J, Field KG (2005) Microbial community dynamics based on 16S rRNA gene profiles in a Pacific Northwest estuary and its tributaries. FEMS Microbiol Ecol 52:115–128

    Google Scholar 

  • Billi D, Friedmann EI, Hofer KG, Caiola MG, Ocampo-Friedmann R (2000) Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Appl Environ Microbiol 66:1489–1492

    Google Scholar 

  • Bockelmann U, Manz W, Neu TR, Szewzyk U (2000) Characterization of the mcirobial community of lotic organic aggregates (‘river snow’) in the Elbe River of Germany by cultivation and molecular methods. FEMS Microbiol Ecol 33:157–170

    Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Google Scholar 

  • Bouvier TC, del Giorgio PA (2002) Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnol Ocean 47:453–470

    Google Scholar 

  • Brambilla E, Hippe H, Hagelstein A, Tindall BJ, Stackbrandt E (2001) 16S diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremephiles 5:23–33

    Google Scholar 

  • Bridge TAM, Johnson DB (1998) Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl Environ Microbiol 64:2181–2186

    Google Scholar 

  • Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA (2005) Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437:866–870

    Google Scholar 

  • Brummer IHM, Fehr W, Wagner-Dobler I (2000) Biofilm community structure in polluted rivers: abundance of dominant phylogenetic groups over a complete annual cycle. Appl Environ Microbiol 66:3078–3082

    Google Scholar 

  • Bull AT (2004) Microbial diversity and bioprospecting. ASM press, Washington DC, 496pp

    Google Scholar 

  • Cai CF, Dong H, Li H, Xiao X, Ou G (2007) Mineralogical and geochemical evidence for coupled bacterial uranium mineralization and hydrocarbon oxidation in the Shashagetai deposit, NW China. Chem Geol 236:167–179

    Google Scholar 

  • Campbell KA, Farmer JD, Des Marais D (2002) Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2:63–94

    Google Scholar 

  • Castello JD, Rogers SO (2005) Life in ancient ice. Princeton University Press, Princeton, NJ, 307pp

    Google Scholar 

  • Cavagna S, Clari P, Martire L (1999) The role of bacteria in the formation of cold seep carbonates: geological evidnece from Monferrato (Tertiary, NW Italy). Sediment Geol 126:253–270

    Google Scholar 

  • Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525

    Google Scholar 

  • Chapelle FH (2000) Ground-water microbiology and geochemistry. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Chapelle FH, O’Neill K, Bradley PM, Methe BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315

    Google Scholar 

  • Charlou JL, Donval JP (1993) Hydrothermal methane venting between 12ˆN and 26ˆN along the Mid-Atlantic Ridge. J Geophys Res 98:9625–9642

    Google Scholar 

  • Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36o 14’N, MAR). Chem Geol 191:345–359

    Google Scholar 

  • Charlou JL, Fouquet Y, Bougault H, Donval JP, Etoubleau J, Jean-Baptiste P, Dapoigny A, Appriou P, Rona PA (1998) Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15ˆ20’N fracture zone and the Mid-Atlantic Ridge. Geochim Coschim Acta 62:2323–2333

    Google Scholar 

  • Chen PJ (1987) Cretaceous paleogeography of China. Palaeogeog Palaeoclimat Palaeoecol 59: 49–56

    Google Scholar 

  • Chen PJ, Chang ZL (1994) Nonmarine Cretaceous stratigraphy of eastern China. Cretaceous Res 5:245–257

    Google Scholar 

  • Ciaravella A, Scappini F, Franchi M, Cecchi-Pestellini C, Barbera M, Candia R, Gallori E, Micela G (2004) Role of clays in protecting adsorbed DNA against X-ray radiation. Inter J Astrobiol 3:31–35

    Google Scholar 

  • Cockell CS, Raven JA (2004) Zones of photosynthetic potential on Mars and the early Earth. ICARUS 169:300–310

    Google Scholar 

  • Cockell CS, Schuerger AC, Billi D, Friedmann EI, Panitz C (2005) Effects of a simulated martian UV flux on the cyanobacterium, Chroococcidiopsis sp 029. Astrobiology 5:127–140

    Google Scholar 

  • Coolen MJK, Hopmans EC, Rijpstra WIC, Muyzer G, Schouten S, Volkman JK, Sinninghe-Damste JS (2004a) Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental change. Org Geochem 35: 1151–1167

    Google Scholar 

  • Coolen MJL, Abbas B, van Bleijswijk J, Hopmans EC, Kuypers MMM, Wakeham SG, Damste JSS (2007a) Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environ Microbiol 9:1001–1016

    Google Scholar 

  • Coolen MJL, Boere A, Abbas B, Baas M, Wakeham SG, Sinninghe Damsté JS (2006a) Fossil DNA derived from alkenone-biosynthesizing haptophytes and other algae in Holocene sediment from the Black Sea. Paleoocean 21, PA1005-doi:10.1029/2005PA001188.

    Google Scholar 

  • Coolen MJL, Muyzer G, Rijpstra WIC, Schouten S, Volkman JK, Sinninghe Damsté JS (2004b) Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake. Earth Planet Sci Lett 223:225–239

    Google Scholar 

  • Coolen MJL, Muyzer G, Schouten S, Volkman JK, Sinninghe Damsté JS (2006b) Sulfur and methane cycling during the Holocene in Ace Lake (Antarctica) revealed by lipid and DNA stratigraphy. In Neretin LN (ed) Past and present marine water column anoxia, NATO science series: IV-Earth and environmental sciences. Springer, Dordrecht, pp 41–65

    Google Scholar 

  • Coolen MJL, Overmann J (1998) Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Appl Environ Microbiol 64:4513–4521

    Google Scholar 

  • Coolen MJL, Overmann J (2007) 217 000-year-old DNA sequences of green sulfur bacteria in Mediterranean sapropels and their implications for the reconstruction of the paleoenvironment. Environ Microbiol 9:238–249

    Google Scholar 

  • Coolen MJL, Volkman JK, Abbas B, Muyzer G, Schouten S, Damste JSS (2007b) Identification of organic matter sources in sulfidic late Holocene Antarctic fjord sediments from fossil rDNA sequence analysis. Paleoocean 22, Art. No. PA2211

    Google Scholar 

  • Cooper CD, Mustard JF (2002) Spectroscopy of loose and cemented sulphate-bearing soils: implications for duricrust on Mars. ICARUS 158:42–55

    Google Scholar 

  • Cottrell MT, Kirchman DL (2003) Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnol Ocean 48: 168–178

    Google Scholar 

  • Cowen JP, Giovannoni SJ, Kenig F, Johnson HP, Butterfield D, Rappe MS, Hutnak M, Lam P (2003) Fluids from aging ocean crust that support microbial life. Science 299:120–123

    Google Scholar 

  • Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65:3192–3204

    Google Scholar 

  • D’Andrea WJ, Lage M, Martiny JBH, Laatsch AD, Amaral-Zettler LA, Sogin ML, Huang Y (2006) Alkenone producers inferred from well-preserved 18S rDNA in Greenland lake sediments. J Geophys Res 111, G0313: doi:10.1029/2005JG000121

    Google Scholar 

  • D’Hondt S, Jorgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs KU, Holm NG, Mitterer R, Spivack A, Wang GZ, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Guerin G, House C, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Schippers A, Smith DC, Teske A, Wiegel J, Padilla CN, Acosta JLS (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221

    Google Scholar 

  • D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs K-U, Holm NG, Mitterer R, Spivack A, Wang G, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Aiello IW, Gu‘erin G, House C, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Chippers A, Smith DC, Teske A, Wiegel J, Padilla CN, Acosta JLS (2004) Distributions of microbial activities in deep subseafloor sediments. Science 306:2216–2221

    Google Scholar 

  • D’Hondt S, Rutherford S, Spivack AJ (2002) Metabolic activity of subsurface life in deep–sea sediments. Science 295:2067–2070

    Google Scholar 

  • Damste JSS, Muyzer G, Abbas B, Rampen SW, Masse G, Allard WG, Belt ST, Robert JM, Rowland SJ, Moldowan JM, Barbanti SM, Fago FJ, Denisevich P, Dahl J, Trindade LAF, Schouten S (2004) The rise of the rhizosolenid diatoms. Science 304:584–587

    Google Scholar 

  • DasSarma S, Arora P (2001) Halophiles. Encyclopedia of life Sciences, 2001. Nature Publishing Group, pp 1–9

    Google Scholar 

  • DeFlaun MF, Fredrickson JK, Dong H, Pfiffner SM, Onstott TC, Balkwill DL, Streger SH, Stackebrandt E, Knoessen S, van Heerden E (2007) Isolation and characterization of a Geobacillus thermoleovorans species from an ultra-deep South African gold mine. Syst App Microbiol 30:152–164

    Google Scholar 

  • de la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69: 3858–3867

    Google Scholar 

  • del Giorgio PA, Bouvier TC (2002) Linking the physiologic and phylogenetic successions in free-living bacterial communities along an estuarine salinity gradient. Limnol Ocean 47:471–486

    Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Nat Acad Sci 89:5685–5689

    Google Scholar 

  • DeLong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Ocean 38:924–934

    Google Scholar 

  • Dong H, Rech JA, Jiang H, Sun H, Buck BJ (2007) Endolithic cyanobacteria in soil gypsum: Occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) deserts. J Geophys Res-Biogeosci 112, doi:10.1029/2006JG000385

    Google Scholar 

  • Dong H, Zhang G, Jiang H, Yu B, Chapman LR, Lucas CR, Fields MW (2006) Microbial diversity in sediments of saline Qinghai Lake: Linking geochemical controls to microbial diversity. Microb Ecol 51:65–82

    Google Scholar 

  • Douglas S, Yang HX (2002) Mineral biosignatures in evaporites: presence of rosickyite in an endoevaporitic microbial community from Death Valley, California. Geology 30:1075–1078

    Google Scholar 

  • Drees KP, Neilson JW, Betancourt JL, Quade J, Henderson DA, Pryor BM, Maier RM (2006) Bacterial diversity in the hyper-arid core of the Atacama desert, Chile. Appl Environ Microbiol 72:7902–7908

    Google Scholar 

  • Dundas I (1998) Was the environment for primoridal life hypersaline? Extremophiles 2:375–377

    Google Scholar 

  • Edwards HGM, Villar SEJ, Parnell J, Cockell CS, Lee P (2005) Raman spectroscopic analysis of cyanobacterial gypsum halotrophs and relevance for sulfate deposits on Mars. Analyst 130:917–923

    Google Scholar 

  • Edwards K, Bach W, McCollom T, Rogers D (2004) Neutrophilic iron-oxidizing bacteria in the ocean: their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiol J 21:393–404

    Google Scholar 

  • Ehrlich HL (2005) Geomicrobiology. Marcel Dekker. Inc, New York

    Google Scholar 

  • Fisk MR, Giovannoni SJ (1999) Sources of nutrients and energy for a deep biosphere on Mars. J Geophys Res 104:11805–11815

    Google Scholar 

  • Fisk MR, Giovannoni SJ, Thorseth IH (1998) Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science 281:978–980

    Google Scholar 

  • Fisk MR, Popa R, Mason OU, Storrie-Lombardi MC, Vicenzi EP (2006) Iron-magnesium silicate bioweathering on Earth (and Mars?) Astrobiology 6:48–68

    Google Scholar 

  • Fish SA, Shepherd TJ, McGenity TJ, Grant WD (2002) Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417:432–436

    Google Scholar 

  • Fisk MR, Storrie-Lombardi MC, Douglas S, Popa R, McDonald G, Di Meo-Savoie C (2003) Evidence of biological activity in Hawaiian subsurface basalts. Geochem Geophys Geosys 4:Art. No. 1103

    Google Scholar 

  • Formolo MJ, Lyons TW, Zhang CL, Kelley C, Sassen R, Horita J, Cole DR (2004) Quantifying carbon sources in the formation of authigenic carbonates at gas hydrate sites in the Gulf of Mexico. Chem Geol 205:253–264

    Google Scholar 

  • Franca L, Rainey FA, Nobre MF, Costa MS (2006) Tepidicella xavieri gen. nov., sp nov., a betaproteobacterium isolated from a hot spring runoff. Inter J Syst Evol Microbiol 56:907–912

    Google Scholar 

  • Francis CA (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J 1

    Google Scholar 

  • Francis CA, O’Mullan GD, Ward BB (2003) Diversity of ammonia monooxygenase (amoA) genes across environmental gradients in Chesapeake Bay sediments. Geobiology 1:129–140

    Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Nat Acad Sci 102:14683–14688

    Google Scholar 

  • Fredrickson JK, Balkwill DL (2006) Geomicrobial processes and biodiversity in the deep terrestrial subsurface. Geomicrobiol J 23:345–356

    Google Scholar 

  • Fredrickson JK, Fletcher M (2001) Subsurface microbiology and biogeochemistry. Wiley-Liss, Inc., New York

    Google Scholar 

  • Fredrickson JK, McKinley JP, Bjornstad BN, Long PE, Ringelberg DB, White DC, Krumholz LR, Suflita JM, Colwell FS, Lehman RM, Phelps TJ, Onstott TC (1997) Pore-size constraints on the activity and survival of subsurface bacteria in a late Cretaceous shale-sandstone sequence, Northwestern New Mexico. Geomicrobiol J 14:183–202

    Google Scholar 

  • Freitag TE, Chang L, Prosser JI (2006) Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient. Environ Microbiol 8:684–696

    Google Scholar 

  • Friedrich CG (1998) Physiology and genetics of sulfur-oxidizing bacteria. Adv Microb Physiol 39:235–289

    Google Scholar 

  • Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259

    Google Scholar 

  • Frontier S (1985) Diversity and structure in aquatic ecosystems. Ocean Mar

    Google Scholar 

  • Furnes H, Banerjee NR, Muehlenbachs K, Kontinen A (2005) Preservation of biosignatures in metaglassy volcanic rocks from the Jormua ophiolite complex. Finland Precam Res 136: 125–137

    Google Scholar 

  • Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H, de Wit M (2004) Early life recorded in archean pillow lavas. Science 304:578–581

    Google Scholar 

  • Furnes H, Muehlenbachs K, Torsvik T, Thorseth IH, Tumyr O (2001) Microbial fractionation of carbon isotopes in altered basaltic glass from the Atlantic Ocean, Lau Basin and Costa Rica Rift. Chem Geol 173:313–330

    Google Scholar 

  • Furnes H, Staudigel H (1999) Biological mediation in ocean crust alteration: how deep is the deep biosphere? Earth Planet Sci Lett 166:97–103

    Google Scholar 

  • Galinski EA, Truper HG (1994) Microbial behavior in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108

    Google Scholar 

  • Gendrin A, Mangold N, Bibring JP, Langevin Y, Gondet B, Poulet F, Bonello G, Quantin C, Mustard J, Arvidson R, LeMouelic S (2005) Suffates in martian layered terrains: the OMEGA/Mars Express view. Science 307:1587–1591

    Google Scholar 

  • Gerday C, Glansdorff N (2007) Physiology and biogeochemistry of extremophiles. ASM Press, Washington DC, 450pp

    Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field FG (1990) Genetic diversity of Sargasso Sea bacterioplankton. Nature 345:60–65

    Google Scholar 

  • Glockner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization Appl Environ Microbiol 65:3721–3726

    Google Scholar 

  • Greinert J, Bohrmann G, Suess E (2001) Gas hydrate associated carbonates and methane venting at Hydrate Ridge: classification, distribution, and origin of authigenic carbonates. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution and detection, 124. Geophysical Monograph, American Geophysical Union, Washington, D.C, pp 99–113

    Google Scholar 

  • Hagstrom A, Pommier T, Rohwer F, Simu K, Stolte W, Svensson D, Zweifel UL (2002) Use of 16S Ribosomal DNA for Delineation of Marine Bacterioplankton Species. Appl Environ Microbiol 68:3628–3633

    Google Scholar 

  • Haskin LA, Wang A, Jolliff BL, McSween HY, Clark BC, Des Marais DJ, McLennan SM, Tosca NJ, Hurowitz JA, Farmer JD, Yen A, Squyres SW, Arvidson RE, Klingelhofer G, Schroder C, de Souza PA, Ming DW, Gellert R, Zipfel J, Bruckner J, Bell JF, Herkenhoff K, Christensen PR, Ruff S, Blaney D, Gorevan S, Cabrol NA, Crumpler L, Grant J, Soderblom L (2005) Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature 436:66–69

    Google Scholar 

  • Hazen RM, Roedder E (2001) How old are bacteria from the Permian age? Nature 411:155

    Google Scholar 

  • He JZ, Shen JP, Zhang LM, Zhu YG, Zheng YM, Xu MG, Di HJ (2007) Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environ Microbiol, doi:10.1111/j.1462-2920.2007.01358.x

    Google Scholar 

  • Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou LW, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22:554–559

    Google Scholar 

  • Henriques IS, Alves A, Tacao M, Almeida A, Cunha A, Correia A (2006) Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal) Est Coast Shelf Sci 68:139–148

    Google Scholar 

  • Hinrichs K-U, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billett D, Hebbeln D, Jorgensen BB, Schluter M (eds) Ocean Marine systems. Springer-Verlag, Berlin-Heidelberg, pp 457–477

    Google Scholar 

  • Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Google Scholar 

  • Hoehler TM (2005) Cretaceous park? A commentary on microbial paleomics. Astrobiology 5:95–99

    Google Scholar 

  • Holm NG, Andersson EM (1998) Hydrothermal systems. In: Brack A (ed) The molecular origins of life. Cambridge University Press, Cambridge, UK, pp 86–99

    Google Scholar 

  • Holm NG, Charlou J-L (2001) Initial indications of abiotic formation of hydrocarbons in the Rainbow ultramafic hydrothermal system, Mid-Atlantic Ridge. Earth Planet Sci Lett 191:1–8

    Google Scholar 

  • Horita J, Berndt ME (1999) Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285:1055–1057

    Google Scholar 

  • Horsfield B, Schenk HJ, Zink K, Ondrak R, Dieckmann V, Kallmeyer J, Mangelsdorf K, di Primlo R, Wilkes H, Parkes RJ, Fry J, Cragg BA (2006) Living microbial ecosystems within the active zone of catagenesis: Implications for feeding the deep biosphere. Earth Planet Sci Lett 246:55–69

    Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    Google Scholar 

  • Hughes KA, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 5:555–565

    Google Scholar 

  • Inagaki F, Nealson KH (2006) Molecular signals from ancient materials: challenges to deep-biosphere and paleoenvironmental research- A response to the comments of Sinninghe Damste and Coolen. Astrobiology 6:303–307

    Google Scholar 

  • Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, Jorgensen BB (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA 103:2815–2820

    Google Scholar 

  • Inagaki F, Okada H, Tsapin AI, Nealson KH (2005) The Paleome: a sedimentary genetic record of past microbial communities. Astrobiology 5:141–153

    Google Scholar 

  • Inagaki F, Takai K, Komatsu T, Kanamatsu K, Fujioka K, Horikoshi K (2001) Archaeology of Archaea: Geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment. Extremophiles 5:385–392

    Google Scholar 

  • Jakobsen TF, Kjeldsen KU, Ingvorsen K (2006) Desulfohalobium utahense sp nov., a moderately halophilic, sulfate-reducing bacterium isolated from Great Salt Lake. Inter J Sys Evol Microbiol 56:2063–2069

    Google Scholar 

  • Jiang H, Dong H, Ji S, Ye Y, Wu N (2007a) Microbial diversity in the deep marine sediments from the Qiongdongnan basin in South China Sea. Geomicrobiol J 24:505–517

    Google Scholar 

  • Jiang H, Dong H, Zhang G, Yu B, Chapman LR, Fields MW (2006) Microbial diversity in water and sediment of Lake Chaka: an athalassohaline hypersaline lake in Northwestern China. Appl Environ Microbiol 72:3832–3845

    Google Scholar 

  • Jiang HC, Dong HL, Yu BS, Liu XQ, Li YL, Ji SS, Zhang CLL (2007b) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 9:2603–2621

    Google Scholar 

  • Jorgensen NO (1992) Methane-derived carbonate cementation of Holocene marine sediments from Kattegat, Denmark. Cont Shelf Res 12:1209–1218

    Google Scholar 

  • Joye SB, Boetius A, Orcutt BN, Montoya JP, Schulz HN, Erickson MJ, Lugo SK (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem Geol 205:219–238

    Google Scholar 

  • Joye SB, Connell TL, Miller LG, Oremland RS, Jellison RS (1999) Oxidation of ammonia and methane in an alkaline, saline lake. Limnol Ocean 44:178–188

    Google Scholar 

  • Kaksonen AH, Spring S, Schumann P, Kroppenstedt RM, Puhakka JA (2006) Desulfotomaculum thermosubterraneum sp nov., a thermophilic sulfate-reducer isolated from an underground mine located in a geothermally active area. Inter J Sys Evol Microbiol 56:2603–2608

    Google Scholar 

  • Kaksonen AH, Spring S, Schumann P, Kroppenstedt RM, Puhakka JA (2007) Desulfolvirgula thermocuniculi gen. nov., sp nov., a thermophilic sulfate-reducer isolated from a geothermal underground mine in Japan. Inter J Syst Evol Microbiol 57:98–102

    Google Scholar 

  • Kappler A, Newman DK (2004) Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim Coschim Acta 68:1217–1226

    Google Scholar 

  • Kastner M, Elderfield H, Martin JB, Suess E, Kvenvolden KA, Garrison RE. (1990) Diagenesis and interstitial-water chemistry at the Peruvian continental margin-major constituents and strontium isotopes. In: Suess E, von Huene R (eds) Proceedings of ocean drilling program, scientific results, 112. Ocean Drilling Program, College Station, TX, pp 413–440

    Google Scholar 

  • Kelley DS, Karson JA, Blackman DK, Fruh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. Nature 412:145–149

    Google Scholar 

  • Kelley DS, Karson JA, Fruh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RT, Sylva SP (2005) A serpentinite-hosted ecosystem: The lost city hydrothermal field. Science 307:1428–1434

    Google Scholar 

  • Kelly DP, Shergill JK, Lu W-P, Wood AP (1997) Oxidativemetabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71:95–107

    Google Scholar 

  • Kerkar S, Bharathi PAL (2007) Stimulation of sulfate-reducing activity at salt-saturation in the salterns of Ribandar, Goa, India. Geomicrobiol J 24:101–110

    Google Scholar 

  • Kieft TL, McCuddy SM, Onstott TC, Davidson M, Lin LH, Mislowack B, Pratt L, Boice E, Lollar BS, Lippmann-Pipke J, Pfiffner SM, Phelps TJ, Gihring T, Moser D, Heerden A (2005) Geochemically generated, energy-rich substrates and indigenous microorganisms in deep, ancient groundwater. Geomicrobiol J 22:325–335

    Google Scholar 

  • Kieft TL, Phelps TJ (1997) Life in the slow lane. In: Amy PS, Haldeman DL (eds) The microbiology of the terrestrial subsurface. CRC Press, Boca Raton, FL, pp 137–164

    Google Scholar 

  • Kirchman DL, Dittel AI, Malmstrom RR, Cottrell MT (2005) Biogeography of major bacterial groups in the Delaware Estuary. Limnol Ocean 50:1697–1706

    Google Scholar 

  • Kletzin A, Urich T, Muller F, Bandeiras TM, Gomes CM (2004) Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomemb 36:77–91

    Google Scholar 

  • Kminek G, Bada JL, Pogliano K, Ward JF (2003) Radiation-dependent limit for the viability of bacterial spores in halite fluid inclusions and on Mars. Radiat Res 159:722–729

    Google Scholar 

  • Knauth LP (1998) Salinity history of the Earth’s early ocean. Nature 395:554–555

    Google Scholar 

  • Konhauser K (2006) Introduction to geomicrobiology. Blackwell Publishing, Oxford, UK.

    Google Scholar 

  • Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    Google Scholar 

  • Koops HP, Purkhold U, Pommerening-Roser A, Timmermann G, Wagner M (2004) The lithoautotrophic ammonia-oxidizing bacteria. The Prokaryotes: an evolving electronic resource for the microbiological community.

    Google Scholar 

  • Kottemann MCH, Kish A, Iloanusi C, Bjork S, DiRuggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp strain NRC1 to desiccation and gamma irradiation. Extremephiles 9:219–227

    Google Scholar 

  • Krauskopf KB, Bird DK (1995) Introduction to geochemistry. McGraw-Hill, New York.

    Google Scholar 

  • Krumholz LR, Harris SH, Tay ST, Suflita JM (1999) Characterization of two subsurface H-2-utilizing bacteria, Desulfomicrobium hypogeium sp nov and Acetobacterium psammolithicum sp nov., and their ecological roles. Appl Environ Microbiol 65:2300–2306

    Google Scholar 

  • Krumholz LR, McKinley JP, Ulrich FA, Suflita JM (1997) Confined subsurface microbial communities in Cretaceous rock. Nature 386:64–66

    Google Scholar 

  • Kulm LD, Suess E (1990) Relationship between carbonate deposits and fluid venting: Oregon accretionary prism. J Geophys Res 95:8899–8915

    Google Scholar 

  • Kushner DJ (1993) Growth and nutrition of halophilic bacteria. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, pp 87–103

    Google Scholar 

  • Kuypers MMM, Blokker P, Erbacher J, Kinkel H, Pancost RD, Schouten S, Sinninghe Damsté JS (2001) Massive expansion of marine archaea during a mid-Cretaceous oceanic anoxic event. Science 293:92–94

    Google Scholar 

  • Kuypers MMM, Blokker P, Hopmans EC, Kinkel H, Pancost RD, Schouten S, Sinninghe Damsté JS (2002) Archaeal remains dominate marine organic matter from the early Albian Oceanic Anoxic Event 1b. Palaeogeog Palaeoclimat Palaeoecol 185:211–234

    Google Scholar 

  • Land LS (1998) Failure to precipitate dolomite at 25^ˆC from dilute solutions despite 1000-fold oversaturation after 32 years. Aquatic Geochem 4:361–368

    Google Scholar 

  • Langenheder S, Kisand V, Wikner J, Tranvik LJ (2003) Salinity as a structuring factor for the composition and performance of bacterioplankton degrading riverine DOC. FEMS Microbiol Ecol 45:189–202

    Google Scholar 

  • Langevin Y, Poulet F, Bibring JP, Gondet B (2005) Sulfates in the north polar region of Mars detected by OMEGA/Mars express. Science 307:1584–1586

    Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806–809

    Google Scholar 

  • Lin LH, Hall J, Lippmann-Pipke J, Ward JA, Lollar BS, DeFlaun M, Rothmel R, Moser DP, Gihring TM, Mislowack B, Onstott TC (2005) Radiolytic H-2 in continental crust: Nuclear power for deep subsurface microbial communities. Geochem Geophys Geosyst 6:Q07003

    Google Scholar 

  • Lin LH, Wang PL, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM, Lollar BS, Brodie EL, Hazen TC, Andersen GL, DeSantis TZ, Moser DP, Kershaw D, Onstott TC (2007) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482

    Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Google Scholar 

  • Liu XQ, Dong H, Rech JA, Shen J, Wang SM, Wang YB, Yang B (2007a) Evolution of Chaka Salt Lake in NW China in response to climatic change during the latest Pleistocene-Holocene. Quat Sci Rev, In revision.

    Google Scholar 

  • Liu XQ, Ni P, Dong HL, Wang TG (2007b) Homogenization temperature and its significance for primary fluid inclusion in halite formed in Chaka salt lake, Qardam basin. Acta Petrologica Sinica 23:113–116

    Google Scholar 

  • Lollar BS, Lacrampe-Couloume G, Slater G, Ward JA, Moser DP, Gihring TM, Lin LH, Onstott TC (2006) Unravelling abiogenic and biogenic sources of methane in the Earth’s deep subsurface. Chem Geol 226:328–339

    Google Scholar 

  • Lueders T, Chin KJ, Conrad R, Friedrich M (2001) Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 3:194–204

    Google Scholar 

  • MacGregor BJ, Moser DP, Alm EW, Nealson KH, Stahl DA (1997) Crenarchaeota in Lake Michigan Sediment. Appl Environ Microbiol 63:1178–1181

    Google Scholar 

  • MacGregor BJ, Moser DP, Baker BJ, Alm EW, Maurer M, Nealson KH, Stahl DA (2001) Seasonal and spatial variability in Lake Michigan sediment small-subunit rRNA concentrations. Appl Environ Microbiol 67:3908–3922

    Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2004) Brock biology of microorganisms. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Magot M, Basso O, Tardy-Jacquenod C, Caumette P (2004) Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulfate-reducing bacteria isolated from deep subsurface oilfield water. Inter J Sys Evol Microbiol 54:1693–1697

    Google Scholar 

  • Mancinelli RL, Fahlen TF, Landheim R, Klovstad MR (2004) Brines and evaporites: analogs for Martian life. Adv Space Res 33:1244–1246

    Google Scholar 

  • Mazzullo SJ (2000) Organogenic Dolomitization in peritidal to deep-sea sediments. J. Sediment Res 70:10–23

    Google Scholar 

  • McCollom TM, Ritter G, Simoneit BRT (1999) Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig Life Evol Bipsph 29:153–166

    Google Scholar 

  • McCollom TM, Seewald JS (2001) A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim Coschim Acta 65: 3769–3778

    Google Scholar 

  • McCollom TM, Seewald JS (2003) Experimental constraints on the hydrothermal reactivity of organic acids and acid anions: I. Formic acid and formate. Geochim Coschim Acta 67:3625–3644

    Google Scholar 

  • McCollom TM, Seewald JS (2006) Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions. Earth Planet Sci Lett 243:74–84

    Google Scholar 

  • McLoughlin N, Brasier MD, Wacey D, Green OR, Perry RS (2007) On biogenicity criteria for endolithic microborings on early earth and beyond. Astrobiology 7:10–26

    Google Scholar 

  • McMahon PB (2001) Aquifer/aquitard interfaces: mixing zones that enhance biogeochemical reactions. Hydrogeol J 9:34–43

    Google Scholar 

  • McMahon PB, Chapelle FH (1991) Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry. Nature 349:233–235

    Google Scholar 

  • Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jørgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015

    Google Scholar 

  • Mincer TJ, Church MJ, Taylor LT, Preston C, Kar DM, DeLong EF (2007) Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ Microbiol 9:1162–1175

    Google Scholar 

  • Miroshnichenko ML, Bonch-Osmolovskaya EA (2006) Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents. Extremophiles 10:85–96

    Google Scholar 

  • Moore TS, Murray RW, Kurtz AC, Schrag DP (2004) Anaerobic methane oxidation and the formation of dolomite. Earth Planet Sci Lett 229:141–154

    Google Scholar 

  • Nagy ML, Pe’rez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233–245

    Google Scholar 

  • Nauhaus K, Boetius A, Kruger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4:296–305

    Google Scholar 

  • Navarro-Gonzalez R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Caceres L, Gomez-Silva B, McKay CP (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302:1018–1021

    Google Scholar 

  • Nazina TN, Kosareva IM, Davidov AS, Tourova TP, Novikova EV, Khafizov RR, Poltaraus AB (2000) Physicochemical and microbiological characteristics of groundwater from observation wells of a deep radioactive liquid waste repository. Microbiol 69:89–95

    Google Scholar 

  • Nealson KH, Belz A, McKee B (2002) Breathing metals as a way of life: geobiology in action. Antonie van Leeuwenhoek 81:215–222

    Google Scholar 

  • Nealson KH, Inagaki F, Takai K (2005) Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? Trends Microbiol 13:405–410

    Google Scholar 

  • Nejidat A (2005) Nitrification and occurrence of salt-tolerant nitrifying bacteria in the Negev desert soils. 2005, 52:21–29

    Google Scholar 

  • Newberry CJ, Webster G, Cragg BA, Parkes RJ, Weightman AJ, Fry JC (2004) Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ Microbiol 6:274–287

    Google Scholar 

  • Nicol GW, Schleper C (2006) Ammonia-oxidising Crenarchaeota: important players in the nitrogen cycle? Trends Microbiol 14:207–212

    Google Scholar 

  • Onstott TC, Phelps TJ, Colwell FS, Ringelberg D, White DC, Boone DR, McKinley JP, Stevens TO, Long PE, Balkwill DL, Griffin WT, Kieft T (1998) Observations pertaining to the origin and ecology of microorganisms recovered from the deep subsurface of Taylorsville Basin, Virginia. Geomicrobiology 15:353–385

    Google Scholar 

  • Oren A (1993) Ecology of extremely halophilic microorganisms. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC Press, Boca Raton, FL, pp 25–53

    Google Scholar 

  • Oren A (1999) Microbiology and biogeochemistry of hypersaline environments. CRC Press, New York

    Google Scholar 

  • Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity at increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiologia 466:61–72

    Google Scholar 

  • Oren A (2002a) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotech 28:56–63

    Google Scholar 

  • Oren A (2002b) Halophilic microorganisms and their environments. Kluwer Academic, Dordrecht; Boston, 575pp

    Google Scholar 

  • Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484–487

    Google Scholar 

  • Orphan VJ, Taylor LT, Hafenbradl D, Delong EF (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711

    Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Google Scholar 

  • Park HD, Wells GF, Bae H, Criddle CS, Francis CA (2006) Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Appl Environ Microbiol 72:5643–5647

    Google Scholar 

  • Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413

    Google Scholar 

  • Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studied on bacterial population and processes in subseafloor sediments: a review. Hydrogeol J 8:11–28

    Google Scholar 

  • Parkes RJ, Wellsbury P (2004) Deep biospheres. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, DC, pp 120–129

    Google Scholar 

  • Peckmann J, Gischler E, Oschmann W, Reitner J (2001) An early carboniferous seep community and hydrocarbon-derived carbonates from the Harz Mountains, Germany. Geology 29: 271–274

    Google Scholar 

  • Peckmann J, Thiel V (2004) Carbon cycling at ancient methane-seeps. Chem Geol 205:443–467

    Google Scholar 

  • Peckmann J, Thiel V, Michaelis W, Clari P, Gaillard C, Martire L, Reitner J (1999) Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; norther Itlay): microbially induced authigenic carbonates. Inter J Earth Sci 88:60–75

    Google Scholar 

  • Pedersen K (1997) Microbial life in deep granitic rock. FEMS Microbiol Rev 20:399–414

    Google Scholar 

  • Pedersen K (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16

    Google Scholar 

  • Pedersen K (2001) Diversity and activity of microorganisms in deep igneous rock aquifers of the fennoscandian shield. In: Frederick JF, Fletcher M (eds) Subsurface microgeobiology and biogeochemistry. Wiley-Liss, New York, pp 97–139

    Google Scholar 

  • Pedros-Alio C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14: 257–263

    Google Scholar 

  • Phillips CJ, Smith Z, Embley TM, Prosser JI (1999) Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the northwestern Mediterranean Sea. Appl Environ Microbiol 65:779–786

    Google Scholar 

  • Pierre C, Rouchy JM (2004) Isotopic compositions of diagenetic dolomites in the Tortonian marls of the western Mediterranean margins: evidence of the past gas hydrate formation and dissociation. Chem Geol 205:469–484

    Google Scholar 

  • Pommier T, Pinhassi J, Hagstrom A (2005) Biogeographic analysis of ribosomal RNA clusters from marine bacterioplankton. Aquat Microb Ecol 41:79–89

    Google Scholar 

  • Powers DW, vreeland RH, Rosenzweig WD (2001) How old are bacteria from the Permian age? Reply. Nature 411:155–156

    Google Scholar 

  • Pronk JT, Meulenberg R, Hazeu W, Bos P, Kuenen JG (1990) Oxidation of reduced inorganic sulfur-compounds by acidophilic Thiobacilli. FEMS Microbiol Rev 75:293–306

    Google Scholar 

  • Prosser JI, Embley TM (2002) Cultivation-based and molecular approaches to characterisation of terrestrial and aquatic nitrifiers. Antonie van Leeuwenhoek 81:165–179

    Google Scholar 

  • Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park MJ, Earl AM, Shank NC (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from a Sonoran Desert Soil and Description of Nine New Species of the Genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235

    Google Scholar 

  • Reysenbach A-L (2001a) Thermotogales. In: Boone DR, Garrity, GMe (eds) Bergey’s Manual of systematic bacteriology, 1. Springer, Berlin Heidelberg New York, pp 396–387

    Google Scholar 

  • Reysenbach AL (2001b) Aquificales. In: Boone DR, Garrity GMe (eds) Bergey’s manual of systematic bacteriology, 1. Springer, Berlin Heidelberg New York, pp 369–387

    Google Scholar 

  • Roberts HH, Aharon P (1994) Hydrocarbon-derived carbonate buildups of the northern Gulf-of-Mexico continental slope – a review of submersible investigations. Geo-Mar Lett 14:135–148

    Google Scholar 

  • Roberts JA, Bennett PC, Gonzalez LA, Macpherson GL, Milliken KL (2004) Microbial precipitation of dolomite in methanogenic groundwater. Geology 32:277–280

    Google Scholar 

  • Robertson LA, Kuenen JG (1999) The colorless sulfur bacteria, 1999. Springer-Verlag

    Google Scholar 

  • Rodriguez NM, Paull CK, Borowski WS (2000) Zonation of authigenic carbonates within gas-hydrate bearing sedimentary sections on the Blake Ridge: offshore southeastern North America. In: Paull CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proceedings of Ocean Drilling program, scientific research, 164, pp 301–312

    Google Scholar 

  • Rothschild LJ, Giver LJ, White MR, Mancinelli RL (1994) Metabolic-activity of microorganisms in evaporites. J. Phycol 30:431–438

    Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Google Scholar 

  • Russell MJ (2003) The importance of being alkaline. Science 302:580–581

    Google Scholar 

  • Russell MJ, Daia DE, Hall AJ (1998) The emergence of life from FeS bubbles at alkaline hot springs in an acid ocean. In: Wiegel J, Adams MWW (ed) Thermophiles: the keys to molecular evolution and the origin of life? Taylor & Francis, pp 77–126

    Google Scholar 

  • Sample JC, Reid MR (1998) Contrasting hydrogeologic regimes along strike-slip and thrust faults in the Oregon convergent margin: evidence from the chemistry of syntectonic carbonate cements and veins. GSA Bull 110:48–59

    Google Scholar 

  • Sanchez-Roman M, McKenzie JA, Vasconcelos C, Rivadeneyra M (2005) Bacterially induced dolomite formation in the presence of sulfate ions under Aerobic conditions. 2005 AGU Fall meeting, San Francisco

    Google Scholar 

  • Sassen R, Roberts HH, Carney R, Milkov AV, DeFreitas DA, Lanoil B, Zhang CL (2004) Free hydrocarbon gas, gas hydrate, and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope: relation to microbial processes. Chem Geol 205:195–217

    Google Scholar 

  • Scappini F, Casedi F, Zamboni R, Franchi M, Gallori E, Monti S (2004) Protective effect of clay minerals on adsorbed nucleic acid against UV radiation: possible role in the origin of life. Inter J Astrobiol 3:17–19

    Google Scholar 

  • Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes RJ, Jorgensen BB (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861–864

    Google Scholar 

  • Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated archaea. Nat Rev Microbiol 3:479–488

    Google Scholar 

  • Schlesinger WH, Pippen JS, Wallenstein MD, Hofmockel KS, Klepeis DM, Mahall BE (2003) Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology 84:3222–3231

    Google Scholar 

  • Schweitzer B, Huber I, Amann R, Ludwig W, Simon M (2001) alpha- and beta-Proteobacteria control the consumption and release of amino acids on lake snow aggregates. Appl Environ Microbiol 67:632–645

    Google Scholar 

  • Selje N, Simon M (2003) Composition and dynamics of particle-associated and free-living bacterial communities in the Weser estuary, Germany. Aquat Microb Ecol 30:221–237

    Google Scholar 

  • Shen J, Liu XQ, Wang SM, Matsumoto R (2005) Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years. Quat Int 136:131–140

    Google Scholar 

  • Shock EL (1990) Geochemical constraints on the origin of organic compounds in hydrothermal systems. Origins of life and evolution of the bipsphere, 20:331–367

    Google Scholar 

  • Shock EL (1997) High-temperature life without photosynthesis as a model for mars. J Geophys Res 102:23687–23694

    Google Scholar 

  • Shock EL, Schulte MD (1998) Organic synthesis during fluid mixing in hydrothermal systems. J Geophys Res 103:28513–28517

    Google Scholar 

  • Sinninghe Damsté JS, Coolen MJL (2006) Fossil DNA in Cretaceous black shales: myth or reality. Astrobiology 6:299–302

    Google Scholar 

  • Skirnisdottir S, Hreggvidsson GO, Holst O, Kristjansson JK (2001) Isolation and characterization of a mixotrophic sulfur-oxidizing Thermus scotoductus. Extremephiles 5:45–51

    Google Scholar 

  • Sleep NH, Meibom A, Fridriksson T, Coleman RG, Bird DK (2004) H2-rich fluids from serpentinization: Geochemical and biotic implications. Proc Natl Acad Sci USA 101:12818–12823

    Google Scholar 

  • Slobodkin AI (2005) Thermophilic microbial metal reduction. Microbiol 74:501–504

    Google Scholar 

  • Sorensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365

    Google Scholar 

  • Sorokin DY, Antipov AN, Kuenen JG (2003) Complete denitrification in coculture of obligately chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacteria from a hypersaline soda lake. Arch Microbiol 180:127–133

    Google Scholar 

  • Sorokin DY, Kuenen JG (2005) Chemolithotrophic halo alkaliphiles from soda lakes. FEMS Microbiol Ecol 52:287–295

    Google Scholar 

  • Sorokin DY, Tourova TP, Kolganova TV, Spiridonova EM, Berg IA, Muyzer G (2006a) Thiomicrospira halophila sp nov., a moderately halophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium from hypersaline lakes. Inter J Sys Evol Microbiol 56:2375–2380

    Google Scholar 

  • Sorokin DY, Tourova TP, Lysenko AM, Muyzer G (2006b) Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 152:3013–3023

    Google Scholar 

  • Squyres SW, Grotzinger JP, Arvidson RE, Bell JF, Calvin W, Christensen PR, Clark BC, Crisp JA, Farrand WH, Herkenhoff KE, Johnson JR, Klingelhofer G, Knoll AH, McLennan SM, McSween HY, Morris RV, Rice JW, Rieder R, Soderblom LA (2004) In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars. Science 306:1709–1714

    Google Scholar 

  • Stakes DS, Orange D, Paduan JB, Salamy KA, Maher N (1999) Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Mar Geol 159:93–109

    Google Scholar 

  • Staudigel H, Chastain RA, Yayanos A, Bourcier W (1995) Biologically mediated dissolution of glass. Chem Geol 126:147–154

    Google Scholar 

  • Staudigel H, Furnes H, Banerjee NR, Dilek Y, Muehlenbachs K (2006) Microbes and volcanoes: a tale of the oceans, ophiolites, and greenstone belts. GSA Today 16:4–10

    Google Scholar 

  • Staudigel H, Yayanos A, Chastain RA, Davies G, Verdurmen EA, Schiffman P, Bourcier R, De Baar H (1998) Biologically mediated dissolution of volcanic glass in seawater. Earth Planet Sci Lett 164:233–244

    Google Scholar 

  • Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–454

    Google Scholar 

  • Storrie-Lombardi MC, Fisk MR (2004) Elemental abundance distributions in suboceanic basalt glass: evidence of biogenic alteration. Geochem Geophys Geosys 5:Art. No. Q10005

    Google Scholar 

  • Takai K, Gamo T, Tsunogai U, Nakayama N, Hirayama H, Nealson KH, Horikoshi K (2004) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8:269–282

    Google Scholar 

  • Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152: 1285–1297

    Google Scholar 

  • Takai K, Moser DP, Onstott TC, Spoelstra N, Pfiffner SM, Dohnalkova A, Fredrickson JK (2001) Alkaliphilus transvaalensis gen. nov., sp. nov., an extremely alkaliphilic bacterium isolated from a deep South African gold mine. Inter J Sys Evol Microbiol 51:1245–1256

    Google Scholar 

  • Templeton AS, Staudigel H, Tebo BM (2005) Diverse Mn(II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount. Geomicrobiol J 22:127–139

    Google Scholar 

  • Terzi C, Aharon P, Lucchi FR, Vai GB (1994) Petrography and stable-isotope aspects of cold vent activity imprinted on Miocene age calcari-a-lucina from Tuscan and Romagna Apennines, Italy. Geo-Mar Lett 14:177–184

    Google Scholar 

  • Teske A, Dhillon A, Sogin ML (2003) Genomic markers of ancient anaerobic microbial pathways: sulfate reduction, methanogenesis, and methane oxidation. Biol Bull 204:186–191

    Google Scholar 

  • Teske A, Hinrichs K-U, Edgcomb V, Gomez AdV, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007

    Google Scholar 

  • Teske AP (2005) The deep subsurface biosphere is alive and well. Trends Microbiol 13:402–404

    Google Scholar 

  • Teske AP (2006) Microbial communities of deep marine subsurface sediments: Molecular and cultivation surveys. Geomicrobiol J 23:357–368

    Google Scholar 

  • Thevenieau F, Fardeau ML, Ollivier B, Joulian C, Baena S (2007) Desulfomicrobium thermophilum sp nov., a novel thermophilic sulphate-reducing bacterium isolated from a terrestrial hot spring in Colombia. Extremophiles 11:295–303

    Google Scholar 

  • Thomsen TR, Finster K, Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67:1646–1656

    Google Scholar 

  • Thorseth IH, Furnes H, Tumyr O (1995a) Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chem Geol 119:139–160

    Google Scholar 

  • Thorseth IH, Pedersen RB, Christie DM (2003) Microbial alteration of 0-30-Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic Discordance. Earth Planet Sci Lett 215:237–247

    Google Scholar 

  • Thorseth IH, Torsvik T, Furnes H, Muehlenbachs K (1995b) Microbes play an important role in the alteration of oceanic crust. Chem Geol 126:137–146

    Google Scholar 

  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985–1995

    Google Scholar 

  • Trimarco E, Balkwill D, Davidson M, Onstott TC (2006) In situ enrichment of a diverse community of bacteria from a 4–5 km deep fault zone in South Africa. Geomicrobiol J 23:463–473

    Google Scholar 

  • Tsikos H, Karakitsios V, van Breugel Y, Walsworth-Bell B, Petrizzo MR, Bombardiere L, Sinninghe Damsté JS, Schouten S, Erba E, Premoli Silva I, Farrimond, P, Tyson, RV, Jenkyns HC (2004) Organic-carbon deposition in the Cretaceous of the Ionian Basin, NW-Greece: the Paquier Event (OAE 1b) re-visited. Geol Mag 141:401–416

    Google Scholar 

  • Urakawa H, Kurata S, Fujiwara T, Kuroiwa D, Maki H, Kawabata S, Hiwatari T, Ando H, Kawai T, Watanabe M, Kohata K (2006) Characterization and quantification of ammonia-oxidizing bacteria in eutrophic coastal marine sediments using polyphasic molecular approaches and immunofluorescence staining. Environ Microbiol 8:787–803

    Google Scholar 

  • Valentine DL, Reeburgh WS (2000) New perspectives on anaerobic methane oxidation. Environ Microbiol 2:477–484

    Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Google Scholar 

  • Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67

    Google Scholar 

  • Vasconcelos C, McKenzie JA (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J. Sediment Res 67:378–390

    Google Scholar 

  • Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tien AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperature. Nature 377:220–222

    Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Google Scholar 

  • Ventosa A (2004) Halophilic microorganisms. Springer, Berlin, New York, 349pp

    Google Scholar 

  • Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544

    Google Scholar 

  • vonRad U, Rosch H, Berner U, Geyh M, Marchig V, Schulz H (1996) Authigenic carbonates derived from oxidized methane vented from the Makran accretionary prism off Pakistan. Mar Geol 136:55–77

    Google Scholar 

  • Voytek MA, Priscu JC, Ward BB (1999) The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica. Hydrobiologia 401:113–130

    Google Scholar 

  • Vreeland RH, Hochstein LI (1993) The biology of halophilic bacteria. CRC Press, Boca Raton, FL, pp 25–53

    Google Scholar 

  • Vreeland RH, Jones J, Monson A, Rosenzweig WD, Lowenstein TK, Timofeeff M, Satterfield C, Cho BC, Park JS, Wallace A, Grant WD (2007) Isolation of live Cretaceous (121–112 million years old) halophilic Archaea from primary salt crystals. Geomicrobiol J 24:275–282

    Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900

    Google Scholar 

  • Wacey D, Wright DT, Boyce AJ (2007) A stable isotope study of microbial dolomite formation in the Coorong Region, South Australia. Chem Geol 244:155–174

    Google Scholar 

  • Ward BB, Martino DP, Diaz MC, Joye SB (2000) Analysis of ammonia-oxidizing bacteria from hypersaline Mono Lake, California, on the basis of 16S rRNA sequences. Appl Environ Microbiol 66:2873–2881

    Google Scholar 

  • Ward BB, O’Mullan GD (2005) Community level analysis: Genetic and biogeochemical approaches to investigate community composiiton and function in aerobic ammonia oxidation. Methods Enzymol 397:397–413

    Google Scholar 

  • Warren-Rhodes KA, Rhodes KL, Boyle L, Pointing SB, Chen Y, Liu SJ, Zhou PJ, McKay CP (2007) Cyanobacterial ecologyacross environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61:470–482

    Google Scholar 

  • Warren-Rhodes KA, Rhodes KL, Pointing SB, WEwing S, Lacap DC, Gomez-Silva B, Amundson R, Friedmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthetic and microbial community ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398

    Google Scholar 

  • Warthmann R, van Lith Y, Vasconcelos C, McKenzie JA, Karpoff AM (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28:1091–1094

    Google Scholar 

  • Warthmann R, Vasconcelos C, Sass H, McKenzie JA (2005) Desulfovibrio brasiliensis sp. nov., a moderate halophilic sulfate-reducing bacterium from Lagoa Vermelha (Brazil) mediating dolomite formation. Extremephiles 9:255–261

    Google Scholar 

  • Welsh DT, Lindsay YE, Caumette P, Herbert RA, Hannan J (1996) Identification of trehalose and glycine betaine as compatible solutes in the moderately halophilic sulfate reducing bacterium Desulfovibrio halophilus. FEMS Microbiol Lett 140:203–207

    Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Google Scholar 

  • Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama desert. Astrobiology 6:415–422

    Google Scholar 

  • Wilcock WSD, Delong EF, Kelley DS, Baross JA, Cary SC (2004) The Subseafloor Biosphere at Mid-Ocean Ridges. American Geophysical Union, Washington, DC.

    Google Scholar 

  • Wright D (1999) The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sed Geol 126:147–157

    Google Scholar 

  • Wright DT, Oren A (2005) Nonphotosynthetic bacteria and the formation of carbonates and evaporites through time. Geomicrobiol J 22:27–53

    Google Scholar 

  • Wright DT, Wacey D (2005) Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology 52:987–1008

    Google Scholar 

  • Wright DT, Wacey D (2007) Precipitation of dolomite using sulphate reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology 52

    Google Scholar 

  • Wu LL, Jacobson AD, Chen HC, Hausner M (2007) Characterization of elemental release during microbe-basalt interactions at T=28 degrees C,. Geochimica et Cosmochimica Acta 71:2224–2239

    Google Scholar 

  • Wu QL, Zwart G, Schauer M, Kamst-van Agterveld MP, Hahn MW (2006) Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl Environ Microbiol 72:5478–5485

    Google Scholar 

  • Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damste JSS (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci U S A 103:12317–12322

    Google Scholar 

  • Wynn-Williams DD (2000) Cyanobacteria in deserts-life at the limit? In: Whitton BA, Potts M(eds) The ecology of cyanobacteria-their diversity in time and space. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 341–366

    Google Scholar 

  • Zavarzina DG, Sokolova TG, Tourova TP, Chernyh NA, Kostrikina NA, Bonch-Osmolovskaya EA (2007) Thermincola ferriacetica sp nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction. Extremophiles 11:1–7

    Google Scholar 

  • Zhang G, Dong H, Jiang H, Xu Z, Eberl D (2006) Unique microbial community in drilling fluid from Chinese Continental Scientific Deep Drilling. Geomicrobiological Journal, 23:1–16

    Google Scholar 

  • Zhang G, Dong H, Jiang H, Xu Z, Eberl D (2006a) Unique microbial community in drilling fluid from Chinese Continental Scientific Deep Drilling. Geomicrobiol J 23:499–514

    Google Scholar 

  • Zhang GX, Dong HL, Jiang HC, Kukkadapu RK, Kim JW, Eberl DD, Xu ZQ (2007) Evidence for Microbially-Mediated Iron Redox Cycling in the Deep Subsurface. Appl Environ Microbiol In submission

    Google Scholar 

  • Zhang Y, Jiao NZ, Cottrell MT, Kirchman DL (2006b) Contribution of major bacterial groups to bacterial biomass production along a salinity gradient in the South China Sea. Aquat Microb Ecol 43:233–241

    Google Scholar 

  • Zheng D, Yao TD (2004) Uplifting of Tibetan Plateau with its environmental effects. Science Press, Beijing, China

    Google Scholar 

  • Zheng MP (1995) An introduction to saline lakes on the Qinghai-Tibet Plateau. Kluwer Academic Publishers, Dordrecht, The Netherlands, 294pp

    Google Scholar 

  • Zolotov MY, Shock EL (2004) A model for low-temperature biogeochemistry of sulfur, carbon, and iron on Europa. J. Geophy Res -Planets 109:E06003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dong, H. (2008). Microbial Life in Extreme Environments: Linking Geological and Microbiological Processes. In: Dilek, Y., Furnes, H., Muehlenbachs, K. (eds) Links Between Geological Processes, Microbial Activities&Evolution of Life. Modern Approaches in Solid Earth Sciences, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8306-8_8

Download citation

Publish with us

Policies and ethics