Assimilation of Unusual Carbon Compounds

  • Wouter J. Middelhoven

Yeast taxa traditionally are distinguished by growth tests on several sugars and organic acids. During the last decades it became apparent that many yeast species assimilate a much greater variety of naturally occurring carbon compounds as sole source of carbon and energy. These abilities are indicative of a greater role of yeasts in the carbon cycle than previously assumed. Especially in acidic soils and other habitats, yeasts may play a role in the degradation of carbon compounds. Such compounds include purines like uric acid and adenine, aliphatic amines, diamines and hydroxyamines, phenolics and other benzene compounds and polysaccharides. Assimilation of purines and amines is a feature of many ascomycetes and basidiomycetes. However, benzene compounds are degraded by only a few ascomycetous yeasts (e.g. the Stephanoascus/ Blastobotrys clade and black yeastlike fungi) but by many basidiomycetes, e.g. Filobasidiales, Trichosporonales, red yeasts producing ballistoconidia and related species, but not by Tremellales. Assimilation of polysaccharides is wide-spread among basidiomycetes

Growth tests on these compounds separate Trichosporon species that otherwise are hardly distinguishable. Yeasts able to degrade phenolics can be applied for cresol removal from polluted soil and styrene removal from air by biofilters containing black yeast. Yeasts growing on polysaccharides may be a valuable source of hydrolytic enzymes that can be applied in food technology. Biodegradative abilities of yeasts inhabiting aerial plant surfaces and the fate of these yeasts during anaerobiosis and lactic acid fermentation are also dealt with

Keywords

Adenine amines benzene compounds methanol phenolics polysac-charides purines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, T.W., Burpee, L.L. and Buck, J.W. 2004. Can. J. Microbiol. 50: 1041–1048.CrossRefGoogle Scholar
  2. Almeida, C., Brányik, T., Moradas, F.P. and Texeira, J. 2004. Proc. Biochem. 40: 1937–1942.Google Scholar
  3. Anderson, J.J. and Dagley, S. 1981. J. Bacteriol. 146: 291–297.Google Scholar
  4. Aoki, K., Shinke, R. and Nishimura, H. 1976. Agric. Biol. Chem. 40: 79–85.Google Scholar
  5. Bell, T.A. and Etchells, J.L. 1956. Appl. Microbiol. 4: 196–201.Google Scholar
  6. Bhat, T.K., Singh, B. and Sharma, O.P. 1998. Biodegradation 9: 343–357.CrossRefGoogle Scholar
  7. Biely, P. and Vrsanska, M. 1988. Meth. Enzymol. 160: 638–648.CrossRefGoogle Scholar
  8. Blanco, P., Sieiro, C and Villa, T.G. 1999. FEMS Microbiol. Lett. 175: 1–9.CrossRefGoogle Scholar
  9. Bos, P, de Bruyn, J.C. 1973. Antonie van Leeuwenhoek 39: 99–107CrossRefGoogle Scholar
  10. Corpillo, D., Valetti, F., Scruffida, M.G., Conti, A., Rossi, A., Finassi-Agro, A. and Giunta, C. 2003. Yeast 15: 369–379.CrossRefGoogle Scholar
  11. Cox, H.J.J., Magielsen, F.J. and Doddema, H.J. 1996. Appl. Microbiol. Biotechnol. 45: 851–856.CrossRefGoogle Scholar
  12. da Silva, E.G., Borges, M. de-F., Medina, C., Piccoli, R.H., and Schwan, R.F., 2005. FEMS Yeast Res. 5: 859–865.CrossRefGoogle Scholar
  13. de Azaredo, L.A.I., Gomes, E.A., Mendonça-Hagler, L.C. and Hagler, A.N., 1998. Internat. Microbiol. 1: 205–208.Google Scholar
  14. de Mot, R., Andries, K. and Verachtert, H., 1984a. Syst. Appl. Microbiol. 5: 106–118.Google Scholar
  15. de Mot R., van Oudendijck, E and Verachtert, H., 1984b. Biotechnol. Lett. 6: 581–586.CrossRefGoogle Scholar
  16. Di Menna, M.E. 1959. J. Gen. Microbiol. 20: 13–23.Google Scholar
  17. Fokkema, N.J., den Houter, J.G., Kosterman, Y.J.C. and Nelis, A.L. 1979. Trans. Br. Mycol. Soc. 72: 19–29.CrossRefGoogle Scholar
  18. Frederiksen, P.S. 1956. Friesia 5: 234–239.Google Scholar
  19. Fuji, I.E., Chino, M., Kato, M. and Iimura, Y. 1996. Biochem. J. 318: 989–996.Google Scholar
  20. Gainvors, A., Frézier, V., Lemarasquier, H., Lequart, C., Aigle, M., and Belarbi, A., 1994. Yeast 10: 1311–1319.CrossRefGoogle Scholar
  21. Gomes, J., Gomes, I., and Steiner, W., 2000. Extremophiles 4: 227–235.CrossRefGoogle Scholar
  22. Green, J., Haywood, G.W. and Large, P.J. 1982. J. Gen. Microbiol. −128: 991–996.Google Scholar
  23. Haywood, G.W. and Large, P.J. 1981. Biochem. J. 199: 187–201.Google Scholar
  24. Hazeu, W., de Bruyn, J.C. and Bos, P. 1972. Arch. Microbiol. 87: 968–969.Google Scholar
  25. Heath, L.A. and Large, P.J. 1984. FEMS Microbiol. Lett. 22: 15–19.CrossRefGoogle Scholar
  26. Hug, H. and Fiechter, A., 1972. Arch. Microbiol. 88: 87–96.Google Scholar
  27. Koenig, D.W. and Day, D.F. 1988. Biotechnol. Lett. 10: 117–122.CrossRefGoogle Scholar
  28. Kremnicky, L., Slavikova, E., Mislovicova, D. and Biely, P., 1996. Folia Microbiol. 41: 43–47.CrossRefGoogle Scholar
  29. Kurtzman, C.P. and Robnett C.J. 1998. Antonie van Leeuwenhoek 73: 331–371.CrossRefGoogle Scholar
  30. Kurtzman, C.P. and Robnett C.J. 2003. FEMS Yeast Res. 3: 417–432.CrossRefGoogle Scholar
  31. Large, P.J. 1986. Yeast 2-1-34Google Scholar
  32. Leathers, T.D. 1989. J. Ind. Microbiol. Biotechnol. 4: 341–347.Google Scholar
  33. Levine, D.W. and Cooney, C.L. 1973. Appl. Microbiol. 26: 982–990.Google Scholar
  34. Lindow, S.E., Hecht-Poinar, E.I., Elliott, V.J., 2002 Phyllosphere Microbiology, APS Press, St. Paul, Minnesota.Google Scholar
  35. Luh, B.S. and Phaff, H.J., 1951. Arch. Biochem. Biophys. 33: 213–227.CrossRefGoogle Scholar
  36. Luh, B.S. and Phaff, H.J., 1953. Arch. Biochem. Biophys. 48: 23–37.CrossRefGoogle Scholar
  37. Markovetz, A.J., Kallio, R.E. 1964. J. Bacteriol. 87: 968–969Google Scholar
  38. McCormack, A.K. and Barnett J.A. 1986. Yeast 2: 109–115.CrossRefGoogle Scholar
  39. McCormack, P.J., Wildman, H.G. and Jeffries P. 1994. Appl. Environm. Microbiol. 60: 927–931.Google Scholar
  40. Middelhoven, W.J. 1977. J. Gen. Microbiol. 100: 257–269.Google Scholar
  41. Middelhoven, W.J. 1993. Antonie van Leeuwenhoek 63: 125–144.CrossRefGoogle Scholar
  42. Middelhoven, W.J. 1997. Antonie van Leeuwenhoek 72: 81–89.CrossRefGoogle Scholar
  43. Middelhoven, W.J. 1998. Food Technol. Biotechnol. 36: 7–11.Google Scholar
  44. Middelhoven, W.J. 2001. Yeast, a News Letter for Persons interested in Yeast 50: 64–65.Google Scholar
  45. Middelhoven, W.J. 2003. Mycoses 46: 7–11.CrossRefGoogle Scholar
  46. Middelhoven, W.J. 2004. Antonie van Leeuwenhoek 86: 329–337.CrossRefGoogle Scholar
  47. Middelhoven, W.J. 2005. Antonie van Leeuwenhoek 87: 101–108.CrossRefGoogle Scholar
  48. Middelhoven, W.J. 2006. Antonie van Leeuwenhoek 90: 57–67.CrossRefGoogle Scholar
  49. Middelhoven, W.J. Arkesteyn G.J.M.W. 1981. Antonie van Leeuwenhoek 47: 121–131.CrossRefGoogle Scholar
  50. Middelhoven, W.J., Berends, J., Repelius, C. and Aert, A.J.M. van 1976b. Eur.J. Appl. Microbiol. 2: 169–173.CrossRefGoogle Scholar
  51. Middelhoven, W.J., Berends, J, van Aert, A.J.M. and Bruinsma, D. 1976a. J. Gen. Microbiol. 93: 185–188.Google Scholar
  52. Middelhoven, W.J., Coenen, A., Kraakman, B. and Sollewijn Gelpke, M.D. 1992a. Antonie van Leeuwenhoek 62: 181–187.CrossRefGoogle Scholar
  53. Middelhoven, W.J. and de Hoog, G.S. 1997. Antonie van Leeuwenhoek 71: 297–305.CrossRefGoogle Scholar
  54. Middelhoven, W.J., de Jong, I.M. and Winter, M. de 1990. Antonie van Leeuwenhoek 57: 153–158.CrossRefGoogle Scholar
  55. Middelhoven, W.J., de Jong, I.M. and Winter, M. de 1991. Antonie van Leeuwenhoek 59: 129–137.CrossRefGoogle Scholar
  56. Middelhoven, W.J., de Kievit, H. and Biesbroek, A.L. 1985. Antonie van Leeuwenhoek 51: 289–301.CrossRefGoogle Scholar
  57. Middelhoven, W.J. and Franzen, M.M. 1986. J. Sci. Food. Agric. 37: 855–861.CrossRefGoogle Scholar
  58. Middelhoven, W.J., Guého, E. and de Hoog, G.S. 2000c. Antonie van Leeuwenhoek 77: 313–320.CrossRefGoogle Scholar
  59. Middelhoven, W.J., Hoogkamer-te Niet, M.C., de Laat, W.T.A.M., Weyers, C. and Bulder, C. J.E.A. 1986. Antonie van Leeuwenhoek 52: 525–536.CrossRefGoogle Scholar
  60. Middelhoven, W.J., Hoogkamer-te Niet, M.C. and Kreger-van Rij, N.J.W. 1984. Antonie van Leeuwenhoek 50: 369–378.CrossRefGoogle Scholar
  61. Middelhoven, W.J. and Kurtzman, C.P. 2003. Antonie van Leeuwenhoek 83: 69–74.CrossRefGoogle Scholar
  62. Middelhoven, W.J., Koorevaar, M. and Schuur, G.W. 1992b. Plant and Soil 145: 37–43.CrossRefGoogle Scholar
  63. Middelhoven, W.J., Kurtzman, C.P. and Vaughan-Martini, A. 2000a. Antonie van Leeuwenhoek 77: 223–228.CrossRefGoogle Scholar
  64. Middelhoven, W.J. and Notermans, S. 1988. J. Gen. Appl. Microbiol. 34: 15–26.CrossRefGoogle Scholar
  65. Middelhoven, W.J. and Notermans, S. 1993. Int. J. Food Technol. 19: 53–62.Google Scholar
  66. Middelhoven W.J., Slingerland R.J., Notermans S. 1988. Antonie van Leeuwenhoek 54: 235–244CrossRefGoogle Scholar
  67. Middelhoven, W.J. and Sollewijn Gelpke, M.D. 1995. Antonie van Leeuwenhoek 67: 217–219.CrossRefGoogle Scholar
  68. Middelhoven, W.J. and Spaaij, F. 1997. Int. J. Syst. Bacteriol. 47: 324–327.Google Scholar
  69. Middelhoven, W.J., Scorzetti, G. and Fell, J.W. 1999. Can. J. Microbiol. 45: 686–690.CrossRefGoogle Scholar
  70. Middelhoven, W.J., Scorzetti, G. and Fell, J.W. 2000b. Int. J. Syst. Evol. Microbiol. 50: 381–387.Google Scholar
  71. Middelhoven, W.J., Scorzetti, G. and Fell, J.W. 2001. FEMS Yeast Res. 1: 15–22.Google Scholar
  72. Middelhoven, W.J., Scorzetti, G. and Fell, J.W. 2004. Int. J. Syst. Evol. Microbiol. 54: 975–986.CrossRefGoogle Scholar
  73. Middelhoven, W.J. and Baalen A.H.M. van 1988. J. Sci. Food Agric. 42: 199–207.CrossRefGoogle Scholar
  74. Middelhoven, W.J., Brink, J.A. and van den, Veenhuis, M. 1983. Antonie van Leeuwenhoek 49: 361–368.Google Scholar
  75. Middelhoven, W.J. and Doesburg, W. van 2007. Antonie van Leeuwenhoek 91: 191–196.CrossRefGoogle Scholar
  76. Oda, Y. and Tonomura, K. 1996. Lett. Appl. Microbiol. 22: 173–178.CrossRefGoogle Scholar
  77. Ogata, K., Nishikawa, H. and Ohsugi, M. 1969. Agric. Biol. Chem. 33: 1519–1520.Google Scholar
  78. Ozimek, P, Veenhuis, M. and van der Klei, I. 2005. FEMS Yeast Res. 5: 975–983.CrossRefGoogle Scholar
  79. Punpeng, B., Nakata, Y., Goto, M. Teramoto, Y. and Hayashida, S. 1992. J. Ferment. Bioeng. 73: 108–111.CrossRefGoogle Scholar
  80. Ramos, A. and Spencer-Martins, I. 1983. Antonie van Leeuwenhoek 49: 183–190.CrossRefGoogle Scholar
  81. Ratledge, C. 1991. Acta Biotechnol. 11: 429–438.CrossRefGoogle Scholar
  82. Roelofsen, P.A. 1953. Biochim. Biophys. Acta 10: 410–413.CrossRefGoogle Scholar
  83. Ruinen, J. 1956. Nature 177: 220–221.CrossRefGoogle Scholar
  84. Ruinen, J. 1961. Plant and Soil 15: 81–109.CrossRefGoogle Scholar
  85. Ruinen, J. 1963. Antonie van Leeuwenhoek 29: 425–438.CrossRefGoogle Scholar
  86. Ruinen, J. 1965. Ann. Inst. Pasteur 111: 342–346.Google Scholar
  87. Ruinen, J. and Deinema, M.H. 1964. Antonie van Leeuwenhoek 30: 377–384.CrossRefGoogle Scholar
  88. Sahm, H. and Wagner, F. 1973. Europ. J. Biochem. 36: 250–256.CrossRefGoogle Scholar
  89. Sakay, Y., Murdanoto, A.P., Sembering, L. Tanai, Y. and Kato, N. 1995. FEMS Microbiol. Lett. 127: 229–234.CrossRefGoogle Scholar
  90. Sampaio, J.P. 1994. Syst. Appl. Microbiol. 17: 613–619Google Scholar
  91. Sampaio, J.P. 1999. Can. J. Microbiol. 45: 491–512CrossRefGoogle Scholar
  92. Sasaki, T, Kawamura, M. and Ishikawa, H. 1996. J. Insect Physiol. 42: 125–129.CrossRefGoogle Scholar
  93. Scheda, R. and Bos, P. 1966. Nature 211: 660.CrossRefGoogle Scholar
  94. Schwan, R.F., Cooper, R.M. and Wheals, A.E. 1997. Enz. Microbiol. Technol. 21: 234–244.CrossRefGoogle Scholar
  95. Stodola, F.H., Deinema, M.H. and Spencer, J.F. 1967. Bacteriol. Rev. 31: 194–213.Google Scholar
  96. Szamecs, B., Urban, G. Rubina, R. Kucsera, J. and Dorgai, L. 2005. Yeast 8: 669–676.CrossRefGoogle Scholar
  97. Van der Klei, I.J. and Veenhuis, M. 2002. In: Hansenula polymorpha Biology and Applications. (ed. Gellissen, G.), Wiley-VCH, Weinheim, Germany, pp. 76–94.CrossRefGoogle Scholar
  98. Van der Walt, J.P. 1962. Antonie van Leeuwenhoek 28: 91–96.CrossRefGoogle Scholar
  99. Van der Walt, J.P., Smith M. Yamada Y. 1990. Antonie van Leeuwenhoek 57: 59–61.CrossRefGoogle Scholar
  100. Van Dijken, J.P. and Bos, P. 1981. Arch. Microbiol. 128: 320–324.CrossRefGoogle Scholar
  101. Van Dijken, J.P., Veenhuis, M., Kreger-van Rij, N.J.W. and Harder, W. 1975. Arch. Microbiol. 102: 41–44.CrossRefGoogle Scholar
  102. Van Dijken, J.P., Tuyl, A, van Luttik, M.A.H., Middelhoven, W.J. and Pronk, J.T. 2002. J. Bacteriol. 184: 672–678.CrossRefGoogle Scholar
  103. Veenhuis, M., Hoogkamer-te Niet, M.C. and Middelhoven, W.J. 1985. Antonie van Leeuwenhoek 51: 33–43.CrossRefGoogle Scholar
  104. Wanderley, K.J., Torres, F.A.G., Moraes, L.M.P. and Ulhoa, C.J. 2004. FEMS Microbiol. Lett. 231: 165–169.CrossRefGoogle Scholar
  105. Webb, E. and Spencer-Martins, I. 1983. Can. J. Microbiol. 29: 1092–1095.CrossRefGoogle Scholar
  106. Wieringa, K.T. 1956. Neth. J. Agric. Sci. 4: 204–209.Google Scholar
  107. Zimmermann, R. 1958. Naturwissenschaften 45: 165.CrossRefGoogle Scholar
  108. Zinjada, S.S. and Pant, A. 2002. J. Basic Microbiol. 42: 67–73.CrossRefGoogle Scholar
  109. Zwart, K. and Harder, W. 1983. J. Gen. Microbiol. 129: 3157–3169.Google Scholar
  110. Zwart, K., Veenhuis, M., Dijken, J.P. and Harder, W. 1980. Arch. Microbiol. 126: 117–126.CrossRefGoogle Scholar
  111. Zwart, K.B., Veenhuis, M. and Harder, W. 1983. Antonie van Leeuwenhoek −49: 369–385.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Wouter J. Middelhoven
    • 1
  1. 1.Laboratorium voor MicrobiologieDreyenpleinNetherlands

Personalised recommendations