Diversity of Bahamian Microbialite Substrates

  • Robert N. Ginsburg
  • Noah J. Planavsky
Part of the Modern Approaches in Solid Earth Sciences book series (MASE, volume 4)


Stromatolites, laminated columnar and branched structures of limestone and dolomite, are the only macroscopic evidence of life for the first few billion years of earth history. These organo-sedimentary structures are a prominent constituent of Precambrian carbonate successions and occur sporadically throughout the Phanerozoic. They are hosts for metallic ores and serve as reservoir rocks for hydrocarbons. Still living Bahamian columnar forms that are counterparts of ancient microbialites (stromatolitic and thrombolitic) provide a special opportunity to examine if their substrates played a role in determining the occurrences and patterns of these remarkable structures. The cyanobacterial builders of Bahamian stromatolites can colonize almost all substrates except mobile sands. The development of columnar structures with significant relief however, requires either a hard or firm substrate. From published reports on substrates and our own observations we recognize two families of substrates: inherited, consisting of pre-existing rock surfaces and renewable, including all substrates that can develop repeatedly during accumulation. Inherited substrates in the Bahamas include Pleistocene limestone with or without palimpsest encrustations of caliche or paleosol. Renewable substrates in the marine environment include syndepositional hardgrouds, large skeletons of corals and mollusks, encrustations of coralline algae or vermetid gastropods, and firm grounds of fine-grained carbonate sediment. Recognizing the key roles of renewable substrates in determining the occurrences and age variations of modern Bahamian specimens emphasizes the need for increased attention to the foundations of microbialites in future studies.


Tidal Channel Sand Wave Benthic Microbial Community Great Slave Lake Renewable Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andres MS, Reid RP (2006) Growth morphologies of modem marine stromatolites: a case study from Highborne Cay, Bahamas. Sediment Geol 185:319–328CrossRefGoogle Scholar
  2. Andres MS, Sumner DY, Reid RP, Swart PK (2006) Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites. Geology 34:973–976Google Scholar
  3. Arp G, Reimer A, Reitner J (1999) Calcification in cyanobacterial biofilms of alkaline salt lakes. Eur J Phycol 34:393–403CrossRefGoogle Scholar
  4. Arp G, Reimer A, Reitner J (2003) Microbialite formation in seawater of increased alkalinity, Satonda crater lake, Indonesia. J Sediment Res 73:105–127CrossRefGoogle Scholar
  5. Bailey JV, Corsetti FA, Bottjer DJ, Marenco KN (2006) Microbially-mediated environmental influences on metazoan colonization of matground ecosystems: evidence from the Lower Cambrian Harkless Formation. Palaios 21:215–226CrossRefGoogle Scholar
  6. Bertrand Sarfati J (1972) Paleoecologie de certains stromatolites en recifs des formations d precambrien superieur de groupe d’ Atar (Mauritanie, Sahara occidental): creation d’especes nouvelles de ces recifs Palaeogeography, Palaeoclimatology, Palaeoecology 11:33–63CrossRefGoogle Scholar
  7. Black M (1933) The algal sediments of Andros Islands, Bahamas. R Soc Lond Philos Trans, B 222:165–192CrossRefGoogle Scholar
  8. Browne KM, Golubic S, Seong-Joo L (2000) Shallow marine microbial carbonate deposits, In: Riding R, Awramik SM (eds) Microbial sediments. Springer-Verlag Publishing, Berlin, pp 233–249Google Scholar
  9. Burdige DJ, Hu XP (2005) Isotopic evidence for shallow-water carbonate dissolution and reprecipitation. Geochimica et Cosmochimica Acta 69:A130–A130Google Scholar
  10. Demicco RV (1985) Platform and off-platform carbonates of the Upper Cambrian of western Maryland, USA. Sedimentology 32:1–22CrossRefGoogle Scholar
  11. Dill RF (1991) Subtidal Stromatolites, Ooids, and Crusted-Lime Muds at the Great Bahama Bank Margin. In: Osborne RH (ed) From Shoreline to Abyss, SEPM Special Publication: Tulsa, Society for Sedimentary Geology pp 147–171Google Scholar
  12. Dill RF, Shinn EA, Jones AT, Kelly K, Steinen RP (1986) Giant Subtidal Stromatolites Forming in Normal Salinity Waters. Nature 324:55–58CrossRefGoogle Scholar
  13. Dravis JJ (1983) Hardened subtidal stromatolites, Bahamas. Science 219:385–386CrossRefGoogle Scholar
  14. Feldman M, McKenzie J (1998) Stromatolite-thrombolite associations in a modern environment, Lee Stocking Island, Bahamas. Palaios 13:201–212CrossRefGoogle Scholar
  15. Ginsburg RN, Hardie LA, Bricker OP, Garrett P, Wanless H (1977) Exposure index: a quantitative approach to defining position within the Tidal Zone. In: Hardie LA (ed) Sedimentation on the modern carbonate tidal flats of northwest Andros Island, bahamas, The John Hopkins University Press, Baltimore pp 7–12Google Scholar
  16. Ginsburg RN, Lowenstam HA (1958) The Influence of Marine Bottom Communities on the Depositional Environment of Sediments. J Geol 66:310–318Google Scholar
  17. Gischler E, Lomando AJ (1997) Holocene cemented beach deposits in Belize. Sediment Geol 110:277–297CrossRefGoogle Scholar
  18. Hardie LAE (1977) Sedimentation on the Modern Carbonate Tidal Flats of Northwest Andros Island, Bahamas. Studies in Geology 22, The John Hopkins University Press, BaltimoreGoogle Scholar
  19. Hoffman P (1974) Shallow and Deep-Water Stromatolites in Lower Proterozoic Platform-to-Basin Facies Change, Great-Slave-Lake, Canada. AAPG Bull 58:856–867Google Scholar
  20. Hu XP, Burdige DJ (2007) Enriched stable carbon isotopes in the pore waters of carbonate sediments dominated by seagrasses: Evidence for coupled carbonate dissolution and reprecipitation. Geochimica et Cosmochimica Acta 71:129–144CrossRefGoogle Scholar
  21. Illing LV (1954) Bahamian Calcareous Sands. Am Assoc Pet Geol Bull 38:1–95Google Scholar
  22. Ku TCW, Walter LM, Coleman ML, Blake RE, Martini AM (1999) Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, USA. Geochimica et Cosmochimica Acta 63:2529–2546CrossRefGoogle Scholar
  23. Logan BW, (1961) Cryptozoon and Associate Stromatolites from the Recent, Shark Bay, Western-Australia: J Geol 69:517–529CrossRefGoogle Scholar
  24. Macintyre IG, Prufert-Bebout L, Reid RP (2000) The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology 47:915–921CrossRefGoogle Scholar
  25. Macintyre IG, Reid RP, Steneck RS (1996) Growth history of stromatolites in a Holocene fringing reef, Stocking Island, Bahamas. J Sediment Res 66:231–242Google Scholar
  26. Monty CVL (1976) The Origin and Development of Cryptalgal Fabrics, In: Walter MR (ed) Stromatolites. Developments in Sedimentology Amsterdam Elsevier, pp 193–251Google Scholar
  27. Palmer M (1979) Holocene Facies Geometry of the Leeward Bank Margin, Tongue of the Ocean, Bahamas, Unpublished Master’s thesis, University of Miami, Miami pp 198Google Scholar
  28. Papineau D, Walker JJ, Mojzsis SJ, Pace NR (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol 71:4822–4832CrossRefGoogle Scholar
  29. Pierson BJ, Shinn EA (1983) Distribution and Preservation of Carbonate Cements in Pleistocene Limestones of Hogsty Reef Atoll, Southeast Bahamas. AAPG Bull 67:534–534Google Scholar
  30. Playford PE, Cockbain AE (1976) Modern Algal Stromatolites at Hamelin Poor, a Hypersaline Barred Basin in Shark Bay, Western Australia, In: Walter MR (ed) Stromatolites: developments in sedimentology 20. Amsterdam, Elsevier, pp 389–413Google Scholar
  31. Pope MC, Grotzinger JP (2003) Paleoproterozoic Stark Formation, Athapuscow Basin, Northwest Canada: Record of cratonic-scale salinity crisis. J Sediment Res 73:280–295CrossRefGoogle Scholar
  32. Reid RP, MacIntyre IG (1998) Carbonate recrystallization in shallow marine environments: a widespread diagenetic process forming micritized grains. J Sediment Res 68:928–946Google Scholar
  33. Reid RP, MacIntyre IG (2000) Microboring versus recrystallization: further insight into the micritization process. J Sediment Res 70:24–28CrossRefGoogle Scholar
  34. Reid RP, Macintyre IG, Browne KM, Steneck RS, Miller T (1995) Modern Marine Stromatolites in the Exuma-Cays, Bahamas – Uncommonly Common. Facies 33:1–17CrossRefGoogle Scholar
  35. Reid RP, Macintyre IG, Post JE (1992) Micritized Skeletal Grains in Northern Belize Lagoon – a Major Source of Mg-Calcite Mud. J Sediment Petrol 62:145–156Google Scholar
  36. Reid RP, Macintyre IG, Steneck RS (1999) A microbialite/algal ridge fringing reef complex, Highborne Cay, Bahamas. Atoll Res Bull 466:1–18Google Scholar
  37. Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role of microbes in accretion, lamination, and early lithification of modern marine stromatolites. Nature 406:989–992CrossRefGoogle Scholar
  38. Sami TT, James NP (1993) Evolution of an Early Proterozoic Foreland Basin Carbonate Platform, Lower Pethei Group, Great Slave Lake, North-West Canada. Sedimentology 40:403–430CrossRefGoogle Scholar
  39. Semikhatov M, Gebelein MC, Cloud P Awramik S, Benmore W (1979) Stromatolite morphogenesis—progress and problems. Can J Earth Sci 19:922–1015Google Scholar
  40. Shapiro RS, Aalto KR, Dill RF, Kenny R (1995) Stratigraphic Setting of a Subtidal Stromatolite Field, Iguana Cay, Exumas, Bahamas, In: Curran HA, White B (eds) Terrestrial and Shallow Marine Geology of the Bahamas and Bermuda, 300, Geological Society of America, Boulder pp 139–156CrossRefGoogle Scholar
  41. Shinn EA, Lloyd RM, Ginsburg RN (1969) Anatomy of a Modern Carbonate Tidal-flat, Andros Island, Bahamas. J Sediment Petrol 37:1202–1228Google Scholar
  42. Shinn EA, Steinen RP, Dill RF, Major RP (1993) Lime-mud layers in high-energy tidal channels; a record of hurricane deposition. Geology 21:603–606CrossRefGoogle Scholar
  43. Taft WH, Arrington F, Haimovitz A, MacDonald M, Woolheater C (1968) Lithification of Modern Carbonate Sediments at Yellow Bank, Bahamas. Bull Mar Sci 18:762–828Google Scholar
  44. Visscher PT, Reid RP, Bebout BM (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28:919–922CrossRefGoogle Scholar
  45. Visscher PT, Reid RP, Bebout BM, Hoeft SE, Macintyre IG, Thompson JA (1998) Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. Am Mineral 83:1482–1493Google Scholar
  46. Walter LM, Bischof SA, Patterson WP, Lyons TW (1993) Dissolution and Recrystallization in Modern Shelf Carbonates – Evidence from Pore-Water and Solid-Phase Chemistry. Philos Trans R Soc Lond A 344:27–36CrossRefGoogle Scholar
  47. Waterbury JB, Watson SW, Guillard RRL, Brand LE (1979) Widespread Occurrence of a Unicellular, Marine, Planktonic, Cyanobacterium. Nature 277:293–294CrossRefGoogle Scholar
  48. Wilks ME, Nisbet EG (1985) Archean Stromatolites from the Steep Rock Group, Northwestern Ontario, Canada. Can J Earth Sci 22:792–799Google Scholar
  49. Wilks ME, Nisbet EG (1988) Stratigraphy of the Steep Rock Group, Northwest Ontario – a Major Archean Unconformity and Archean Stromatolites. Can J Earth Sci 25:370–391Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Robert N. Ginsburg
    • 1
  • Noah J. Planavsky
  1. 1.Comparative Sedimentology Laboratory Rosenstiel School of Marine and Atmospheric SciencesUniversity of Miami4600 Rickenbacker CausewayMiami Fl 33149

Personalised recommendations