Yeast Acid Phosphatases and Phytases: Production, Characterization and Commercial Prospects

  • Parvinder Kaur
  • T. Satyanarayana

The element phosphorus is critical to all life forms as it forms the basic component of nucleic acids and ATP and has a number of indispensable biochemical roles. Unlike C or N, the biogeochemical cycling of phosphorus is very slow, and thus making it the growth-limiting element in most soils and aquatic systems. Phosphohydrolases (e.g. acid phosphatases and phytases) are enzymes that break the C-O-P ester bonds and provide available inorganic phosphorus from various inassimilable organic forms of phosphorus like phytates. These enzymes are of significant value in effectively combating phosphorus pollution. Although phytases and acid phosphatases are produced by various plants, animals and micro organisms, microbial sources are more promising for the production on a commercial scale. Yeasts being the simplest eukaryotes are ideal candidates for phytase and phos-phatase research due to their mostly non-pathogenic and GRAS status. They have not, however, been utilized to their full potential. This chapter focuses attention on the present state of knowledge on the production, characterization and potential commercial prospects of yeast phytases and acid phosphatases.


Acid phosphatase animal feed phosphorus phytin phytates phytase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altikrete, H., Kouri, M., Charpentier, C., Lematre, J. and Bonaly, R. 1984. Phytochemistry 23: 1551–1555.CrossRefGoogle Scholar
  2. Augspurger, N.R., Webel, D. M., Lei, X. G. and Baker, D. H. 2003. J. Animal Sci. 81: 474–483.Google Scholar
  3. Bali, A. Satyanarayana T. 2001. Everyman's Sci. 4: 207–209.Google Scholar
  4. Bentley, M. E., Caulfield, L. E., Ram, M., Santizo, M. C., Hurtado, E., Rivera, J. A., Ruel, M. T. and Brown, K. H. 1997. J. Nutr. 127: 1333–1338.Google Scholar
  5. Billington, D. C. 1993. The Inositol Phosphates: Chemical Synthesis and Biological Significance, Verlag Chemie, Weinham.Google Scholar
  6. Bindu, S., Somashekar, D. and Joseph, R. 1998. Lett. Appl. Microbiol. 27: 336–340.CrossRefGoogle Scholar
  7. Boer, P. and Steyn-Parve, E. P. 1966. Biochim. Biophys. Acta 128: 400–402.Google Scholar
  8. Brune, M., Rossander-Hulten, L., Hallberg, L., Gleerup, A. and Sandberg, A. S. 1992. J. Nutr. 122: 442–449.Google Scholar
  9. Buttner, R., Bode, R. and Birnbaum, D. 1991. Zentralbl. Mikrobiol. 146: 399–406.Google Scholar
  10. Chapple, R. P., Yen, J. T. and Veum, T. L. 1979. J. Animal Sci. 49(Suppl. 1): 99.Google Scholar
  11. Ciofalo, V., Barton, N., Kretz, K., Baird, J., Cook, M. and Shanahan, D. 2003. Regulatory Toxicol. Pharmacol. 37: 286–292.CrossRefGoogle Scholar
  12. Cosgrove, D. J. 1969. Ann. N. Y. Acad. Sci. 165: 677–686.Google Scholar
  13. Cosgrove, D. J. 1970. Austral. J. Biol. Sci. 23: 1207–1220.Google Scholar
  14. Cromwell, G. L. and Stahly, T. S. 1978. Feedstuffs 50: 12.Google Scholar
  15. Dalal, R. C. 1978. Adv. Agron. 29: 83–117.CrossRefGoogle Scholar
  16. Deevey, E. S. 1970. Sci. Amer. 223148–158.CrossRefGoogle Scholar
  17. Dibenedetto, G. and Cozzani, I. 1975. Biochemistry 14: 2847–2852.CrossRefGoogle Scholar
  18. Dilger, R. N., Onyango, E. M., Sands, J. S. and Adeola, O. 2004. Poultry Sci. 83: 962–70.Google Scholar
  19. Famurewa, O. and Olutiola, P. O. 1994. Soil Microbiol. 39: 475–480.Google Scholar
  20. Furukawa, K., Mizoguchi, H. and Hara, S. 2001. Seibutsu-Kogaku Kaishi. 79: 133–141.Google Scholar
  21. Gonzalez, F. J., Fauste, C., Burguillo, F. J. and Dominguez, A. 1993. Biochim. Biophys. Acta 1162: 17–27.Google Scholar
  22. Graf, E. and Eaton, J. W. 1993. Nutr. Cancer 19: 11–19.Google Scholar
  23. Greenwood, A. J. and Lewis, D. H. 1977. Soil Biol. Biochem. 9: 161–166.CrossRefGoogle Scholar
  24. Greiner, R., Alminger, M. L. and Carlsson, N. G. 2001. J. Agic. Food Chem. 49: 2228–2233.CrossRefGoogle Scholar
  25. Greiner, R. and Konietzny, U. 1996. J. Biotechnol. 48: 153–159.CrossRefGoogle Scholar
  26. Guimaraes, L. H. S., Terenzi, H. F., Jorge, J. A., Leone, F. A. and Polizeli, M. L. 2004. Biotechnol. Appl. Biochem. 40: 201–207.CrossRefGoogle Scholar
  27. Haraldsson, A. K., Veide, J., Andlid, T., Alminger, M. L. and Sandberg, A. S. 2005. J. Agric. Food Chem. 53: 5438–5444.CrossRefGoogle Scholar
  28. Harland, B. F. and Harland, J. 1980. Cereal Chem. 57: 226–229.Google Scholar
  29. Hirimuthugoda, N. Y., Chi, Z., Li, X., Wang, L. and Wu, L. 2006. Ciencias Marinas 32: 673–682.Google Scholar
  30. Howson, S. J. and Davis, R. P. 1983. Enz. Microb. Technol. 5: 377–389.CrossRefGoogle Scholar
  31. Johnson, L. F. and Tate, M. E. 1969. Ann. A.N. Acad. Sci. 165: 526–532.Google Scholar
  32. Johnston, M. and Carlson, M. 1992. In: The molecular and cellular biology of the yeast Saccharomyces: Gene Expression. (eds. E. W. Jones, J.R. Pringle and J. R. Broach) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 193–281.Google Scholar
  33. Kaur, P. and Satyanarayana, T. 2005. Process Biochem. 40: 3095–3102.CrossRefGoogle Scholar
  34. Kaur, P. and Satyanarayana, T. 2007. Crit. Rev. Biotechnol. 27: 93–109.CrossRefGoogle Scholar
  35. Kaur, P., Lingner, A., Singh, B., Böer, E., Polajeva, J., Steinborn, G., Bode, R., Gellissen, G., Satyanarayana, T. and Kunze, G. 2007. Antonie van Leewenhoek 91: 45–55.CrossRefGoogle Scholar
  36. Kaur, P., Singh, B., Vohra, A. and Satyanarayana, T. 2003. The Botanica 53: 35–42.Google Scholar
  37. Kemme, P. A., Jongbloed, A. W., Mroz, Z. and Beynen, A. C. 1997. J. Animal Sci. 75: 2129–2138.Google Scholar
  38. Konietzny, U. and Greiner, R. 2003. In: Encyclopedia of Food Science and Nutrition.(eds. B. Caballero, L. Trugo, and P. Finglas) Elsevier, London, pp. 4555–4563.Google Scholar
  39. Kozulic, B., Barbaric, S., Ries, B. and Mildner, P. 1984. Biochem. Biophys. Res. Commun. 122: 1083–1090.CrossRefGoogle Scholar
  40. Lambrechts, C., Boze, H., Moulin, G. and Galzy, P. 1992. Biotechnol. Lett. 14: 63–66.CrossRefGoogle Scholar
  41. Laumen, K. and Ghisalba, O. 1994. Biosci. Biotech. Biochem. 58: 2046–2049.CrossRefGoogle Scholar
  42. Liu, J., Bollinger, D. W., Ledoux, D. R., Ellersieck, M. R. and Veum, T. L. 1997. J. Animal Sci. 75: 1292–1298.Google Scholar
  43. Lopez, M. C. and Dominguez, A. 1988. J. Basic Microbiol. 28: 249–263.CrossRefGoogle Scholar
  44. Lopez-Bucio, J., Martinez, de la Vega, O., Guervara-Garcia, A. and Herrera-Estrella, L. 2000. Nat. Biotechnol. 18: 450–453.CrossRefGoogle Scholar
  45. Marschner, H. 1995. Mineral Nutrition of Higher Plants.(2nd ed.) Academic Press, Boston.Google Scholar
  46. Matsui, T., Nakagawa, Y., Tamura, A., Watanabe, C., Fujita, K., Nakajima, T. and Yano, H. 2000. J. Animal Sci. 78: 94–99.Google Scholar
  47. McComb, R. B., Bowers, G. N. and Posen, S. (1979). Alkaline phosphatases, Plenum Press, New York, USA. pp. 986.Google Scholar
  48. Mclellan, W. and Lampen, J. O. 1963. Biochim. Biophys. Acta. 67: 324–326.CrossRefGoogle Scholar
  49. Minocha, N., Kaur, P., Satyanarayana, T. and Kunze, G. 2007. Appl. Microbiol. Biotechnol. 76: 387–393.CrossRefGoogle Scholar
  50. Modlin, M. 1980. The Lancet 2: 1113–1114.CrossRefGoogle Scholar
  51. Moran, A., Burguillo, F. J., Lopez, M. C. and Dominguez, A. 1989. Biochim. Biophys. Acta 990: 288–296.Google Scholar
  52. Mullaney, E.J. and Ullah, A. H. J. 2003. Biochem. Biophys. Res. Comm. 312: 179–184.CrossRefGoogle Scholar
  53. Mullaney, E.J. and Ullah, A. H. J. 2005. Biochem. Biophys. Res. Comm. 328: 404–408.CrossRefGoogle Scholar
  54. Mullaney, E.J., Daly, C. B. and Ullah, A. H. J. 2000. Adv. Appl. Microbiol. 47: 157–199.CrossRefGoogle Scholar
  55. Nakamura, Y., Fukuhara, H. and Sano, K. 2000. Biosci. Biotechnol. Biochem. 64: 841–844.CrossRefGoogle Scholar
  56. Navert, B., Sandtrom, B. and Cederblad, A. 1985. Brit. J. Nutr. 53: 47–53.CrossRefGoogle Scholar
  57. Nayini, N. R. and Markakis, P. 1984. Lebensm. Wiss. Technol. 17: 24–26.Google Scholar
  58. Nosaka, K. 1990. Biochim. Biophys. Acta 1037: 147–154.Google Scholar
  59. Odds, F. C. and Hierholzer, J. C. 1973. J. Bacteriol. 114: 257–266.Google Scholar
  60. Oshima, Y. 1997. Genes Genet. Syst. 72: 323–334.CrossRefGoogle Scholar
  61. Oshima, Y., Ogawa, N. and Harashima, S. 1996. Gene 179: 171–177.CrossRefGoogle Scholar
  62. Payne, W. E., Gannon, P. M. and Kaiser, C. A. 1995. Gene 163: 19–26.CrossRefGoogle Scholar
  63. Phongdara, A., Merckelbach, A., Keup, P., Gellissen, G. and Hollenberg, C. P. 1998. Appl. Microbiol. Biotechnol. 50: 77–84.CrossRefGoogle Scholar
  64. Potter, S. M. 1995. J. Nutr. 125: 606S–611S.Google Scholar
  65. Quan, C. S., Difan, S., Zhang, L. H., Wang, Y. J. and Ohta, Y. 2002. J. Biosci. Bioeng. 94(5): 419–425.Google Scholar
  66. Quan, C. S., Fan, S. D. and Ohta, Y. 2003. Appl. Microbiol. Biotechnol. 62: 41–47.CrossRefGoogle Scholar
  67. Quan, C. S., Zhang, L., Wang, Y. and Ohta Y. 2001. J. Biosci. Bioengn. 92: 154–160.CrossRefGoogle Scholar
  68. Raghothama, K. G. 2000. Curr. Opin. Plant Biol. 3: 182–187.Google Scholar
  69. Rautanin, N. and Karkainen, V. 1951. Acta Chim. Scand. 5: 1216–1217.CrossRefGoogle Scholar
  70. Reale, A., Mannina, L., Tremonte, P., Sobolev, A. P., Succi, M., Sorrentino, E. and Coppola, R. 2004. J. Agric. Food Chem. 52: 6300–6305.CrossRefGoogle Scholar
  71. Rumsey, G.L., 1993. Fisheries 18: 14–19.CrossRefGoogle Scholar
  72. Sano, K., Fukuhara, H. and Nakamura, Y. 1999. Biotechnol. Lett. 21: 33–38.CrossRefGoogle Scholar
  73. Satyanarayana, T. and Vohra, A. 2003. Indian Patent no. 976/DEL/2003.Google Scholar
  74. Schmidt, G., Bartsch, G., Laumont, M. C., Herman, T. and Liss, M. 1963. Biochemistry 2: 126–131.CrossRefGoogle Scholar
  75. Schmidt, G., Seraidarian, K., Greenbaum, L. M., Hickey, M. D. and Thannhauser, S. J. 1956. Biochim. Biophys. Acta. 20: 135–49.CrossRefGoogle Scholar
  76. Schurr, A. and Yagh, A. 1971. J. Gen. Microbiol. 65: 291–303.Google Scholar
  77. Schweingruber, M.E., Fluri, R., Maundrell, K., Schweingruber, A. M. and Dumermuth, E. 1986. J. Biol. Chem. 261: 15877–82.Google Scholar
  78. Segueilha, L., Lambrechts, C., Boze, H., Moulin, G. and Galzy, P. 1992. J. Ferment. Bioeng. 74: 7–11.CrossRefGoogle Scholar
  79. Segueilha, L., Moulin, G. and Galzy, P. 1993. J. Agric. Food Chem. 41: 2451–2454.CrossRefGoogle Scholar
  80. Shamsuddin, A.M. and Vucenik, I., 1999. Anticancer Res. 19: 36–71.Google Scholar
  81. Simell, M., Turunen, M., Pironen, J. and Vaara, T. 1989. Lecture at 3rd Meet Industrial Applications of Enzymes, Barcelona (Spain).Google Scholar
  82. Siren, M., 1986a. Patent no. SE 003 165.Google Scholar
  83. Siren, M., 1986b. Patent no. SW 052 950.Google Scholar
  84. Strugovschikova, L. P., Fedorovich, I. P., Seniuta, E. Z. and Shavlovskii, G. M. 1976. Ukr. Biokhim. Zh. 48: 320–325.Google Scholar
  85. Suomalainen, H., Linko, M. and Oura, E. 1960. Biochim. Biophys. Acta 37: 482–490.CrossRefGoogle Scholar
  86. Tait-Kamradt, A. G., Turner, K. J., Krammer, R. A., Elliott, Q. D., Bostian, S. J., Thill, G. P., Rogers, D. T. and Bostian, K. A. 1986. Mol. Cell Biol. 6: 1855–1865.Google Scholar
  87. Tarafdar, J.C., 1989. J. Indian Soc. Soil Sci. 37: 393–395.Google Scholar
  88. Tarafdar, J.C., 1995. Curr. Sci. 69: 541–543.Google Scholar
  89. Tarafdar, J.C. and Chhonker, P. K. 1979. Zbl . Bakt. II Abt. 134: 119–124.Google Scholar
  90. Tarafdar, J.C. and Jungk A. 1987. Biol. Fert. Soils. 3: 199–224.CrossRefGoogle Scholar
  91. Tarafdar, J.C., Rao A. V. and Bala, K. 1988. Folia Microbiol. 33: 109–114.CrossRefGoogle Scholar
  92. Tatala, S., Svanberg, U. and Mduma, B. 1998. Am. J. Clin. Nutr. 68: 171–178.Google Scholar
  93. Toh-e A., Ueda, Y., Kakimoto, S. I. and Oshima, Y. 1973. J. Bacteriol. 113: 727–738.Google Scholar
  94. Turk, M., Carlsson, N. G. and Sandberg, A. S. 1996. J. Cereal Sci. 23: 257–264.CrossRefGoogle Scholar
  95. Turk, M., Sandberg, A. S., Carlsson, N. G. and Andlid, T. 2000. J. Agric. Food. Chem. 48: 100–104.CrossRefGoogle Scholar
  96. Vance, C. P. 2001. Plant Physiol. 127: 390–397.CrossRefGoogle Scholar
  97. Vasileva-Tonkova, E. S., Galabova, D. N., Balasheva, M. A. and Sotirova, A. V. 1993. Gen. Microbiol. 139: 479–483.Google Scholar
  98. Veide, J. and Andlid T. 2006. Int. J. Food Microbiol. 108: 60–67.CrossRefGoogle Scholar
  99. Vohra, A. and Satyanarayana, T. 2001. Biotechnol. Lett. 23: 551–554.CrossRefGoogle Scholar
  100. Vohra, A. and Satyanarayana, T. 2002a. World J. Microbiol. Biotechnol. 18: 687–691.CrossRefGoogle Scholar
  101. Vohra, A. and Satyanarayana, T. 2002b. Process Biochem. 37: 999–1004.CrossRefGoogle Scholar
  102. Vohra, A. and Satyanarayana, T. 2003. Crit. Rev. Biotechnol. 23: 29–60.CrossRefGoogle Scholar
  103. Vohra, A. and Satyanarayana, T. 2004. J. Appl. Microbiol. 97: 471–476.CrossRefGoogle Scholar
  104. Vohra, A., Rastogi, S. K. and Satyanarayana, T. 2006. World J. Microbiol. Biotechnol. 22: 553–558.CrossRefGoogle Scholar
  105. Watorek, W., Morawiecka, B. and Korczak, B. 1977. Acta Biochim. Pol. 24: 153–162.Google Scholar
  106. Weimberg, R. and Orton W. 1964. J. Bacteriol. 88: 1743–1754.Google Scholar
  107. Yi, Z., Kornegay, E. T., Ravindran, V. and Denbow, D. M. 1996. Poultry Sci. 75: 240–249.Google Scholar
  108. Zyta, K. 1993. World J. Microbiol. Biotechnol. 9: 117–119.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Parvinder Kaur
    • 1
  • T. Satyanarayana
    • 1
  1. 1.Department of MicrobiologyUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations