Advertisement

Ethanol Production from Traditional and Emerging Raw Materials

  • Andreas Rudolf
  • Kaisa Karhumaa
  • Bärbel Hahn-Hägerdal

The ethanol industry of today utilizes raw materials rich in saccharides, such as sugar cane or sugar beets, and raw materials rich in starch, such as corn and wheat. The concern about supply of liquid transportation fuels, which has brought the crude oil price above 100 $ /barrel during 2006, together with the concern about global warming, have turned the interest towards large-scale ethanol production from lignocellulosic materials, such as agriculture and forestry residues. Baker's yeast Saccharomyces cerevisiae is the preferred fermenting microorganism for ethanol production because of its superior and well-documented industrial performance. Extensive work has been made to genetically improve S. cerevisiae to enable fermentation of lignocellulosic raw materials. Ethanolic fermentation processes are conducted in batch, fed-batch, or continuous mode, with or without cell recycling, the relative merit of which will be discussed.

Keywords

Ethanol lignocellulosics baker's yeast fermentation saccharides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbas, C.H. 2003. The Alcohol Textbook (eds. Jacques, K.A., Lyons, T.P. and Kelsall, D.R.), Nottingham University Press.Google Scholar
  2. Alkasrawi, M., Rudolf, A., Lidén, G., and Zacchi, G. 2006. Enzyme Microbial Technol. 38: 279–286.Google Scholar
  3. Almeida, J., Modig, T., Petersson, A., Hahn-H ä gerdal, B., Lid é n, G. and Gorwa-Grauslund, M.F. 2007. J. Chem. Technol. Biotechnol. (in press).Google Scholar
  4. Alriksson, B., Sjöde, A., Nilvebrant, N.-O. and Jönsson, L.J. 2006. Appl. Biochem. Biotechnol. 130: 599–611.Google Scholar
  5. Anderlund, M., Nissen, T.L., Villandsen, J., Rydstrom, J., Hahn-Hägerdal, B. and Kielland-Brandt, MC. 1999. Appl. Environ. Microbiol. 65: 2333–2340.Google Scholar
  6. Ando, S., Arai, I., Kiyoto, K. and Hanai, S. 1986. J. Ferment. Technol. 64: 567–570.Google Scholar
  7. Amorim, H.V., Basso, L.C., Oliviera, A.J., Godoy, A., Cherubin, R. and Lopes, M.L. 2004. Abstracts of the Eleventh International Congress on Yeast (ICY 2004) (eds. Mendonça-Hagler L., Viana de Sousa O.), Universidade Federal do Rio de Janeiro. p. 51.Google Scholar
  8. Arato, C., Pye, K.E. and Gjennestad, G. 2005. Appl. Biochem. Biotechnol. 121–124: 871–882.Google Scholar
  9. Ballesteros, M., Oliva, J.M., Manzanares, P., Negro, M.J. and Ballesteros, I. 2002. World J. Microbiol. Biotechnol. 18: 559–561.Google Scholar
  10. Banerjee, N. and Viswanthan, L. 1976. Proc. Annu. Conv. Sugar Technol. Assoc. India 41: G75–G80.Google Scholar
  11. Becker, J. and Boles, E. 2003. Appl. Environ. Microbiol. 69: 4144–4150.Google Scholar
  12. Beltrame, P.L., Carniti, P., Focher, B., Marzetti, A. and Sarto, V. 1984. Biotechnol. Bioeng. XXVI: 1233–1238.Google Scholar
  13. Boekhout, T. and Kurtzman, C.P. 1996. Nonconventional Yeasts in Biotechnology (ed. Wolf K.), Springer-Verlag, pp. 1–81.Google Scholar
  14. Bonn, G., Concin, R. and Bobleter, O. 1983. Wood Sci. Technol. 17: 195–202.Google Scholar
  15. Bothast, R.J. and Schlicher, M.A. 2005. Appl. Microbiol. Biotechnol. 67: 19–25.Google Scholar
  16. Bruinenberg, P.M., de Bot, P H M., van Dijken, J.P. and Scheffers, W.A. 1984. Appl. Microbiol. Biotechnol. 19: 256–260.Google Scholar
  17. Buchert, J., Puls, J. and Poutanen, K. 1989. Appl. Biochem. Biotechnol. 20/21: 309–318.Google Scholar
  18. Bura, R., Bothast, R.J., Mansfield, S.D. and Saddler, J.N. 2003. Appl. Biochem. Biotechnol. 105–108: 319–335.Google Scholar
  19. Claassen, P.A.M., van Lier, J.B., Vries, S.S., Lopez Contreras, A.M., van Niel, E.W.J., Sijtsma, L., Stams, A.J.M. de Vries S.S. and Weusthius, R.A. 1999. Appl. Microbiol. Biotechnol. 52: 741–755.Google Scholar
  20. Cooper, T.G. 2002. FEMS Microbiol. Rev. 26: 223–238.Google Scholar
  21. Cornish-Bowden, A., Hofmeyr, J.-H.S. and Cardenas M.L. 1995. Bioorg. Chem. 23: 439–449.Google Scholar
  22. Coté, A., Brown, W.A., Cameron, D. and van Walsum, G.P. 2004. J. Dairy Sci. 87: 1608–1620.Google Scholar
  23. Delmer, D.P. and Amor Y. 1995. Plant Cell 7: 987–1000.Google Scholar
  24. Den Haan, R., Rose, S.H., Lynd, L.R. and Zyl W.H. van 2007. Metabolic Eng. 9: 87–94.Google Scholar
  25. Deng, X.X. and Ho, N.W. 1990. Appl. Biochem. Biotechnol. 24–25: 193–199.Google Scholar
  26. Dien, B.S., Kurtzman, C.P., Saha, B.C. and Bothast, R.J. 1996. Appl. Biochem. Biotechnol. 57–58: 233–242.Google Scholar
  27. Dijken, J.P. and Scheffers, W.A. 1986. FEMS Microbiol. Lett. 32: 199–224.Google Scholar
  28. Dunlop, A.P. 1948. Ind. Eng. Chem. 40: 204–209.Google Scholar
  29. Duvnjak, Z., Kosaric N. and Hayes, R.D. 1981. Biotechnol. Lett. 3: 589–594.Google Scholar
  30. Eksteen, J.M., van Resnburg, P., Otero, R.R.C. and Pretorius, I.S. 2003. Biotechnol. Bioeng. 84: 639–646.Google Scholar
  31. Elander, R.T. and Putsche, V.L. 1996. Handbook on Bioethanol: Production and Utilization (ed. Wyman C.E.), Taylor & Francis.Google Scholar
  32. Eliasson, A., Hofmeyr, J.-H.S., Pedler, S. and Hahn-Hägerdal B. 2001. Enzyme Microbial Technol. 29: 288–297.Google Scholar
  33. Faith, W.L. 1945. Ind. Eng. Chem. 37: 9–11.Google Scholar
  34. Farrell, A.E., Plevin, R.L., Turner, B.T., Jones, A.D., O'hare, M. and Kammen, D.M. 2006. Science 311: 506–508.Google Scholar
  35. Fonseca, C., Spencer-Martins, I. and Hahn-H ä gerdal, B. 2007. Appl. Microbiol. Biotechnol. DOI 10.2007/s00253-006-0830-7.Google Scholar
  36. Fujita, Y., Ito J., Ueda, M., Fukuda, H. and Kondo A. 2004. Appl. Environ. Microbiol. 70: 1207–1212.Google Scholar
  37. Galbe, M. and Zacchi, G. 2002. Appl. Microbiol. Biotechnol. 59: 618–628.Google Scholar
  38. Gancedo, J.M. 1998. Microbiol. Mol. Biol. Rev. 62: 334–361.Google Scholar
  39. Gray, K.A., Zhao, L. and Emptage, M. 2006. Curr. Opinion Chem. Biol. 10: 141–146.Google Scholar
  40. Hage, A., Schoemaker, H.E., Wever, R., Zennaro, E. and Heipieper, H.J. 2001. Biotechnol. Bioeng. 73: 69–73.Google Scholar
  41. Hahn-Hägerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Lidén, G. and Zacchi G. 2006. Trends in Biotechnol. 24: 549–556.Google Scholar
  42. Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I. and Gorwa-Grauslund, M.F. 2007. Appl. Microbiol. Biotechnol. 74: 937–953.Google Scholar
  43. Hahn-Hägerdal, B., Karhumaa, K., Larsson, C.U., Gorwa-Grauslund, M., Görgens, J. and van Zyl, W. H., 2005. Microb. Cell Fact. 4: 31.Google Scholar
  44. Hahn-Hägerdal, and B. Pamment, N. 2004. Appl. Biochem. Biotechnol. 113–116: 1207–1209.Google Scholar
  45. Hahn-Hägerdal, B., Wahlbom, C.F., Gárdonyi, M., van Zyl, C., Cordero Otero, R.R. and Jönsson, L.J. 2001. Adv. Biochem. Eng. 73: 53–83.Google Scholar
  46. Hamacher, T., Becker, J., Gardonyi, M., Hahn-Hägerdal, B. and Boles, E. 2002. Microbiology 148: 2783–2788.Google Scholar
  47. Harris, E.E., Hajny, G.J., Hannan, M. and Rogers, S.C. 1946. Ind. Eng. Chem. 38: 896–904.Google Scholar
  48. Heipieper, H.J., Weber, F.J., Sikkema, J., Keweloh, H. and de Bont, J.A.M. 1994. Tibtech. 12: 409–415.Google Scholar
  49. Ho, N.W., Chen, Z. and Brainard, A.P. 1998. Appl. Environ. Microbiol. 64: 1852–1859.Google Scholar
  50. Holtzapple, M.T., Jun, J.-H., Ashok, G., Patibandla, S.L. and Dale, B.E. 1991. Appl. Biochem. Biotechnol. 28/29: 59–74.Google Scholar
  51. Imai, T. and Ohno, T. 1995. Appl. Environ. Microbiol. 61: 3604–3608.Google Scholar
  52. Jeffries, T.W. 2006. Curr. Opin. Biotechnol. 17: 320–326.Google Scholar
  53. Jeffries, T.W., Fady, J.H. and Lightfoot, E.N. 1985. Biotechnol. Bioeng. 27: 171–176.Google Scholar
  54. Jeffries, T.W. and Jin, Y.-S. 2004. Appl. Microbiol. Biotechnol. 63: 495–509.Google Scholar
  55. Jeppsson, M., Johansson, B., Hahn-Hägerdal, B. and Gorwa-Grauslund, M.F. 2002. Appl. Environ. Microbiol. 68: 1604–1609.Google Scholar
  56. Jeppsson, M., Johansson, B., Jensen, P.R., Hahn-Hägerdal, B. and Gorwa-Grauslund, M.F. 2003. Yeast 20: 1263–1272.Google Scholar
  57. Johansson, B. and Hahn-Hägerdal, B. 2002a. FEMS Yeast Res. 2: 277–282.Google Scholar
  58. Johansson, B. and Hahn-Hägerdal B. 2002b. Yeast 19: 225–231.Google Scholar
  59. Johnston, M. and Carlson, M. 1992. The Molecular Biology of the Yeast Saccharomyces (eds. Jones E.W., Pringle J.R., Broach J.R.), Cold Spring Harbor Laboratory Press, pp. 193–281.Google Scholar
  60. Jones, J.L. and Semrau, K.T. 1984. Biomass 5: 109–135.Google Scholar
  61. Jönsson, L.J., Palmqvist, E., Nilvebrant, N.-O. and Hahn-Hägerdal B. 1998. Appl. Microbiol. Biotechnol. 49: 691–697.Google Scholar
  62. Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B. and Gorwa-Grauslund M.-F. 2007a. Appl. Microbiol. Biotechnol. 73: 1039–1046.Google Scholar
  63. Karhumaa, K., Hahn-Hägerdal, B. and Gorwa-Grauslund M.F. 2005. Yeast 22: 359–368.Google Scholar
  64. Karhumaa, K., Sanchez, R., Hahn-Hägerdal, B. and Gorwa-Grauslund M.F. 2007b. Microb. Cell Fact. 6: 1Google Scholar
  65. Karhumaa, K., Wiedemann, B., Boles, E., Hahn-Hägerdal, B. and Gorwa-Grauslund M.F. 2006. Microb. Cell Fact. 5: 18.Google Scholar
  66. Katahira, S., Mizuike, A., Fukuda, H. and Kondo A. 2006. Appl. Microbiol. Biotechnol. 72: 1136–1143.Google Scholar
  67. Kazuyoshi, O., Hamada, S. and Nakamura, T. 1993. Appl. Environ. Microbiol. 59: 729–733.Google Scholar
  68. Keller, F.A. 1996. Handbook on Bioethanol: Production and Utilization (ed. Wyman, C.E.), Taylor & Francis.Google Scholar
  69. Keller, F.A., Bates, D., Ruiz, R. and Nguyen, Q.A. 1998. Appl. Biochem. Biotechnol. 70–72: 137–148.Google Scholar
  70. Klein, C.J.L., Olsson, L. and Nielsen, J. 1998. Microbiol.-Sgm. 144: 13–24.Google Scholar
  71. Klein, C.J.L., Olsson, L., Ronnow, B., Mikkelsen, J.D. and Nielsen, J. 1996. Appl. Environ. Microbiol. 62: 4441–4449.Google Scholar
  72. Klein, C.J.L., Rasmussen, J.J., Ronnow, B., Olsson, L. and Nielsen, J. 1999. J. Biotechnol. 68: 197–212.Google Scholar
  73. Knox, A.M., du Preez, J.C. and Kilian, S.G. 2004. Enzyme Microbial Technol. 34: 453–460.Google Scholar
  74. Kosaric, N. and Vardar-Sukan, F. 2001. The Biotechnology of Ethanol — Classical and Future Applications (ed. Roehr M.), Wiley-VCH.Google Scholar
  75. Kuyper, M., Harhangi, H.R., Stave, A.K., Winkler, A.A., Jetten, M.S.M., de Laat, W T.A.M., den Ridder, J.J.J., Op den Camp H.J.M., van Dijken J.P., and Pronk J.T. 2003. FEMS Yeast Res. 4: 69–78Google Scholar
  76. Kötter, P. and Ciriacy, M. 1993. Appl. Microbiol. Biotechnol. 38: 776–783.Google Scholar
  77. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K. and Nilvebrant, N.O. 1999a. Enzyme Microbial Technol. 24: 151–159.Google Scholar
  78. Larsson, S., Reimann, A., Nilvebrant, N.O. and Jonsson, L.J. 1999b. Appl. Biochem. Biotechnol. 77: 91–103.Google Scholar
  79. Leandro, M.J., Goncalves, P. and Spencer-Martins, I. 2006. Biochem. J. 395: 543–549.Google Scholar
  80. Lee, L. 1997. J. Biotechnol. 56: 1–24.Google Scholar
  81. Lindén, T., Peetre, J. and Hahn-Hägerdal, B. 1992. Appl. Environ. Microbiol. 58: 1661–1669.Google Scholar
  82. Lucero, P., Moreno, E. and Lagunas, R. 2002. FEMS Yeast Res. 1: 307–314.Google Scholar
  83. Luo, C., Brink, D.L. and Blanch, H.W. 2002. Biomass Bioenergy 22: 125–138.Google Scholar
  84. Lynd, L.R., Weimer, P.J., van Zyl, W.H. and Pretorius, I.S. 2002. Microbiol. Mol. Biol. Rev. 66: 506–577.Google Scholar
  85. Mandels, M. and Reese, E.T. 1963. Devel. Ind. Microbiol. 5: 5–20.Google Scholar
  86. Mandels, M. and Sternberg, D. 1976. J. Ferment. Technol. 54: 267–286.Google Scholar
  87. Margaritis, A. and Merchant, F.J.A. 1983. Biotechnol. Lett. 5: 271–276.Google Scholar
  88. Mawson, A.J. 1994. Biores. Technol. 47: 195–203.Google Scholar
  89. McGinnis, G.D., Wilson, W.W. and Mullen, C.E. 1983. Ind. Eng. Chem. Prod. Res. Dev. 22: 352–357.Google Scholar
  90. McMillan, J.D. and Boynton, B.L. 1994. Appl. Biochem. Biotechnol. 45–46: 569–584.Google Scholar
  91. Meinander, N., Boels, I. and Hahn-Hägerdal, B. 1999. Biores. Technol. 68: 79–87.Google Scholar
  92. Naumov, G.I., Naumova, E.S., Turakainen, H. and Korhola, M. 1996. Genetical Res. 67( 2): 101–108.Google Scholar
  93. Nguyen, Q.A., Tucker, M.P., Keller, F.A., Beaty, D.A., Connors, K.M. and Eddy, F.P. 1999. Appl. Biochem. Biotechnol. 77–79: 133–142.Google Scholar
  94. Nguyen, Q.A., Tucker, M.P., Keller, F.A. and Eddy, F.P. 2000. Appl. Biochem. Biotechnol. 84–86: 561–576.Google Scholar
  95. Nilsson. A., Taherzadeh. M.J. and Linden. G. 2002. Bioprocess Biosystems Eng. 25: 183–191.Google Scholar
  96. Nilsson, A., Taherzadeh, M.J. and Lidén, G. 2001. J. Biotechnol. 89: 41–53.Google Scholar
  97. Nilvebrant, N.-O., Persson, P., Reimann, A., Sousa, F., de Gorton, L. and Jönsson L.J. 2003. Appl. Biochem. Biotechnol. 107: 615–628.Google Scholar
  98. Nilvebrant, N.-O., Reimann, A., Larsson, S. and Jönsson, L.J. 2001. Appl. Biochem. Biotechnol. 91: 35–50.Google Scholar
  99. Nissen, T.L., Anderlund, M., Nielsen, J., Villadsen, J. and Kielland-Brandt, M.C. 2001. Yeast 18: 19–32.Google Scholar
  100. Nissen, T.L., Kielland-Brandt, M.C., Nielsen, J. and Villadsen, J. 2000. Metabolic Eng. 2: 69–77.Google Scholar
  101. Öhgren, K., Bengtsson, O., Gorwa-Grauslund, M.F., Galbe, M., Hahn-Hägerdal, B. and Zacchi, G. 2006. J. Biotechnol. 126: 488–498.Google Scholar
  102. Öhgren, K., Vehmaanpera, J., Siika-Aho, M., Galbe, M., Viikari, L. and Zacchi, G. 2007. Enzyme Microbial Technol. 40: 607–613.Google Scholar
  103. Ostergaard, S., Olsson, L. and Nielsen, J. 2000a. Microbiol. Mol. Biol. Rev. 64: 34–50.Google Scholar
  104. Ostergaard, S., Olsson, L., Johnston, M. and Nielsen, J. 2000c. Nature Biotechnol. 18: 1283–1286.Google Scholar
  105. Ostergaard, S., Roca, C., Rønnow, B., Nielsen, J. and Olsson, L. 2000b. Biotechnol. Bioeng. 68: 252–259.Google Scholar
  106. Oura, E. 1973. Biotechnol. Bioeng. Symp. 0(4–1): 117–127.Google Scholar
  107. Oura, E. 1977. Process Biochem. 12: 19–21.Google Scholar
  108. Palmqvist, E., Almeida, J.S. and Hahn-Hägerdal, B. 1999. Biotechnol. Bioeng. 62: 447–457.Google Scholar
  109. Pan, X., Gilkes, N., Kadla, J., Kendall, P., Saka, S., Gregg, D., Ehara, K., Xie, D., Lam, D. and Saddler, J. 2006. Biotechnol. Bioeng. 94: 851–861.Google Scholar
  110. Parekh, S. 1986. Biotechnol. Lett. 8: 597–600.Google Scholar
  111. Ramos, L.P., Breuil, C. and Saddler, J.N. 1992. Appl. Biochem. Biotechnol. 34/35: 37–48.Google Scholar
  112. Rao, M., Seeta, R. and Deshpande, V. 1989. Biotechnol. Appl. Biochem. 11: 477–482.Google Scholar
  113. Reese, E.T., Siu, R.G.H. and Levinson, H.S. 1950. J. Bacteriol. 59: 485–497.Google Scholar
  114. Richard, P., Verho, R., Putkonen, M., Londesborough, J. and Penttilä, M. 2003. FEMS Yeast Res. 3: 185–189.Google Scholar
  115. Roca, C., Haack, M.B. and Olsson, L. 2004. Appl. Microbiol. Biotechnol. 63: 578–583.Google Scholar
  116. Roca, C., Nielsen, J. and Olsson, L. 2003. Appl. Environ. Microbiol. 69: 4732–4736.Google Scholar
  117. Rosen, K. 1987. Berry D., eds. Russell I. Stewart G.G. Yeast Biotechnology, Part V. Allen & Unwin, London, pp. 471–500.Google Scholar
  118. Rudolf, A. 2007. Ph D thesis. Lund University.Google Scholar
  119. Rudolf, A., Alkasrawi, M., Zacchi, G. and Lidén, G. 2005. Enzyme Microbial Technol. 37: 195–204.Google Scholar
  120. Rudolf, A., Galbe, M. and Lidén, G. 2004. Appl. Biochem. Biotechnol. 113–116: 601–617.Google Scholar
  121. Ryabova, O.B., Chmil, O.M. and Sibirny, A.A. 2003. FEMS Yeast Res. 4: 157–164.Google Scholar
  122. Sanchez, B. and Bautista, J. 1988. Enzyme Microbial Technol. 10: 315–318.Google Scholar
  123. Santos, M.M.A., Bocanegra, J.L.F., Martín, A.M. and García, I.G. 2003. J. Chem. Technol. Biotechnol. 78: 1121–1127.Google Scholar
  124. Sárvári Horváth, I., Taherzadeh, M.J., Niklasson, C. and Lidén, G. 2001. Biotechnol. Bioeng. 75: 540–549.Google Scholar
  125. Sassner, P., Galbe, M. and Zacchi, G. 2006. Enzyme Microbial Technol. 39: 756–762.Google Scholar
  126. Sauer, U. 2001. Adv. Biochem. Eng. Biotechnol. 73: 129–169.Google Scholar
  127. Schell, D.J., Farmer, J., Newman, M. and McMillan, J.D. 2003. Appl. Biochem. Biotechnol. 105–108: 69–85.Google Scholar
  128. Scholler, H. and Eikmeyer, R. 1937. Apparatus for the production of micro-organisms and for the fermentation of solutions patent U.S. Patents 2,083,348.Google Scholar
  129. Scholler, H. and Seidel, M. 1940. Method of and apparatus for fermenting solutions patent U. S. Patents 2,188,192.Google Scholar
  130. Sedlak, M. and Ho, N.W. 2001. Enzyme Microb. Technol. 28: 16–24.Google Scholar
  131. Senn, T. and Pieper, H.J. 2001. The Biotechnology of Ethanol — Classical and Future Applications (ed. Roehr M.), Wiley-VCH.Google Scholar
  132. Sherrard, E.C. and Kressman, F.W. 1945. Ind. Eng. Chem. 37: 5–8.Google Scholar
  133. Shigechi, H., Koh, J., Fujita, Y., Matsumoto, T., Bito, Y., Ueda, M., Satoh, E., Fukuda, H. and Kondo, A. 2004. Appl. Environ. Microbiol. 70: 5037–5040.Google Scholar
  134. Skoog, K. and Hahn-Hägerdal, B. 1988. Enzyme Microbial Technol. 10: 66–80.Google Scholar
  135. Sonderegger, M., Jeppsson, M., Hahn-Hägerdal, B. and Sauer, U. 2004. Appl. Environ. Microbiol. 70: 2307–2317.Google Scholar
  136. Sonderegger, M. and Sauer, U. 2003. Appl. Environ. Microbiol. 69: 1990–1998.Google Scholar
  137. Spano, L.A., Medeiros, J. and Mandels, M. 1976. Resource Recovery Conservation 1: 279–294.Google Scholar
  138. Spencer-Martins, I. and van Uden, N. 1977. Europ. J. Appl. Microbiol. 4: 29–35.Google Scholar
  139. Stenberg, K., Bollók, M., Réczey, K., Galbe, M. and Zacchi, G. 2000. Biotechnol. Bioeng. 68: 204–210.Google Scholar
  140. Sternberg, D., Vijayakumar, P. and Reese, E.T. 1977. Can. J. Microbiol. 23: 139–147.Google Scholar
  141. Söderström, J., Pilcher, L., Galbe, M. and Zacchi, G. 2002. Appl. Biochem. Biotechnol. 98–100: 5–21.Google Scholar
  142. Söderström, J., Pilcher, L., Galbe, M. and Zacchi, G. 2003. Biomass Bioenergy 24: 475–486.Google Scholar
  143. Taherzadeh, M.J., Gustafsson, L., Niklasson, C. and Lidén, G. 2000a. Appl. Microbiol. Biotechnol. 53: 701–708.Google Scholar
  144. Taherzadeh, M.J., Niklasson, C. and Lidén, G. 2000b. Biotechnol. Bioeng. 69: 330–338.Google Scholar
  145. Takagi, M., Abe, S., Suzuki, S., Emert, G.H. and Yata,N. 1977. Proc. Bioconversion Symposium, New Dehli, India, 1976, pp. 551–576.Google Scholar
  146. Tantirungkij, M., Nakashima, N., Seki, T. and Yoshida, T. 1993. J. Ferment. Bioeng. 75: 83–88.Google Scholar
  147. Teleman, A., Koivula, A., Reinkainen, T., Valkeajärvi, A., Teeri, T.T., Drakenberg, T. and Teleman, O. 1995. Europ. J. Biochem. 231: 250–258.Google Scholar
  148. Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson, S., Palmqvist, E. and Hahn-Hägerdal, B. 1998. Appl. Biochem. Biotechnol. 70–72: 3–15.Google Scholar
  149. Thanvantri, Gururajan, V., Gorwa-Grauslund, M.-F., Hahn-Hägerdal, B., Pretorius, I.S. and Cordero Otero, R.R. 2007. Ann. Microbiol. 57: 85–92.Google Scholar
  150. Thomas, D.S. and Davenport, R.R. 1985. Food Microbiol. 2: 157–169.Google Scholar
  151. Torget, R., Hatzis, C., Hayward, T.K., Hsu, T.-A. and Philippidis, G.P. 1996. Appl. Biochem. Biotechnol. 57/58: 85–101.Google Scholar
  152. Torget, R., Werdene, P., Himmel, M. and Grohmann, K. 1990. Appl. Biochem. Biotechnol. 24/25: 115–126.Google Scholar
  153. Träff, K.L., Otero Cordero, R.R., van Zyl, W.H. and Hahn-H ä gerdal, B. 2001. Appl. Environ. Microbiol. 67: 5668–5674.Google Scholar
  154. Wahlbom, C.F., van Zyl, W.H., Jönsson L.J., Hahn-Hägerdal B. and Cordero Otero R.R. 2003. FEMS Yeast Res. 3: 319–326.Google Scholar
  155. Walfridsson M., Bao X., Anderlund M., Lilius G., Bülow L. and Hahn-Hägerdal B. 1996. Appl. Environ. Microbiol. 62: 4648–4651.Google Scholar
  156. van Rooyen R., Hahn-Hägerdal B., La Grange D.C. and van Zyl, W.H. 2005. J. Biotechnol. 120: 284–295.Google Scholar
  157. Vandamme, E.J. and Derycke, D.G. 1983. Adv. Appl. Microbiol. 29: 139–176.Google Scholar
  158. Wayman, M. and Parekh, S.R. 1988. Appl. Biochem. Biotechnol. 17: 33–44.Google Scholar
  159. Wayman, M., Tallevi, A. and Winsborrow, B. 1984. Biomass 6: 183–191.Google Scholar
  160. Verduyn, C., Postma, E., Scheffers, A. and van Dijken, J.P. 1992. Yeast 8: 501–517.Google Scholar
  161. Verho, R., Londesborough, J., Penttilä, M. and Richard, P. 2003. Appl. Environ. Microbiol. 69: 5892–5897.Google Scholar
  162. Viegas, C.A. and Sá-Correia, I. 1995. Enzyme Microbial Technol. 17: 826–831.Google Scholar
  163. Wright, J.D., Wyman, C.E. and Grohmann, K. 1988. Appl. Biochem. Biotechnol. 18: 75–90.Google Scholar
  164. Wyman, C.E., Spindler, D.D. and Grohmann, K. 1992. Biomass Bioenergy 3: 301–307.Google Scholar
  165. Zhang, Y.H.P. and Lynd, L.R. 2005. Proc. Natl. Acad. Sci. USA 102: 9430–9430.Google Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Andreas Rudolf
    • 1
  • Kaisa Karhumaa
    • 2
  • Bärbel Hahn-Hägerdal
    • 3
  1. 1.Biosystems Department, Risö National LaboratoryLund UniversityLund Sweden
  2. 2.Applied MicrobiologyLund UniversitySweden
  3. 3.Applied MicrobiologySweden

Personalised recommendations