Yeast Genomics for Bread, Beer, Biology, Bucks and Breath

  • Kishore R. Sakharkar
  • Meena K. Sakharkar

The rapid advances and scale up of projects in DNA sequencing dur ing the past two decades have produced complete genome sequences of several eukaryotic species. The versatile genetic malleability of the yeast, and the high degree of conservation between its cellular processes and those of human cells have made it a model of choice for pioneering research in molecular and cell biology. The complete sequence of yeast genome has proven to be extremely useful as a reference towards the sequences of human and for providing systems to explore key gene functions. Yeast has been a ‘legendary model’ for new technologies and gaining new biological insights into basic biological sciences and biotechnology. This chapter describes the awesome power of yeast genetics, genomics and proteomics in understanding of biological function. The applications of yeast as a screening tool to the field of drug discovery and development are highlighted and the traditional importance of yeast for bakers and brewers is discussed.


Yeast fermentation genome drug discovery protein-protein interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfarano, C., Andrade, C.E., Anthony, K., Bahroos, N., Bajec, M., Bantoft, K., Betel, D., Bobechko, B., Boutilier, K. and Burgess, E., et al. 2005. Nucleic Acids Res. 33: D418–D424.CrossRefGoogle Scholar
  2. Astroff, A. and Egerton, M. 1999. In : Manual of Industrial Microbiology and Biotechnology, 2nd Ed. (chief eds. A.L. Demain and J. E. Davies), ASM Press, Washington, D.C., pp. 435–446.Google Scholar
  3. Baker, K., Sengupta, D., Salazar-Jimenez, G. and Cornish, V.W. 2003. Anal. Biochem. 315: 134–137.CrossRefGoogle Scholar
  4. Bond, U. and Blomerg, A. 2006. In: Yeasts in Food and Beverages. (Ed. Querol A, and Fleet GH), Springer, pp. 173 –213.Google Scholar
  5. Brejning, J., Arneborg, N. and Jespersen, L. 2005. J. Appl. Microbiol. 98: 261.CrossRefGoogle Scholar
  6. Cavalieri, D., McGovern, P.E., Hartl, D.L., Mortimer, R. and Polsinelli, M. 2003. J. Mol. Evol. 57: S226–S232.CrossRefGoogle Scholar
  7. Chan, T.F., Carvalho, J., Riles, L. and Zheng, X.F. 2000. Proc. Natl. Acad. Sci. USA 97: 13227–13232.CrossRefGoogle Scholar
  8. Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J. and Davis, R.W. 1998. Mol. Cell 2: 65–73.CrossRefGoogle Scholar
  9. Dimster-Denk, D., Rine, J., Phillips, J., Scherer, S., Cundiff, P., DeBord, K., and Gilliland, D., et al. 1999. J. Lipid Res. 40: 850–860.Google Scholar
  10. Fink, G.R. 2005. Cell 120:153–154.CrossRefGoogle Scholar
  11. Fleming, J.A., Lightcap, E.S., Sadis, S., Thoroddsen, V., Bulawa, C.E. and Blackman, R.K. 2002. Proc. Natl. Acad. Sci. U S A 99: 1461–1466.CrossRefGoogle Scholar
  12. Gandhi, T.K., Zhong, J., Mathivanan, S., Karthick, L., Chandrika, K.N., Mohan, S.S., Sharma, S., Pinkert, S., Nagaraju, S., Periaswamy, B., Mishra, G., Nandakumar, K., Shen, B., Deshpande, N., Nayak, R., Sarker, M., Boeke, J.D., Parmigiani, G., Schultz, J., Bader, J.S. and Pandey, A. 2006. Nat. Genet. 38: 285–293.CrossRefGoogle Scholar
  13. Gavin, A.C., Aloy, P., Grandi, P., Krause, R., and Boesche, M., et al. 2006. Nature 440: 631–636.CrossRefGoogle Scholar
  14. Ge, H., Liu, Z., Church, G.M. and Vidal, M. 2001. Nat Genet. 29: 482–486.CrossRefGoogle Scholar
  15. Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Veronneau, S., Dow S., et al. 2002. Nature. 418: 387–391.CrossRefGoogle Scholar
  16. Giot, L., Bader, J.S., Brouwer, C., Chaudhuri, A., and Kuang, B., et al. 2003. Science. 302: 1727–1736.CrossRefGoogle Scholar
  17. Gray, N.S., Wodicka, L., Thunnissen, A.M., Norman, T.C., Kwon, S., Espinoza, F. H., Morgan, D.O., Barnes, G., LeClerc, S., and Meijer, L., et al. 1998. Science 281. 533–538.CrossRefGoogle Scholar
  18. Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M., Louis, E.J., Mewes, H.W., Murakami, Y., Philippsen, P., Tettelin, H. and Oliver, S.G. 1996. Science 274: 563–567.CrossRefGoogle Scholar
  19. Hartwell, L.H. 2004. Biosci. Rep. 22: 373–394.CrossRefGoogle Scholar
  20. Hartwell, L.H. et al. 1997. Science 278: 1064–1068.CrossRefGoogle Scholar
  21. Hartwell, L.H., Hopfield, J.J., Leibler, S. and Murray, A.W. 1999. Nature. 402: C47–C52.CrossRefGoogle Scholar
  22. Henthorn, D.C., Jaxa-Chamiec, A.A. and Meldrum, E. 2002. Biochem. Pharmacol. 63: 1619–1628.CrossRefGoogle Scholar
  23. Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard S., Vingron, M., Roechert, B., Roepstorff, P., Valencia, A., et al. 2004. Nucleic Acids Res. 32: D452–D455.CrossRefGoogle Scholar
  24. Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Eng J.K., Bumgarner, R., Goodlett, D.R., and Aebersold, R., Hood L. 2001. Science. 292: 929–934.CrossRefGoogle Scholar
  25. Krogan, N.J., Cagney, G., Yu, H., Zhong, G., and Guo, X., et al. 2006. Nature. 440: 637–643.CrossRefGoogle Scholar
  26. Kumar, A., Harrison, P. M., Cheung, K.H., Lan, N., Echols, N., Bertone, P., Miller, P., and Gerstein, M.B. Snyder, M. 2002. Nat. Biotechnol. 20:58–63.CrossRefGoogle Scholar
  27. Legrain, P., Wojcik, J. and Gauthier, J.M. 2001. Trends Genet. 17: 346–352.CrossRefGoogle Scholar
  28. Li, S., Armstrong, C.M., Bertin, N., Ge, H., and Milstein, S., et al. 2004. Science 303: 540–543.CrossRefGoogle Scholar
  29. Luce, E.M. and Maclean, I.S. 1925. Biochem. J. 19: 47–51.Google Scholar
  30. Madeo, F., Herker, E., Maldener, C., Wissing, S., Lachelt, S., Herlan, M., and Fehr, M., et al. 2002. Mol. Cell 9: 911–917.CrossRefGoogle Scholar
  31. Marton, M. J., DeRisi, J. L., Bennett, H. A., Iyer, V. R., Meyer, M. R., Roberts, C. J., and Stoughton, R., et al. 1998. Nat. Med. 4: 1293–1301.CrossRefGoogle Scholar
  32. Mewes, H.W., Amid, C., Arnold, R., Frishman, D., Guldener, U., Mannhaupt, G., Munsterkotter, M., Pagel, P., Strack, N., Stumpflen, V., et al. 2004. Nucleic Acids Res. 32: D41–D44.CrossRefGoogle Scholar
  33. Mortimer, R.K. 2000. Genome Res. 10: 403–409.CrossRefGoogle Scholar
  34. Martin, N., Berger, C. Spinnler, H.E. 2002. J. Sens. Stud. 17: 1–17.CrossRefGoogle Scholar
  35. Natter, K., Leitner, P., Faschinger, A., Wolinski, H., McCraith, S., Fields, S. and Kohlwein, S.D. 2005. Mol. Cell Proteomics. 4: 662–672.CrossRefGoogle Scholar
  36. Oliver, S.G., van der Aart, Q.J., Agostoni-Carbone, M.L., Aigle, M., Alberghina, L., Alexandraki, D., Antoine G., Anwar, R., Ballesta, J.P., Benit, P., et al. 1992. Nature 357: 38–46.CrossRefGoogle Scholar
  37. Ooi, S.L., Shoemaker, D.D. Boeke, J.D. 2001. Science 294: 2552–2556.CrossRefGoogle Scholar
  38. Outeiro, T.F. Lindquist, S. 2003. Science 302: 1772–1775.CrossRefGoogle Scholar
  39. Parson, A.B., Brost, R.L., Ding, H., Li, Z., Zhang, C., Sheikh, B., Brown, G.W., Kane, P. M., Hughes, T.R. Boone, C. 2004. Nat. Biotechnol. 22: 62–69.CrossRefGoogle Scholar
  40. Parsons, A.B., Geyer, R., Hughes, T.R. and Boone, C. 2003. Prog. Cell Cycle Res. 5:159–166.Google Scholar
  41. Pawson, T. and Nash, P. 2000. Genes Dev. 14: 1027–1047.Google Scholar
  42. Peri, S., Navarro, J.D., Amanchy, R., Kristiansen, T.Z., Jonnalagadda, C.K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T.K., and Gronborg, M., et al. 2003. Genome Res. 13: 2363–2371.CrossRefGoogle Scholar
  43. Rubin, G.M., Yandell, M.D., Wortman, J.R., GaborMiklos, G.L., Nelson, C.R., Hariharan, I.K., Fortini, M.E., Li, P.W., Apweiler, R., Fleischmann, W., Cherry, J.M., Henikoff, S., Skupski, M.P., Misra, S., Ashburner, M., Birney, E., Boguski, M.S., Brody, T., Brokstein, P., Celniker, S.E., Chervitz, S.A., Coates, D., Cravchik, A., Gabrielian, A., Galle, R.F., Gelbart, W. M., George, R.A., Goldstein, L.S., Gong, F., Guan, P., Harris, N.L., Hay, B.A., Hoskins, R.A., Li, J., Li Z., Hynes, R.O., Jones, S.J., Kuehl, P.M., Lemaitre, B., Littleton, J.T., Morrison, D.K., Mungall, C., O'Farrell, P.H., Pickeral, O.K., Shue, C., Vosshall, L.B., Zhang, J., Zhao, Q., Zheng, X.H. and Lewis, S. 2000. Science 287: 2204–15.CrossRefGoogle Scholar
  44. Sakharkar, M.K. and Kangueane, P. 2004. BMC Bioinformatics. 5: 67.CrossRefGoogle Scholar
  45. Sakharkar, M.K., Sakharkar, K.R. and Pervaiz, S. 2007. Int. J. Biochem. Cell Biol. Mar 7; [Epub ahead of print]Google Scholar
  46. Sakurai, A., Fujimori, S., Kochiwa, H., Kitamura-Abe S., Washio, T., Saito, R., Carninci P., Hayashizaki, Y. and Tomita, M. 2002. Gene 300: 89–95.CrossRefGoogle Scholar
  47. Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U. and Eisenberg, D. 2004. Nucleic Acids Res. 32: D449–D451.CrossRefGoogle Scholar
  48. Shalon, D., Smith, S. J. Brown, P. O. 1996. Genome Res. 6: 639–645.CrossRefGoogle Scholar
  49. Shen S., Sulter, G., Jeffries, T. W., Cregg, J. M. 1998. Gene. 216: 93–102.CrossRefGoogle Scholar
  50. Smardova, J., Smarda, J. Koptikova, J. 2005 Differentiation 73: 261–277.CrossRefGoogle Scholar
  51. Snyder M. Kumar, A. 2002. Funct. Integr. Genomics. 2: 135–137.CrossRefGoogle Scholar
  52. Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A. and Tyers, M. 2006. Nucleic Acids Res. 34: D535–D539.CrossRefGoogle Scholar
  53. Swiegers, J.H., Bartowsky, E.J., Henschike, P.A. and Pretorius, I.S. 2005. Aust. J. Grape Wine Res. 11:139–173.CrossRefGoogle Scholar
  54. Tong, A.H., Evangelista, M., Parsons, A.B., Xu, H., Bader, G.D., Page, N., and Robinson, M., et al. 2001. Science. 294: 2364–2368.CrossRefGoogle Scholar
  55. Tucker, G. 1996 Brit. Food J. 98: 14–19.CrossRefGoogle Scholar
  56. Uren, A.G., O'Rourke, K., Aravind, L.A., Pisabarro, M.T., Seshagiri, S., Koonin, E. V. and Dixit, V. M. 2000. Mol. Cell 6: 961–967.Google Scholar
  57. Varela, C., Xardenas, J., Melo, F. and Agosin, E. 2005. Yeast 22:369–383.CrossRefGoogle Scholar
  58. Verbelen, P.J., Schutter De, D.P., Delvaux, F., Verstrepen, K.J. and Delvaux, F.R. 2006. Biotechnol. Lett. 28: 1515–1525.CrossRefGoogle Scholar
  59. Verstrepen, K.J., Jansen, A., Lewitter, F. and Fink, G.R. 2005. Nat. Genetics. 37: 986–990.CrossRefGoogle Scholar
  60. Verstrepen, K.J., Reynolds, T.B. and Fink, G.R. 2004. Nat. Rev. Microbiol. 2: 533–540.CrossRefGoogle Scholar
  61. Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K.,and Andre, B., Bangham R., et al. 1999. Science. 285: 901–906.CrossRefGoogle Scholar
  62. Wood, V., Gwilliam, R., Rajandream, M. A., Lyne, M., Lyne, R., Stewart, A., and Sgouros, J., et al. 2002. Nature. 415: 871–880.CrossRefGoogle Scholar
  63. Xenarios, I., Salwinski, L., Duan, X.J., Higney, P., Kim, S.M., and Eisenberg, D. 2000. Nucleic Acids Res. 30: 303–305.CrossRefGoogle Scholar
  64. Young, R.A. 2000. Cell. 102: 9–15.CrossRefGoogle Scholar
  65. Zanzoni, A., Montecchi-Palazzi, L., Quondam, M., Ausiello, G., Helmer-Citterich, M. Cesareni, G. 2002. FEBS Lett. 513: 135–140.CrossRefGoogle Scholar
  66. Zoecklein, B.W., Jasinski, Y. McMahon, H. 1998. J. Food Composition and analysis 11: 240–248.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Kishore R. Sakharkar
    • 1
  • Meena K. Sakharkar
    • 2
  1. 1.National University Medical Institutes, YLL School of Medicine, National University of SingaporeSingapore
  2. 2.BioMedical Engineering Research Centre (BMERC), Nanyang Technological UniversitySingapore

Personalised recommendations