Interaction Between Yeasts and Zinc

  • Raffaele De Nicola
  • Graeme Walker

Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses


Zinc gene expression industrial yeast vacuole fermentative performance homeostasis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berg, J.M. and Shi, Y. 1996. Science 271: 1081–1085.CrossRefGoogle Scholar
  2. Binder, H., Arnold, K., Ulrich, A.S. and Zschornig, O. 2001. Biophys. Chem. 90: 57–74.CrossRefGoogle Scholar
  3. Birch, R.M. and Walker, G.M. 2000. Enzyme Microb. Tech. 26: 678–687.CrossRefGoogle Scholar
  4. Blackwell, K.J., Tobin, J.M. and Avery, S.V. 1997. Appl. Microbiol. Biotechnol. 47: 180–184.CrossRefGoogle Scholar
  5. Borrelly, G.P., Harrison, M.D., Robinson, A.K., Cox, S.G., Robinson, N.J. and Whitehall, S.K. 2002. J. Biol. Chem. 277: 30394–30400.CrossRefGoogle Scholar
  6. Borst-Pauwels, G.W.F.H. 1981. Biochim. Biophys. Acta 650: 88–127.Google Scholar
  7. Brady, D. and Duncan, J.R. 1994. Enzyme Microb. Tech. 16: 633–638.CrossRefGoogle Scholar
  8. Briggs, D.E., Boulton, C.A., Brookes, P.A., and Stevens, R. 2004. Brewing science and practice, Woodhead Publ., Cambridge.Google Scholar
  9. Bromberg, S.K., Bower, P.A, Duncombe, G.R., Fehring, J., Gerber, L., Lau, V.K. and Tata, M. 1997. J. Am. Soc. Brew. Chem. 55: 123–128.Google Scholar
  10. Cabanis, J.-C. and Flanzy, C. 1998 In: Oenologie, fondements scientifiques technologiques(ed. Flanzy C.), Lavoiser Publ., pp. 4–39.Google Scholar
  11. Carman, G.M. 2005. Biochem Soc. Transact. 33: 1150–1153.CrossRefGoogle Scholar
  12. Christensen, P. 1980. Am. J. Enol. Viticiculture 31: 53–59.Google Scholar
  13. Christensen, P. and Jensen, F. 1978. Am. J. Enol. Viticiculture 29: 213–216.Google Scholar
  14. Costello, L.Y., Franklin, R.B. and Kennedy, M.C. 1997. J. Biol. Chem. 272: 28875–28881.CrossRefGoogle Scholar
  15. Curtin, L.V. 1973. In: Effect of processing on the nutritional value of feeds, National Academy of Sciences Publ., Washington D.C.Google Scholar
  16. Cyert, M.S. 2001. Ann. Rev. Genet. 35: 647–672.CrossRefGoogle Scholar
  17. D'Amore, T., Panchal, C.J., Russel, I. and Stewart, G.G. 1988. J. Ind. Microbiol. 2: 365–372.CrossRefGoogle Scholar
  18. Daveloose, M. 1987. MBAA. Techn. Quart. 24: 109–112.Google Scholar
  19. De Nicola, R. 2006. PhD thesis, University of Abertay Dundee, Dundee, UK.Google Scholar
  20. De Nicola, R., Hazelwood, L.A., De Hulster, E.A.F., Walsh, M.C., Knijnenburg, T.A., Reinders, M.J.T., Walker, G.M., Pzonk, J.T., Daran, J.M., and Daran-Lapujade, P. 2007. J. Appl. Environm. Microbiol. 73: 7680–7692.CrossRefGoogle Scholar
  21. Devirgiliis, C., Murgia, C., Danscher, G. and Perozzi, G. 2004. Biochem. Biophys. Res. Commun. 323: 8–64.CrossRefGoogle Scholar
  22. Eide, D.J. 1998. Ann. Rev. Nutr. 18: 441–469.CrossRefGoogle Scholar
  23. Eide, D.J. 2003. J. Nutr. 133: 1532S–1535S.Google Scholar
  24. Ellis, C.D., Wang, F., MacDiarmid, C.W., Clark, S., Lyons, T. and Eide, D.J. 2004. J. Cell Biol. 66: 325–335.CrossRefGoogle Scholar
  25. Engl, A. and Kunz, B. 1995. J. Chem. Technol. Biotechnol. 63: 257–261.CrossRefGoogle Scholar
  26. Failla, M.L., Benedict, C.D. and Weinberg, E.D. 1976. J. Gen. Microbiol. 94: 23–36.Google Scholar
  27. Failla, M.L. and Weinberg, E.D. 1977. J. Gen. Microbiol. 99: 85–97.Google Scholar
  28. García, J. J., Martinez-Ballarin, E., Millan-Plano, S., Allue', J. L., Albendea, C., Fuentes, L. and scanero, J. F. 2005. J. Trace Elements Med. Biol. 19(1 SPEC. ISS.): 19–22.CrossRefGoogle Scholar
  29. Gitan, R.S., Luo, H., Rodgers, J., Broderius, M. and Eide, D.J. 1998. J. Biol. Chem. 44: 28617–28624.CrossRefGoogle Scholar
  30. Guerinot, M.L. and Eide, D. 1999. Curr. Opin. Plant Biol. 2: 244–249.CrossRefGoogle Scholar
  31. Guo, B., Styles, C.A., Feng, Q. and Fin, G.R. 2000. Proc. Nat. Acad. Sci. USA 97: 12158–12163.CrossRefGoogle Scholar
  32. Guyot, S., Ferret, E. and Gervais, P. 2005. Biotechnol. Bioeng. 92: 403–409.CrossRefGoogle Scholar
  33. Hall, N. 2001. PhD thesis. University of Abertay Dundee, Dundee, UK.Google Scholar
  34. Han, S.-H., Han, G.-S., Iwanyshyn, W.M., and Carman, G.M. 2005. J. Biol. Chem. 280: 29017–29024.CrossRefGoogle Scholar
  35. Helin, T.R.M. and Slaughter, J.C. 1977. J. Inst. Brew. 83: 17–19.Google Scholar
  36. Higgins, V.J., Rogers, P.J., and Dawes, I.W. 2003. Appl. Environ. Microbiol. 69: 7535–7540.CrossRefGoogle Scholar
  37. Hodgson, J.A., and Moir, M. 1990. Proc. 3rd Aviemore Conference of Malt, Brewing and istilling. Institute of Brewing, Aviemore, UK, pp. 266–269.Google Scholar
  38. Huang, L., Kirschke, C.P., Zhang, Y., and Yu, Y.Y. 2005. J. Biol. Chem. 280: 15456–15463.CrossRefGoogle Scholar
  39. Ingledew 1999. In: The Alcohol Textbook, 3rd edn. (eds. Lyons T.P., Kelsall D.R.), Nottingham niversity Press Publ., Nottingham, pp. 49–87.Google Scholar
  40. Iwanyshyn, W.M., Han, G.-S., and Carman, G.M. 2004. J. Biol. Chem. 279: 21976–21983.CrossRefGoogle Scholar
  41. Jacobsen, T., Hage, T., and Lie, S. 1982. J. Inst. Brew. 88: 387–389.Google Scholar
  42. Jacobsen, T. and Lie, S. 1977. J. Inst. Brew. 83: 208–212.Google Scholar
  43. Jacobsen, T. and Lie, S. 1979. Proc. Congress of the European Brewing Convention 17: 117–129.Google Scholar
  44. Jacobsen, T., Lie, S., and Hage, T. 1981. Proc. 19th Congress European Brewery Convention, openhagen, DK, pp. 97–104.Google Scholar
  45. Jacobsen, T. and Volden, R. 1981. MBAA Techn. Quart. 18: 122–125.Google Scholar
  46. Jones, R.P. and Gadd, G. 1990. Enzyme Microb. Tech. 12: 402–418.CrossRefGoogle Scholar
  47. Jones, R.P. and Greenfield P.F. 1984. Process Biochem. 4: 48–59.Google Scholar
  48. Karamushka, V.I. and Gadd, G.M. 1994. FEMS Microbiol. Lett. 122: 33–38.CrossRefGoogle Scholar
  49. Kreder, G.C. 1999. J. Am. Soc. Brew. Chem. 57: 129–132.Google Scholar
  50. Lange, R., Schneeberger, M., Krottenthaler, M., and Back, W. 2004. Proc. World Brewing Congress 004.
  51. Learmonth, R.P., and Gratton, E. 2002. In: Fluorescence spectroscopy, imaging and probes- New ools in chemical, physical and life sciences, Springer Publ., Heidelberg, pp. 241–252.Google Scholar
  52. Leskovac, V., Trivic, S., and Pericin, D. 2002. FEMS Yeast Res. 2: 481–494.Google Scholar
  53. Levin, D.E. 2005. Microbiol. Mol. Biol. Rev. 69: 262–291.CrossRefGoogle Scholar
  54. Li, L. and Kaplan, J. 1998. J. Biol. Chem. 273: 22181–22187.CrossRefGoogle Scholar
  55. Li, L. and Kaplan, J. 2001. J. Biol. Chem. 276: 5036–5043.CrossRefGoogle Scholar
  56. Lichko, L.P., Okorokov, L.A., and Kulaev, I.S. 1982. Arch. Microbiol. 132: 289–293.CrossRefGoogle Scholar
  57. Lyons, T.J., Gash, A.P., Gaither, L.A., Botstein, D., Prown, P.O., and Eide, D.J. 2000. Proc. Nat. cad. Sci. USA 97: 7957–7962.CrossRefGoogle Scholar
  58. Macdiarmid, C., Gaither, L.A., and Eide, D.J. 2000. EMBO J. 19: 2845–2855CrossRefGoogle Scholar
  59. Macdiarmid, C., Milanick, M.A., and Eide, D.J. 2002. J. Biol. Chem. 277: 39187–39194.Google Scholar
  60. Macdiarmid, C.W., Milanick, M.A., and Eide, D.J. 2003. J. Biol. Chem. 278: 15065–15072.CrossRefGoogle Scholar
  61. Magonet, E., Hayen, P., Delforge, D., Delaive, E., and Remacle, J. 1992. J. Biochem. 287: 361–365.Google Scholar
  62. Mapolelo, M., Torto, N., and Prior, B. 2005. Talanta 65: 930–937.CrossRefGoogle Scholar
  63. Melville, S.G. 2003. Bsc thesis. University of Abertay Dundee, Dundee, UK.Google Scholar
  64. Miki, B.L.A., Poon, N.H., James, A.P., and Seligy, V.L. 1982. J. Appl. Bacteriol. 150: 878–889.Google Scholar
  65. Miyabe, S., Izawa, S., and Inoue, Y. 2001. Biochem. Biophys. Res. Commun. 282: 79–83.CrossRefGoogle Scholar
  66. Mochaba, F., O'connor-Cox, E.S.C., and Axcell, B.C. 1996. J. Am. Soc. Brew. Chem. 54: 155–163.Google Scholar
  67. Mowll, M.L., and Gadd, G.M. 1983. J. Gen. Microbiol. 129: 3421–3425.Google Scholar
  68. Norris, P.R., and Kelly, D.P. 1977. J. Gen. Microbiol. 99: 317–324.Google Scholar
  69. O'Halloran, T.V., and Culotta, V.C. 2000. J. Biol. Chem. 275: 25057–25060.CrossRefGoogle Scholar
  70. Obata, H., Hayashi, A., Toda, T., and Umebayashi, M. 1996. Soil Sci. Plant Nutr. 42: 147–154.Google Scholar
  71. Okorokov, L.A., Andreeva, N.A., Lichko, L.P., and Valiakhmetov, Y.A. 1983. Biochem. Int. 6: 63–472.Google Scholar
  72. Okorokov, L.A., Kulakovskaya, T.V., Lichko, L.P., and Polorotova, E.V. 1985. FEMS Lett. 192: 03–306.Google Scholar
  73. Outten, C.E. and O'Halloran, T.V. 2001. Science 292: 2488–2492.CrossRefGoogle Scholar
  74. Palmiter, R.D. 1998. Proc. Nat. Acad. Sci. USA 95: 8428–8430.CrossRefGoogle Scholar
  75. Piper, M.D.W., Daran-Lapujade, P., Bro, C., Regenberg, B., Knudsen, S., Nielsen, J., and Pronk, J.T. 2002 J. Biol. Chem. 277: 37001–37008.CrossRefGoogle Scholar
  76. Pourbaix, M. 1963. In: Atlas d'equilibres electrochimiques. Gauthier-Villars, pp. 406–411.Google Scholar
  77. Powell, C.D., Quain, D.E., and Smart, K.A. 2004. J. Am. Soc. Brew. Chem. 62: 8–17.Google Scholar
  78. Quilter, M.G., Hurley, J.C., Lynch, F.J., and Murphy, M.G. 2003. J. Inst. Brew. 109: 34–40.Google Scholar
  79. Ramsay, L.M. and Gadd, G.M. 1997. FEMS Microbiol. Lett. 152: 293–298.CrossRefGoogle Scholar
  80. Raspor, P., Russel, I., and Stewart, G.G. 1990. J. Inst. Brew. 96: 303–305.Google Scholar
  81. Rebar, E.J. and Miller, J.C. 2004. BioTech Int. 16: 20–24.Google Scholar
  82. Rees, E.M.R. and Stewart, G.G. 1998. J. Inst. Brew. 104: 221–228.Google Scholar
  83. Rhodes, D. and Klug, A. 1993. Sci. Am. 268: 56–65.CrossRefGoogle Scholar
  84. Ross, I.S. 1994. In: Metal ions in fungi, micology series 2(eds. Winkelmann G., and Winge D.R.), arcel Dekker Publ., London, pp. 237–257.Google Scholar
  85. Seaton, J.C., Hodgson, J.A., and Moir, M. 1990. Proc. 21st Convention of the Institute of Brewing ustralia and New Zealand, Aukland, pp. 126–130.Google Scholar
  86. Skanks, B., Riis, P., Thomsen, H., and Hansen, J.R. 1997. Proc. European Brewery Convention, aastricht, pp. 413–421.Google Scholar
  87. Smith, G.D. 2001. PhD thesis. University of Abertay Dundee, Dundee, UK.Google Scholar
  88. Szantay, J. 1995. Magnesium Res. 5: 406–5410.Google Scholar
  89. Taylor, N.W. and Orton W.L. 1973. J. Inst. Brew. 79: 294–297.Google Scholar
  90. Truong-Tran, A.Q., Carter, J., Ruffin, J.R.E., and Zalewski, P.D. 2001. Biometals 14: 315–330.CrossRefGoogle Scholar
  91. Vallee, B.L. 1988. BioFactors 1: 31–36.Google Scholar
  92. Vallee, B.L. and Auld, D.S. 1990. Biochem. 29: 5647–5659.CrossRefGoogle Scholar
  93. Vallee, B.L. and Auld, D.S. 1992. Matrix (Stuttgart, Germany). Suppl. 1: 5–19.Google Scholar
  94. Ho, A., Van, Mcvey Ward, D., and Kaplan, J. 2002. Ann. Rev. Microbiol. 56: 237–261.CrossRefGoogle Scholar
  95. Villa, K.D., Dagnelie, T., Samp, E.J., Pflugfelder, R., and Debourgh, A. 1999. European Brewery onvention, Nutfield, pp. 202–211.Google Scholar
  96. Volesky, B., and May-Phillips, H.A. 1995. Appl. Microbiol. Biotechnol. 42: 797–806.CrossRefGoogle Scholar
  97. Wackerbauer, K., Cheon, C., and Beckmann, M. 2004. Brauwelt International II89–99.Google Scholar
  98. Walker, G.M. 1998. Yeast physiology and biotechnology, Wiley Publ.Google Scholar
  99. Walker, G.M. 1999. Magnesium Res. 12: 303–309.Google Scholar
  100. Walker, G.M. 2004. In: Advances in applied microbiology(eds. Laskin, A.I., Bennett, J.W. and add, G.M.), Elsevier Publ., pp. 197–229.Google Scholar
  101. Walker, G.M., Birch, R.M., Chandrasena, G., and Maynard, A.I. 1996. J. Am. Soc. Brew. Chem. 4: 13–18.Google Scholar
  102. Walker, G.M., and Smith, G.D. 1999. In: Proc. 5th Aviemore Conference on Malting, Brewing and istilling (ed. Campbell I.), Institute of Brewing, London, pp. 311–315.Google Scholar
  103. Waters, B.M. and Eide, D.J. 2002. J. Biol. Chem. 277: 33749–33757.CrossRefGoogle Scholar
  104. Weisman, L.S. 2003. Ann. Rev. Genet. 37: 435–460.CrossRefGoogle Scholar
  105. White, C. and Gadd, G.M. 1987. J. Gen. Microbiol. 133: 727–737.Google Scholar
  106. Zhao, H., Butler, E., Rodgers, J., Spizzo, T., Duesterhoeft, S., and Eide, D. 1998. J. Biol. Chem. 73: 28713–28720.CrossRefGoogle Scholar
  107. Zhao, H. and Eide, D.J. 1996a. Proc. Nat. Acad. Sci. USA 93: 2454–2458.CrossRefGoogle Scholar
  108. Zhao, H. and Eide, D.J. 1996b. J. Biol. Chem. 271(38): 23203–23210.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Raffaele De Nicola
    • 1
  • Graeme Walker
  1. 1.Scientist Bioprocess DevelopmentDSM Nutritional Products Ltd. Process R&D NRD/CXBaselSwitzerland

Personalised recommendations