Skip to main content

Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

  • Chapter
Yeast Biotechnology: Diversity and Applications

Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarnio, T.H., Suihko, M.L. and Kauppinen, V.S. 1991. Appl. Biochem. Biotechnol. 27: 55–63.

    Google Scholar 

  • Adams, J., Paquin, C., Oeller, P.W., and Lee, L.W. 1985. Genetics 110: 173–185.

    CAS  Google Scholar 

  • Alix, J.H. 1982. Microbiol. Rev. 46: 281–295.

    CAS  Google Scholar 

  • Amberg, D., Burke, D. and Strathern, J. 2005. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual. Cold Spring Harbour Laboratory Press, New York, USA.

    Google Scholar 

  • Anderson, J.B., Sirjusingh, C. and Ricker, N. 2004. Genetics 168: 1915–1923.

    CAS  Google Scholar 

  • Attfield. P.V. and Bell. P.J.L. 2006. FEMS Yeast Res. 6: 862–868.

    Google Scholar 

  • Bakalinsky. A. and Snow. R. 1990. Yeast 6: 367–382.

    Google Scholar 

  • Bell, P.J., Deere, D., Shen, J., Chapman, B., Bissinger, P.H., Attfield, P.V. and Veal, D.A. 1998. Appl. Environ. Microbiol. 64: 1669–1672.

    CAS  Google Scholar 

  • Bilinski, C., Russell, I. and Stewart, G. 1987. Cross breeding of Saccharomyces cerevisiae and Saccharomyces uvarum (calsbergensis ) by mating of meiotic segregants: isolation and characterization of a species hybrid. European Brewery Convention, Proceedings of the 21st Congress, Madrid, Spain, IRL Press Oxford, pp. 497 –504.

    Google Scholar 

  • Bradbury, J.E., Richards, K.D., Niederer, H.A., Lee, S.A., Rod Dunbar, P. and Gardner, R.C. 2006. Antonie van Leeuwenhoek Int. J. Gen. Microbiol. 89: 27–37.

    CAS  Google Scholar 

  • Brown, C.J., Todd, K.M. and Rosenzweig, R.F. 1998. Mol. Biol. Evol. 15: 931–942.

    CAS  Google Scholar 

  • Brown, S.W. and Oliver, S.G. 1982. Eur. J. Appl. Microbiol. 16: 119–122.

    Google Scholar 

  • Burke, D., Dawson, D. and Stearns, T. 2000. Methods in Yeast Genetics: A Cold Spring Harbour Laboratory Course Manual. New York, USA.

    Google Scholar 

  • Butler, P.R., Brown, M. and Oliver, S.G. 1996. Biotechnol. Bioeng. 49: 185–196.

    CAS  Google Scholar 

  • Carrau, J., Dillon A., Serafini, A. and Pazqual, M. 1990. US Patent 5330774.

    Google Scholar 

  • Chang, S.Y., Li, C.T., Hiang, S.Y. and Chang, M.C. 1995. Appl. Microbiol. Biotechnol. 43: 534–538.

    CAS  Google Scholar 

  • Curran B.P. and Carter B.L. 1983. J. Gen. Microbiol. 129: 1589–1591.

    CAS  Google Scholar 

  • Darwin C. 1859. The Origin of Species, John Murray, London, UK.

    Google Scholar 

  • de Barros Lopes, M., Bellon, J.R., Shirley, N.J. and Ganter, P.F. 2002. FEMS Yeast Res. 1: 323–331.

    Google Scholar 

  • Dunham M.J., Badrane H., Ferea T., Adams J., Brown P.O., Rosenzweig F., and Botstein D. 2002. Proc. Natl. Acad. Sci. USA 99: 16144–16149.

    CAS  Google Scholar 

  • Dykhuizen, D.E. and Hartl, D.L., 1983. Microbiol. Rev. 47: 150–168.

    CAS  Google Scholar 

  • Esteve-Zarzoso, B., Belloch, C., Uruburu, F. and Querol, A. 1999. Int. J. Syst. Bacteriol. 49: 329–337.

    CAS  Google Scholar 

  • Fan, Z.L., McBride J.E., van Zyl W.H., Lynd L. R. 2005. Biotechnol. Bioeng. 92: 35–44.

    CAS  Google Scholar 

  • Farahnak F., Seki, T., Ryu, D.D. and Ogrydziak, D. 1986. Appl. Environ. Microbiol. 51: 362–367.

    CAS  Google Scholar 

  • Ferea, T.L., Botstein, D., Brown, P.O. and Rosenzweig, R.F. 1999. Proc. Natl. Acad. Sci.USA 96: 9721–9726.

    CAS  Google Scholar 

  • Francis, J.C. and Hansche, P.E. 1972. Genetics 70: 59–73.

    CAS  Google Scholar 

  • Francis, J.C. and Hansche, P.E. 1973. Genetics 74: 259–265.

    CAS  Google Scholar 

  • Gasent-Ramírez, J.M. and Benitez, T. 1997. Appl. Environ. Microbiol. 63: 4800–4806.

    Google Scholar 

  • Gjermansen, C. and Sigsgaard, P. 1981. Carlsberg Res. Commun. 46: 1–11.

    CAS  Google Scholar 

  • González, R., Martinez-Rodrigue,z A.J. and Carrascosa, A.V. 2003. Int. J. Food Microbiol. 84: 21–26.

    Google Scholar 

  • González, S., Barrio, E., Gafner, J., and Querol, A. 2006. FEMS Yeast Res. 6: 1–14.

    Google Scholar 

  • Gresham, D., Ruderfer, D.M., Pratt, S.C., Schacherer, J., Dunham, M.J., Botstein, D., and Kruglyak, L. 2006. Science 311: 1932–1936.

    CAS  Google Scholar 

  • Groth, G., Hansen, J. and Piskur, J. 1999. Int. J. Syst. Bacteriol. 49: 1933–1938.

    CAS  Google Scholar 

  • Gunge, N. and Nakatomi, Y. 1972. Genetics 70: 41–58.

    Google Scholar 

  • Gunge, N. and Sakaguchi, K. 1981. J. Bacteriol. 147: 155–160.

    CAS  Google Scholar 

  • Haber, J.E. 1998. Annu. Rev. Genet. 32: 561–599.

    CAS  Google Scholar 

  • Hahn-Hägerdal, B., Karhumaa, K., Larsson, C.U., Gorwa-Grauslund, M., Gorgens, J. and van Zyl, W.H., 2005. Microbial. Cell Factories 4: 31.

    Google Scholar 

  • Helle, S.S., Murray, A., Lam, J., Cameron, D.R. and Duff, S.J.B. 2004. Bioresource Technology 92: 163–171.

    CAS  Google Scholar 

  • Higgins, V.J., Bell, P.J.L., Dawes, I.W. and Attfield, P.V. 2001. Appl. Environ. Microbiol. 67: 4346–4348.

    CAS  Google Scholar 

  • Ho, N.W.Y., Chen, Z.D. and Brainard, A.P. 1998. Appl. Environ. Microbiol. 64: 1852–1859.

    CAS  Google Scholar 

  • Hunter, N., Chambers, S.R., Louis, E.J. and Borts, R.H. 1996. EMBO J. 15: 1726–1733.

    CAS  Google Scholar 

  • Jansen, M.L.A., Daran-Lapujade, P., de Winde, J.H., Piper, M.D.W. and Pronk, J.T. 2004. Appl. Environ. Microbiol. 70: 1956–1963.

    CAS  Google Scholar 

  • Jansen, M.L.A., Diderich, J.A., Mashego, M., Hassane, A. and de Winde, J.H., Daran-Lapujade P., and Pronk J.T. 2005. Microbiol.-Sgm. 151: 1657–1669.

    CAS  Google Scholar 

  • Jimenez, J. and Benitez T. 1988. Appl. Environ. Microbiol. 54: 917–922.

    CAS  Google Scholar 

  • Johnson, J. 1965. J. Int. Brew. 71: 135–137.

    Google Scholar 

  • Johnston, J.R., Baccari, C. and Mortimer, R.K. 2000. Res. Microbiol. 151: 583–590.

    CAS  Google Scholar 

  • Katsuragi, T., Kawabata, N. and Sakai, T. 1994. Lett. Appl. Microbiol. 19: 92–94.

    Google Scholar 

  • Kielland-Brandt, M., Nilsson-Tillgren,T., Gjermansen, C., Holmberg, S., and Pedersen, M. 1995. The Yeasts. (eds. Wheals A., Rose A., Harrison J.) Academic Press, New York, 6: 223–354.

    Google Scholar 

  • Kishida, M., Muguruma, T., Sakanaka, K., Katsuragi, T. and Sakai, T. 1996. J. Ferment. Bioeng. 81: 281–285.

    CAS  Google Scholar 

  • Kitamoto, K., Odamiyazaki, K., Gomi, K. and Kumagai, C. 1993. J. Ferment. Bioeng. 75: 359–363.

    CAS  Google Scholar 

  • Knutton, S. 1979. J. Cell Sci. 36: 61–72.

    CAS  Google Scholar 

  • Lane, P.G., Oliver, S.G. and Butler, P.R. 1999. Biotechnol. Bioeng. 65: 397–406.

    CAS  Google Scholar 

  • Lawrence, C.W. 1991. Methods Enzymol. 194: 273–281.

    CAS  Google Scholar 

  • Markx, G.H. and Kell, D.B. 1995. Biotechnol. Progr. 11: 64–70.

    CAS  Google Scholar 

  • Martinez-Force, E. and Benitez, T. 1992. Curr. Genet. 21: 191–196.

    CAS  Google Scholar 

  • Masneuf, I., Hansen, J., Groth, C., Piskur, J., and Dubourdieu, D. 1998. Appl. Environ. Microbiol. 64: 3887–3892.

    CAS  Google Scholar 

  • Miklos, I. and Sipiczki, M. 1991. Appl. Microbiol. Biotechnol. 35: 638–642.

    CAS  Google Scholar 

  • Mortimer, R.K. 1958. Radiation Res. 9: 312–326.

    CAS  Google Scholar 

  • Mortimer, R.K. 2000. Genome Res. 10: 403–409.

    CAS  Google Scholar 

  • Mukai, N., Nishimori, C., Fujishige, I.W., Mizuno, A., Takahashi, T. and Sato, K. 2001. J. Biosci. Bioeng. 91: 482–486.

    CAS  Google Scholar 

  • Myers, C.L., Dunham, M.J., Kung, S.Y. and Troyanskaya, O.G. 2004. Bioinformatics 20: 3533–3543.

    CAS  Google Scholar 

  • Naumov, G. 1987. Stud. Mycol. 30: 469–475.

    Google Scholar 

  • Naumov, G., Kondrat'eva, V. and Naumov, E. 1986. Biotekhnologiya 6: 33–36.

    Google Scholar 

  • Ness, F., Lavallee, F., Dubourdieu, D., Aigle, M. and Dulau, L. 1993. J. Sci. Food Agric. 62: 89–94.

    CAS  Google Scholar 

  • Novick, A. and Szilard, L. 1950. Proc. Natl. Acad. Sci. USA 36: 708–719.

    CAS  Google Scholar 

  • Orr, H.A. and Otto, S.P. 1994. Genetics 136: 1475–1480.

    CAS  Google Scholar 

  • Ouchi, K. and Akiyama, H. 1971. Agric. Biol. Chem. 35: 1024–1032.

    Google Scholar 

  • Paquin, C. and Adams, J. 1983. Nature 302: 495–500.

    CAS  Google Scholar 

  • Pitkanen, J.P., Rintala, E., Aristidou, A., Ruohonen, L. and Penttila, M. 2005. Appl. Microbiol. Biotechnol. 67: 827–837.

    Google Scholar 

  • Pomper, S., Daniels, K.M. and Mckee, D.W. 1954. Genetics 39: 343–355.

    CAS  Google Scholar 

  • Pretorius, I. 2004. In: Handbook of Fungal Biotechnology (eds. Arora D., Bridge P., Bhatnagar D.), Dekker, New York, USA, pp. 209–232.

    Google Scholar 

  • Pretorius, I.S. 2000. Yeast 16: 675–729.

    CAS  Google Scholar 

  • Pulvirenti, A., Zambonelli, C., Todaro, A. and Giudici, P. 2002. Ann. Microbiol. 52: 245–255.

    Google Scholar 

  • Ramos, C., Delgado, M.A. and Calderon, I.L. 1991. FEBS Lett. 278: 123–126.

    CAS  Google Scholar 

  • Reymond, P. and Fevre, M. 1986. Enzyme Microb. Technol. 8: 41–44.

    CAS  Google Scholar 

  • Romano, P., Soli, M.G., Suzzi, G., Grazia, L. and Zambonelli, C. 1985. Appl. Environ. Microbiol. 50: 1064–1067.

    CAS  Google Scholar 

  • Rose, M.D., Price, B.R. and Fink, G.R. 1986. Mol. Cell Biol. 6: 3490–3497.

    CAS  Google Scholar 

  • Rupela, O.P. and Tauro, P. 1984. Enzyme Microb. Technol. 6: 419–421.

    CAS  Google Scholar 

  • Russell, I. and Stewart, G.G. 1979. J. Int. Brew. 85: 95–98.

    Google Scholar 

  • Sauer, U. 2001. Adv. Biochem. Eng. Biotechnol. 73: 130–166.

    Google Scholar 

  • Schroeder, W.A., Calo, P., DeClercq, M.L. and Johnson, E.A. 1996. Microbiology-UK 142: 2923–2929.

    CAS  Google Scholar 

  • Sherman, F. 2002. Methods Enzymol. 350: 3–41.

    CAS  Google Scholar 

  • Snow, R. 1983. Yeast Genetics (eds. Spencer, J.F.T., Spencer, D. Smith, A.R.W.), Springer-Verlag, New York, USA, 439–459.

    Google Scholar 

  • Soltis, D.E. and Soltis, P.S. 1999. Trends Ecol. Evol. 14: 348–352.

    Google Scholar 

  • Sonderegger, M. and Sauer, U. 2003. Appl. Environ. Microbiol. 69: 1990–1998.

    CAS  Google Scholar 

  • Sonderegger, M., Jeppsson, M., Larsson, C., Gorwa-Grauslund, M.F., Boles, E., Olsson, L., Spencer-Martins, I., Hahn-Hägerdal B., and Sauer, U. 2004. Biotechnol. Bioeng. 87: 90–98.

    CAS  Google Scholar 

  • Spencer, J. and Spencer, D. 1980. Mol. Gen. Genet. 177: 355–358.

    CAS  Google Scholar 

  • Spencer J. and Spencer, D. 1981. Curr. Genet. 4: 177–180.

    Google Scholar 

  • Spencer J. and Spencer, D. 1983. Annu. Rev. Microbiol. 37: 121–142.

    CAS  Google Scholar 

  • Spencer J. and Spencer D. 1996. In: Methods in Molecular Biology (ed. Evans, I.H.), Humana Press, New Jersey, USA, 53: 17–38.

    Google Scholar 

  • Svoboda A. 1978. J. Gen. Microbiol. 109: 169–175.

    Google Scholar 

  • Teunissen, A., Dumortier, F., Gorwa, M.F., Bauer, J., Tanghe, A., Loiez, A., Smet, P., van Dijck, P., and Thevelein, J.M. 2002. Appl. Environ. Microbiol. 68: 4780–4787.

    CAS  Google Scholar 

  • Thornton, R.J. 1978. Eur. J. Appl. Microbiol. 5: 103–107.

    Google Scholar 

  • van der Westhuizen, T.J. and Pretorius, I.S. 1992. Antonie van Leeuwenhoek Int. J. Gen. Microbiol. 61: 249–257.

    Google Scholar 

  • van Maris, A.J.A., Geertman, J.M.A., Vermeulen, A., Groothuizen, M.K., Winkler, A.A., Piper, M.D.W., van Dijken, J.P., and Pronk, J.T. 2004. Appl. Environ. Microbiol. 70: 159–166.

    CAS  Google Scholar 

  • van Solingen, P. and van der Plaat, J., 1977. J. Bacteriol. 130: 946–947.

    Google Scholar 

  • van Wyk, C. and Pretorius, I.S. 1990. A comparative study of new yeast hybrids. 14th Congress of the South African Society of Enology and Viticulture. Cape Town, South Africa.

    Google Scholar 

  • Verstrepen, K., Chambers, P. and Pretorious, I. 2006. In: Yeasts in Food and Beverages (eds. Querol, A., Fleet, G.), Springer-Verlag, Heidelberg, Germany, Vol.2, pp. 399–444.

    Google Scholar 

  • vanWyk, C. and Pretorius, I.S. 1990. A comparative study of new yeast hybrids. 14th Congress of the South African Society of Enology and Viticulture. Cape Town, South Africa.

    Google Scholar 

  • Wahl, L.M. and Krakauer, D.C. 2000. Genetics 156: 1437–1448.

    CAS  Google Scholar 

  • Walker, G. 1998. Yeast Physiology and Biotechnology, Chichester; J. Wiley & Sons, New York.

    Google Scholar 

  • Wick, L.M., Weilenmann, H. and Egli, T. 2002. Microbiol.-Sgm. 148: 2889–2902.

    CAS  Google Scholar 

  • Winge, O. and Lausten, O. 1938. CR Trav. Lab. Carlsberg Ser. Physiol. 22: 235–244.

    Google Scholar 

  • Zambonelli, C., Passarelli, P., Rainieri, S., Bertolini, L., Giudici, P. and Castellari, L. 1997. J. Sci. Food Agric. 74: 7–12.

    CAS  Google Scholar 

  • Zambonelli, C., Passarelli, P., Rainieri, S. and Giudici, P. 1993. Ann. Microbial Enzymol. 43: 217–223.

    Google Scholar 

  • Zeyl, C. 2004. Res. Microbiol. 155: 217–223.

    CAS  Google Scholar 

  • Zeyl, C. 2005. Genetics 169: 1825–1831.

    CAS  Google Scholar 

  • Zhuge, B., Guo, X.N., Mawadza, C., Fang, H.Y., Tang, X.M., Zhang, X.H. and Zhuge, J. 2005. World J. Microbiol. Biotechnol. 21: 453–456.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Chambers, P.J., Bellon, J.R., Schmidt, S.A., Varela, C., Pretorius, I.S. (2009). Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications. In: Satyanarayana, T., Kunze, G. (eds) Yeast Biotechnology: Diversity and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8292-4_20

Download citation

Publish with us

Policies and ethics