Advertisement

Candida famata (Debaryomyces hansenii)

  • Andriy A. Sibirny
  • Andriy Y. Voronovsky

Debaryomyces hansenii (teleomorph of asporogenous strains known as Candida famata ) belongs to the group of so named ‘ flavinogenic yeasts ’ capable of riboflavin oversynthesis during starvation for iron. Some strains of C. famata belong to the most flavinogenic organisms known (accumulate 20 mg of riboflavin in 1 ml of the medium) and were used for industrial production of riboflavin in USA for long time. Many strains of D. hansenii are characterized by high salt tolerance and are used for ageing of cheeses whereas some others are able to convert xylose to xylitol, anti-caries sweetener. Transformation system has been developed for D. hansenii. It includes collection of host recipient strains, vectors with complementation and dominant markers and several transformation protocols based on protoplasting and electroporation. Besides, methods of multicopy gene insertion and insertional mutagenesis have been developed and several strong constitutive and regulatable promoters have been cloned. All structural genes of riboflavin synthesis and some regulatory genes involved in this process have been identified. Genome of D. hansenii has been sequenced in the frame of French National program ‘Genolevure’ and is opened for public access

Keywords

Riboflavin D. hansenii C. famata flavinogenic transformation insertional mutagenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbas, C., Voronovsky, A.Y., Fayura, L.R., Kshanovska, B.V., Dmytruk, K.V., Sibirna, K.A. and Sibirny, A.A. 2006. US Patent No 7009045.Google Scholar
  2. Adler, L., Blomberg A., and Nilsson, A. 1985. J. Bacteriol. 162: 300–306.Google Scholar
  3. Ahmed, Z., Sasahara H., Bhuiyan, S.H., Saiki, T., Shimonishi, T., Takada, G. and Izumori, K. 1999.J. Biosci. Bioeng. 88: 676–678.CrossRefGoogle Scholar
  4. Alba-Lois, L., Segal C., Rodarte,h B., Valdes-Lopez, V., DeLuna, A. and Cardenas, R. 2004. Curr.Microbiol. 48: 68–72.CrossRefGoogle Scholar
  5. Almagro, A., Prista, C., Benito B., Loureiro-Dias, M.C. and Ramos, J. 2001. J. Bacteriol. 183:3251–3255.CrossRefGoogle Scholar
  6. Andre, L., Hemming, A. and Adler, L. 1991. FEBS Lett. 286: 1–17.CrossRefGoogle Scholar
  7. Arfi, K., Spinnle, H.E., Tache, R., and Bonnarme, P. 2002. Appl. Microbiol. Biotechnol. 58:503–510.CrossRefGoogle Scholar
  8. Barbosa, M.F.S., Medeiros, M.B., de Mancilha, I.M., Schneider, H. and Lee, H. 1988. J. Ind.Microbiol. 3: 241–251.CrossRefGoogle Scholar
  9. Becker, D.M. and Guarente, L. 1991. High efficiency transformation of yeast by electroporation.In: Guide to yeast genetics and molecular biology - Methods in Enzymology,Guithrie C. Fink G.R. (Eds.), Vol. 194, Academic Press Inc, San Diego, CA., pp. 182–185.CrossRefGoogle Scholar
  10. Besancon, X., Ratomahenina, R. and Galzy, P. 1995. Neth Milk Dairy J. 49: 97–110.Google Scholar
  11. Bolumar, T., Sanz, Y., Aristoy, M.-C. and Toldra, F. 2003a. Appl. Environ. Microbiol. 69:227–232.CrossRefGoogle Scholar
  12. Bolumar, T., Sanz, Y., Aristoy, M.-C. and Toldra, F. 2003b. Int. J. Food Microbiol. 86: 141–151.CrossRefGoogle Scholar
  13. Bon, E., Casaregola, S., Blandin, G., Llorente, B., Neuvéglise, C., Munsterkotter, M., Guldener, U.,Mewes, H.-W., VanHelden, J., Dujon, B. Gaillardin, C. 2003. Nucleic Acids Res. 31:1121–1135.CrossRefGoogle Scholar
  14. Breuer, A. and Harms, H. 2006. Yeast 23: 415–437.CrossRefGoogle Scholar
  15. Carreira, A., Paloma, L. and Loureiro, V. 1998. Int. J. Food. Microbiol. 41: 223–230.CrossRefGoogle Scholar
  16. Carvalheiro, F., Duarte, L.C., Medeiros, R. and Girio, F. M. 2004. Appl. Biochem. Biotechnol. 113 –116: 1059–1072.CrossRefGoogle Scholar
  17. Charoenchai, C., Fleet, G.H., Henschke, P.A. and Todd, B.E.N. 1997. Austr. J. Grape Wine Res. 3:2–8.CrossRefGoogle Scholar
  18. Converti, A. and Dominguez, J.M. 2001. Biotechnol. Bioeng. 75: 39–45.CrossRefGoogle Scholar
  19. Converti, A., Perego, P. and Dominguez, J.M. 1999. App. Biochem. Biotechnol. 82 : 141–151.CrossRefGoogle Scholar
  20. Converti, A., Perego, P., Sordi, A. and Torre, P. 2002. App. Biochem. Biotechnol. 101: 15–29.CrossRefGoogle Scholar
  21. Corredor, M., Davila, A.-M., Casaregola, S. and Gaillardin, C. 2003. Antonie van Leeuwenhoek 83: 215–222.CrossRefGoogle Scholar
  22. Cowart, R.E., Marquardt, M.P. and Foster, B.G. 1980. Microbiol. Lett. 13: 117–122.Google Scholar
  23. Cruz, J.M., Dominguez, J.M., Dominguez, H. and Parajo, J.C. 2000a. Biotechnol. Lett. 22:605–610.CrossRefGoogle Scholar
  24. Cruz, J.M., Dominguez, J.M., Dominguez, H. and Parajo, J.C. 2000b. Biotechnol. Lett. 22: 1895 – 1898.CrossRefGoogle Scholar
  25. Dalton, H.K., Board, R.G. and Davenport, R.R. 1984. Antonie van Leeuwenhoek 50: 227–248.CrossRefGoogle Scholar
  26. Davenport, R.R. 1980. Cold-tolerant yeasts and yeast-like organisms. In: Biology and activities of yeasts, Skinner F.A., Passmore S.M. Davenport R.R. (Eds.), Academic Press, London, pp. 215–230.Google Scholar
  27. De Faveri, D., Torre, P., Perego, P. and Converti, A. 2004. J Food Eng.65:383–389.CrossRefGoogle Scholar
  28. Deiana, P., Fatichenti, F., Farris, G.A., Mocquot, G., Lodi, R., Todesco, R. and Cecchi, L. 1984. Lait 64: 380–394.CrossRefGoogle Scholar
  29. van Dijk, R., Faber, K.N., Hammond, A.T., Glick, B.S., Veenhuis, M., and Kiel, J.A.K.W. 2001. Mol. Genet. Genomics 266: 646–656.CrossRefGoogle Scholar
  30. Dmytruk, K.V., Abbas, C.A., Voronovsky, A.Y., Kshanovska, B.V., Sybirna, M.C. and Sibirny, A. A. 2004. Ukr. Biokhim. Zh. 76: 78–87.Google Scholar
  31. Dmytruk, K.V., Voronovsky, A.Y. and Sibirny, A.A. 2006. Curr. Genet. 50: 183–191.CrossRefGoogle Scholar
  32. Dominguez, J.M. 1998. Biotechnol. Lett. 20: 53–56.CrossRefGoogle Scholar
  33. Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., Montigny, J., de Marck, C., Neuveglise, C., Talla, E., Goffard, N., Frangeul, L., Aiglem, M., Anthouard, V., Babour, A., Barbe, V., Barnay, S., Blanchin, S., Beckerich, J.M., Beyne, E., Bleykasten, C., Boisrame, A., Boyer, J., Cattolico L., Confanioleri, F., DeDaruvar, A., Despons, L., Fabre, E., Fairhead, C., Ferry-Dumazet, H., Groppi, A., Hantraye, F., Hennequin, C., Jauniaux, N., Joyet, P., Kachouri, R., Kerrest, A., Koszul, R., Lemaire, M., Lesur, I., Ma, L., Muller, H., Nicaud, J.M., Nikolski, M., Oztas, S., Ozier-Kalogeropoulos, O., Pellenz, S., Potier, S., Richard, G.F., Straub, M.L., Suleau, A., Swennen, D., Tekaia, F., Wesolowski-Louvel, M., Westhof, E., Wirth, B., Zeniou-Meyer, M., Zivanovic, I., Bolotin-Fukuhara, M., Thierry, A., Bouchier, C., Caudron, B., Scarpelli, C., Gaillardin, C., Weissenbach, J., Wincker, P., and Souciet, J.L. 2004. Nature 430: 35–44.CrossRefGoogle Scholar
  34. Dura, M.A., Flores, A. and Toldra, F. 2004a. Food Chem. 86 : 385–389.CrossRefGoogle Scholar
  35. Dura, M.A., Flores, M. and Toldra, F. 2004b. Food Chem. 86: 391–399.CrossRefGoogle Scholar
  36. El Soda, M. 1986. J. Food Prot. 49: 395–399.Google Scholar
  37. Esteve-Zarsoso, B., Manzanares, P., Ramon, D. and Querol, A. 1998. Int. Microbiol. 1 : 143–148.Google Scholar
  38. Faber, K.N., Haima, P., Harder, W., Veenhuis, M. and Ab, G. 1994 Curr. Genet. 25: 305–310.CrossRefGoogle Scholar
  39. Fatichenti, F., Bergere, J.L., Deiana, A. and Farris, G.A. 1983. J. Dairy Res. 50: 449–457.Google Scholar
  40. Ferreira, A. and Viljoen, B.C. 2003. Int. J. Food Microbiol. 86: 131–140.CrossRefGoogle Scholar
  41. Fitzpatrick, D.A., Logue, M.E., Stajich, J.E. and Butler, G. 2006.BMC Evol. Biol. 6: 99.CrossRefGoogle Scholar
  42. Fleet, G.H. 1990. J. Appl. Bacteriol. 68: 199–211.Google Scholar
  43. Fleet, M.C. and Mian, M.A. 1987. Int. J. Food Microbiol. 4: 145–155.CrossRefGoogle Scholar
  44. Flores, M., Dura, M.A., Marco, A. and Toldra, F. 2004. Meat Sci. 68: 439–446.CrossRefGoogle Scholar
  45. Furlan, S., Bouilloud, P., Strehaiano, P. and Riba, J.P. 1991. Biotechnol. Lett. 13: 203–206.CrossRefGoogle Scholar
  46. Gadd, G.M. and Edwards, S.W. 1986. Trans. Br. Mycol. Soc. 87: 533–542.Google Scholar
  47. Garcia-Gonzalez, A. and Ochoa, J.L. 1999. Arch. Med. Res. 30: 69–73.CrossRefGoogle Scholar
  48. Girio, F.M., Roseiro, J.C., Sa-Machado, P., Duarte-Reis, A.R. and Amaral-Collaco, M.T. 1994. Enzyme Microb. Technol. 16: 1074–1078.CrossRefGoogle Scholar
  49. Glaser, H.U., Thomas, D., Gaxiola, R., Montrichard, F., Surdin-Kerjan, Y. and Serrano, R. 1993. EMBO J. 12: 3105–3110.Google Scholar
  50. Goodwin, T.W. and McEvoy, D. 1959. Biochem. J. 71: 742–748.Google Scholar
  51. Granado, J.D., Kertesz-Chaloupkova, K., Aebi, M. and Kues, U. 1997. Mol. Gen. Genet. 256: 28–36.CrossRefGoogle Scholar
  52. Groom, K.R., Heyman, H.C., Steffen, M.C., Hawkins, L. and Martin, N.C. 1998. Yeast 14: 77–87.CrossRefGoogle Scholar
  53. Guerzoni, M.E., Lanciotti, A. and Marchetti, R. 1993. Int. J. Food Microbiol. 17: 329–341.CrossRefGoogle Scholar
  54. Hansen, T.K., van den Tempel, T., Cantor, M.D. and Jakobsen, M. 2001. Int. J. Food Microbiol. 69: 101–111.CrossRefGoogle Scholar
  55. Heefner, D.L., Boyts, A., Burdzinski, L.A. and Yarus, M.J. 1993. US Patent No 5231007.Google Scholar
  56. Heefner, D.L., Weaver, C.A., Yarus, M.J., and Burdzinski, L.A. 1992. US Patent No 5164303.Google Scholar
  57. Heefner, D.L., Weaver, C.A., Yarus, M.J., Burdzinski, L.A., Gyure, D.C. and Foster, E.W. 1988. Patent WO 88/09822.Google Scholar
  58. Hernandez-Saavedra, N.Y. and Romero-Geraldo, R. 2001. Yeast 18: 1227–1238.CrossRefGoogle Scholar
  59. Ishchuk, O.P., Dmytruk, K.V., Rohulya, O.V., Voronovsky, A.Y., Abbas, C.A. and Sibirny, A.A.2008. Enz. Microb. Technol. 42: 208–215.CrossRefGoogle Scholar
  60. Jovall, P.A., Tunblad-Johanson, I. and Adler, L. 1990. Arch. Microbiol. 154: 209–214.CrossRefGoogle Scholar
  61. Kang, S.and Metzenberg, R.L. 1993. Genetics 133: 193–202.Google Scholar
  62. Klein, N., Zourari, A. and Lortal, S. 2002. Int. Dairy J. 12: 853–861.CrossRefGoogle Scholar
  63. Kreger van Rij, N.J. and Veenhuis, M. 1975. J. Gen. Microbiol. 89: 256–264.Google Scholar
  64. Kumura, H., Takagaki, K., Sone, T., Tsukahara, M., Tanaka, T. and Shimazaki, K. 2002. Biosci.Biotechnol. Biochem. 66: 1370–1373.CrossRefGoogle Scholar
  65. Kurtzman, C.P. and Robnett, C.J. 1997. J. Clin. Microbiol. 35: 1216–1223.Google Scholar
  66. Kurtzman, C.P. and Robnett, C.J. 1998. Antonie van Leeuwenhoek 73: 331–371.CrossRefGoogle Scholar
  67. Kuspa, A. and Loomis, W.F. 1992. Proc. Natl. Acad. Sci. USA 89: 8803–8807.CrossRefGoogle Scholar
  68. Lages, F., Silva-Graca, M. and Lucas, C. 1999. Microbiology 145: 2577–2586.Google Scholar
  69. Langin, T., Faugeron, G., Goyon, C., Nicolas, A. and Rossignol, J.L. 1986. Gene 49: 283–293.CrossRefGoogle Scholar
  70. Larsson C., Morales, C., Gustafsson, L. Adler, L. and 1990. J. Bacteriol. 172: 1769–1774.Google Scholar
  71. Leclercq-Perlat, M.-N., Corrieu, G. and Spinnler, H.-E. 2004. J. Dairy Sci. 87: 1545–1550.Google Scholar
  72. Leclercq-Perlat, M.-N., Oumer, A., Buono, F., Bergere, J.L., Spinnler H.E. and Corrieu, G. 2000.J. Dairy Sci. 83: 1674–1683.CrossRefGoogle Scholar
  73. Lépingle, A., Casaregola, S., Neuveglise, C., Bon, E., Nguyen, H.-V., Artiguenave, F., Wincker, P.and Gaillardin, C. 2000. FEBS Lett. 487: 82–86.CrossRefGoogle Scholar
  74. Levine, H., Oyaas, J.E., Wassermann, L., Hoogerheide, J.C. and Stern, R.M. 1949. Ind. Eng.Chem. 41: 1665–1668.CrossRefGoogle Scholar
  75. Li, Y., Chen, J. and Lun, S.Y. 2001. Appl. Microbiol. Biotechnol. 57: 451–459.CrossRefGoogle Scholar
  76. Lodder, J. 1970. The Yeasts — A Taxonomic Study, 2nd Edn. Amsterdam.North-Holland.Google Scholar
  77. Lucas, C., da Costa M. and van Uden, N. 1990. Yeast 6: 187–191.CrossRefGoogle Scholar
  78. Martin, A., Cordoba, J.J., Nunez, F., Benito, M.J. and Asensio, M.A. 2004. Int. J. Food Microbiol. 94: 55–66CrossRefGoogle Scholar
  79. Mayer, G., Kulbe, K.D. and Nidetzky, B. 2002. App. Biochem. Biotechnol. 99: 577–590.CrossRefGoogle Scholar
  80. Nakase, T. and Suzuki, M. 1985. J. Gen. Appl. Microbiol. 31: 71–86.CrossRefGoogle Scholar
  81. Nakase, T., Suzuki, M., Phaff, H.J. and Kurtzman, C.P. 1998. Debaryomyces Lodder & Kreger-van Rij Nom. Cons. In: The Yeasts — A Taxonomic Study, Kurtzman M.C. Fell J.W. (Eds.),Elsevier, Amsterdam, pp. 157–173.CrossRefGoogle Scholar
  82. Neves, M.L., Oliveira, R.P. and Lucas, C. 1997. Microbiology 143: 1133–1139.CrossRefGoogle Scholar
  83. Nichol, A.W., Harden, M.C. and Tuckett, W.H. 1996. Food Austral. 48: 136–138.Google Scholar
  84. Nilsson, A. and Adler, L. 1990. Biochim. Biophys. Acta 1034: 180–185.Google Scholar
  85. Nishikawa, A., Tomomatsu, H., Sugita, T., Ikeda, R. and Shinoda, T. 1996. J. Med. Vet. Mycol. 34: 411–419.CrossRefGoogle Scholar
  86. Nobre, A., Duarte, L.C., Roseiro, J.C. and Girio, F. M. 2002. Appl. Microbiol. Biotechnol. 59: 509–516.CrossRefGoogle Scholar
  87. Nobre, A., Lucas, C. and Leao, C. 1999. Appl. Environ. Microbiol. 65: 3594–3598.Google Scholar
  88. Norkrans, B. 1966. Arch. Mikrobiol. 54: 374–392.CrossRefGoogle Scholar
  89. Norkrans, B. 1968. Arch. Mikrobiol. 62: 358–372.CrossRefGoogle Scholar
  90. Ochoa, J.L., Ramirez-Orozco, M., Hernandez-Saavedra, N.Y., Hernandez-Saavedra, D. and Sanchez-Paz, A. 1995. J. Mar. Biotechnol. 3: 224–227.Google Scholar
  91. Onishi, H. 1963. Adv. Food Res. 12: 53–94.Google Scholar
  92. Orozco, M.R., Hernandez-Saavedra, N.Y., Valle, F.A., Gonzalez, B.A. and Ochoa, J.L. 1998. J.Mar. Biotechnol. 6: 255–259.Google Scholar
  93. Parajo, J.C., Dominguez, H. and Dominguez, J.M. 1996. Biotechnol. Lett. 18: 593–598.CrossRefGoogle Scholar
  94. Parajo, J.C., Dominguez, H. and Dominguez, J.M. 1997. Enz. Microb. Technol. 21: 18–24.CrossRefGoogle Scholar
  95. Petersen, K.M. and Jespersen, L. 2004. J. Appl. Microbiol. 97: 205–213.CrossRefGoogle Scholar
  96. Prista, C., Almagro, A., Loureiro-Dias, M.C. and Ramos, J. 1997. Appl. Environ. Microbiol. 63: 4005–4009.Google Scholar
  97. Prista, C., Loureiro-Dias, M.C., Montiel, V., Garcia, R. and Ramos, J. 2005. FEMS Yeast Res. 5: 693–701.CrossRefGoogle Scholar
  98. Roostita, A. and Fleet, G.H. 1996 Int. J. Food Microbiol. 28: 393–404.CrossRefGoogle Scholar
  99. Roseiro, J.C., Peito, M.A., Girio, F.M. and Amaral-Collaco, M.T. 1991. Arch. Microbiol. 156: 484–490Google Scholar
  100. Rowley, A., Dowell, S.J. and Diffley, J.F.X. 1994. Biochim. Biophys. Acta 1217: 239–256.Google Scholar
  101. Saha, B.C. and Bothast, R.J. 1996. Biotechnol. Lett. 18: 155–158.CrossRefGoogle Scholar
  102. Saldanha-da-Gama, A., Malfeito-Ferreira, and M. Loureiro, V. 1997. Int. J. Food Microbiol. 37: 201–207.CrossRefGoogle Scholar
  103. Schiestl, R.H. and Petes, T.D. 1991. Proc. Natl. Acad. Sci. USA 88: 7585–7589.CrossRefGoogle Scholar
  104. Seiler, H. and Busse, M. 1990. Int. J. Food Microbiol. 11: 289–303.CrossRefGoogle Scholar
  105. Semon, D., Movva, N., Rao Smith, T.F., Mohamed El Alama, and Davies, J. 1987. Plasmid 17: 46–53.CrossRefGoogle Scholar
  106. Shavlovsky, M.C. and Logvinenko, G.M. 1988. Prikl. Biokhim.Mikrobiol. 24: 435–447 (in Russian).Google Scholar
  107. Shavlovsky, G.M., Zharova, V.P., Shchelokova, I.F., Trach, V.M., Sibirny, A.A. and Ksheminskaya,G.P. 1978. Prikl. Biokhim. Mikrobiol. 14: 184–189 (in Russian).Google Scholar
  108. Sibirny, A.A., Fedorovych, D.V., Boretsky, Y.R. and Voronovsky, A.Y. 2006. Microbial synthesis of flavins. Naukova Dumka, Kyiv (Kiev), Ukraine, p. 192 (in Ukrainian).Google Scholar
  109. Sreekrishna, A.and Kropp, K.E. 1996. Pichia pastoris. Nonconventional Yeasts in Biotechnology,In: Wolf K. (Ed.), Springer, Berlin, pp. 203–253Google Scholar
  110. Stahmann, K.-P., Revuelta, J.L. and Seulberger, H. 2000. Appl. Microbiol. Biotechnol. 53: 509–516.CrossRefGoogle Scholar
  111. Tanner, F., Voinovich, C. and van Lanen, J.M. 1945. Science 101: 180–181.CrossRefGoogle Scholar
  112. Tavares, J.M., Duarte, L.C., Amaral-Collaco, M.T. and Girio, F. M. 2000. Enz. Microb. Technol. 26: 743–747.CrossRefGoogle Scholar
  113. van den Tempel, T. and Jacobsen, M. 2000. Int. Dairy J. 10: 263–270.CrossRefGoogle Scholar
  114. Tilburn, J., Roussel, F. and Scazzocchio, C. 1990. Genetics 126: 81–90.Google Scholar
  115. Thome, P.E. 2004. Yeast 21: 119–126.CrossRefGoogle Scholar
  116. Thome, P.E. 2007. Antonie Van Leeuwenhoek 91: 229–235.CrossRefGoogle Scholar
  117. Thome, P.E. and Trench, R.K. 1999. Mar. Biotechnol. (NY) 1: 230–238.CrossRefGoogle Scholar
  118. Veiga, A., Arrabaca, J.D., and Loureiro-Dias, M.C. 2003a. J. Appl. Microbiol. 95: 364–371.CrossRefGoogle Scholar
  119. Veiga, A., Arrabaca, J.D., Sansonetty, F., Ludovico P., Corte-Real, M. and Loureiro-Dias, M.C.2003b FEMS Yeast Res. 3: 141–148.CrossRefGoogle Scholar
  120. Velkova, K. and Sychrova, H. 2006. Gene 369: 27–34.CrossRefGoogle Scholar
  121. Voronovsky, A.Y., Abbas, C.A., Dmytruk, K.V., Ishchuk, O.P., Kshanovska, B.V., Sybirna, K.A.,Gaillardin, C. and Sibirny, A.A. 2004. Yeast 21: 1307–1316.CrossRefGoogle Scholar
  122. Voronovsky, A., Abbas, C.A., Fayura, L.R., Kshanovska, B.V., Dmytruk, K.V., Sybirna, K.A. and Sibirny, A.A. 2002. FEMS Yeast Res. 2: 381–388.Google Scholar
  123. van der Walt, J.P. Taylor, M.B., and Liebenberg, N.V. 1977. Antonie Van Leeuwenhoek 43: 205–218.CrossRefGoogle Scholar
  124. Welthagen, J.J. and Viljoen, B.C. 1998. Int. J. Food Microbiol. 41: 185–194.CrossRefGoogle Scholar
  125. Wyder, M.-T. and Puhan, Z. 1999. Int. Dairy J. 9: 117–124.CrossRefGoogle Scholar
  126. Yadav, J.S. and Loper, J.C. 1999. Gene 226: 139–146.CrossRefGoogle Scholar
  127. Yanai, T. and Sato, M. 1999. Am. J. Enol. Viticult. 50: 231–235.Google Scholar
  128. Yanai, T., Tsunekawa, H., Okamura, K. and Okamoto, R. 1994. JP Patent No 0600091.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Andriy A. Sibirny
    • 1
  • Andriy Y. Voronovsky
  1. 1.Institute of Cell BiologyNational Academy of Sciences of UkraineLvivUkraine

Personalised recommendations