Stem Cells pp 59-74 | Cite as

Stem Cells in Planarian

  • Kiyokazu Agata

The high regenerative power of planarian has fascinated scientists for a long time. Although many famous scientists, including Thomas Hunt Morgan, extensively devoted themselves to studying mechanisms underlying regeneration, the planarian regeneration still remains mysterious phenomenon. Recently, modern approaches have been developed and incorporated in planarian research, and several mysterious points were clarified. Here, I focus on old problems of planarian stem cells. Planarian stem cells were called “neoblasts” and considered to be the only cells maintaining proliferative activity and pluripotency. However, recent analyses using molecular markers and FACS sorting revealed their heterogeneity. Now we should change the old view of the planarian stem cell system to one closer to mammalian stem cell systems. These insights indicate the planarian regeneration studies may provide new ideas for handling mouse and human ES cells for therapeutic use in the near future.


planarian regeneration neoblast stem cell pluripotent totipotent FACS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agata, K., Watanabe, K. 1999. Molecular and cellular aspects of planarian regeneration. Semin. Cell Dev. Biol. 10: 377–383.CrossRefPubMedGoogle Scholar
  2. Agata, K., Soejima, Y., Kato, K., Kobayashi, C., Umesono, Y., Watanabe, K. 1998. Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers. Zool. Sci. 15: 433–440.CrossRefPubMedGoogle Scholar
  3. Agata, K., Tanaka, T., Kobayashi, C., Kato, K., Saitoh, Y. 2003. Intercalary regeneration in planarians. Dev. Dyn. 226: 308–316.CrossRefPubMedGoogle Scholar
  4. Agata, K., Nakajima, E., Funayama, N., Shibata, N., Saito, Y., Umesono, Y. 2006. Two different evolutionary origins of stem cell systems and their molecular basis. Semin. Cell Dev. Biol. 17: 503–509.CrossRefPubMedGoogle Scholar
  5. Auladell, C., Garicia-Valero, J., Bagunà, J. 1993. Ultrastructural localization of RNA in the chromatoid bodies of undifferentiated cells (neoblasts) in planarians by the RNase-gold complex technique. J. Morphol. 216: 319–326.CrossRefGoogle Scholar
  6. Baguñà, J. 1981. Planarian neoblasts. Nature 290: 14–15.CrossRefGoogle Scholar
  7. Baguñà, J., Saló, E., Auladell, C. 1989. Regeneration and pattern formation in planarians. III. Evidence that neoblasts are totipotent stem cells and the source of blastema cells. Development 107: 77–86.Google Scholar
  8. Baguñà, J., Romero, R., Saló, E., Collet, J., Auladell, C., Ribas, M., Riutort, M., García-Fernàndez, J., Burgaya, F., Bueno, D. 1990. Growth, degrowth and regeneration as developmental phenomena in adult freshwater planarians. Experimental Embryology in Aquatic Plants and Animals. pp. 129–162. Plenum Press, New York.Google Scholar
  9. Bradley, A., Evans, M., Kaufman, M.H., Robertson, E. 1984. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309: 255–256.CrossRefPubMedGoogle Scholar
  10. Dubois, F. 1949. Contribution a l’etude de la regeneration chez planaires dulcicoles. Bull. Biol. 83: 213–218.Google Scholar
  11. Guo, T., Peters, A.H., Newmark, P.A. 2006. A bruno-like gene is required for stem cell maintenance in planarians. Dev. Cell 11: 159–169.CrossRefPubMedGoogle Scholar
  12. Handberg-Thorsager, M., Saló, E. 2007. The planarian nanos-like gene Smednos is expressed in germline and eye precursor cells during development and regeneration. Dev. Genes Evol. 217: 403–411.CrossRefPubMedGoogle Scholar
  13. Hay, E.D., Coward, S.J. 1975. Fine structure studies on the planarian, Dugesia. I. Nature of the “neoblast” and other cell types in non-injured worms. J. Ultrastruc. Res. 50: 1–21.CrossRefGoogle Scholar
  14. Hayashi, T., Asami, M., Higuchi, S., Shibata, N., Agata, K. 2006. Isolation of planarian X-ray-sensitive stem cells by fluorescence-activated cell sorting. Dev. Growth Differ. 48: 371–380.CrossRefPubMedGoogle Scholar
  15. Higuchi, S., Hayashi, T., Hori, I., Shibata, N., Sakamoto, H., Agata, K. 2007. Characterization and categorization of fluorescence activated cell sorted planarian stem cells by ultrastructural analysis. Dev. Growth Differ. 49: 571–81.PubMedGoogle Scholar
  16. Hori, I. 1982. An ultrastructural study of the chromatoid body in planarian regenerative cells. J. Electron Microsc. 31: 63–72.Google Scholar
  17. Hori, I. 1992. Cytological approach to morphogenesis in the planarian blastema. 1. Cell behavior during blastema formation. J. Submicrosc. Cytol. Pathol. 24: 75–84.Google Scholar
  18. Hori, I. 1997. Cytological approach to morphogenesis in the planarian blastema. II. The effect of neuropeptides. J. Submicrosc. Cytol. Pathol. 29: 91–97.PubMedGoogle Scholar
  19. Ito, H., Saito Y., Watanabe K., Orii, H. 2001. Epimorphic regeneration of the distal part of the planarian pharynx. Dev. Genes Evol. 211: 2–9.CrossRefPubMedGoogle Scholar
  20. Kato, K., Orii, H., Watanabe, K., Agata, K. 1999. The role of dorsoventral interaction in the onset of planarian regeneration. Development 126: 1031–1040.PubMedGoogle Scholar
  21. Kato, K., Orii, H., Watanabe, K., Agata, K. 2001. Dorsal and ventral position cues residing in differentiated cells are required for the onset of planarian regeneration. Dev. Biol. 233: 109–121.CrossRefPubMedGoogle Scholar
  22. Kobayashi, K., Arioka, S., Hoshi, M. 2002. Seasonal changes in the sexualization of the planarian Dugesia ryukyuensis. Zool. Sci. 19: 1267–1278.CrossRefPubMedGoogle Scholar
  23. Kobayashi, C., Nogi, T., Watanabe, K., Agata, K. 1999. Ectopic pharynx arise by regional reorganization after anterior/posterior grafting in planarians. Mech. Dev. 89: 25–34.CrossRefPubMedGoogle Scholar
  24. Koinuma, S., Umesono, Y., Watanabe, K., Agata, K. 2000. Planaria FoxA (HNF3) homologue is specifically expressed in the pharynx-forming cells. GENE 259: 171–176.CrossRefPubMedGoogle Scholar
  25. Koinuma, S., Umesono, Y., Watanabe, K., Agata, K. 2003. The expression of planarian brain factor homologs, DjFoxG and DjFoxD. Mech. Dev. 3: 21–27.Google Scholar
  26. Mineta, K., Nakazawa, M., Cebrià, F., Ikeo, K., Agata, K., Gojobori, T. 2003. Origin and evolutionary process of the CNS elucidated by comparative genomics analysis of planarian ESTs. Proc. Natl. Acad. Sci. U S A 100: 7666–7671.CrossRefPubMedGoogle Scholar
  27. Morgan, T.H. 1898. Experimental studies of the regeneration of Planaria maculata. Arch. Entwicklungsmech. Org. 7: 364–397.CrossRefGoogle Scholar
  28. National Institutes of Health. 2001. Stem Cells: Scientific Progress and Future Directions. Retrieved 08–05–2004 from
  29. Newmark, P.A., Sánchez Alvarado, A. 2000. Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev. Biol. 220: 142–153.CrossRefPubMedGoogle Scholar
  30. Newmark, P.A., Sánchez Alvarado, A. 2002. Not your father’s planarian: a classic model enters the era of functional genomics. Nat. Rev. Genet. 3: 210–219.CrossRefPubMedGoogle Scholar
  31. Orii, H., Miyamoto, T., Agata, K., Watanabe, K. 1995. cDNA cloning and partial sequencing of homeobox genes in Dugesia japonica. Hydrobiologia 305: 277–279.CrossRefGoogle Scholar
  32. Orii, H., Kato, K., Agata, K., Watanabe, K. 1998. Molecular cloning of bone morphogenetic protein (BMP) gene from the planarian Dugesia japonica. Zool. Sci. 15: 864–870.CrossRefGoogle Scholar
  33. Orii, H., Kato, K., Umesono, Y., Agata, K., Watanabe, K. 1999. The planarian HOM/HOX homeobox gene (Plox) expressed along anterior-posterior axis. Dev. Biol. 210: 456–468.CrossRefPubMedGoogle Scholar
  34. Orii, H., Sakurai, T., Watanabe, K. 2005. Distribution of the stem cells (neoblasts) in the planarian Dugesia japonica. Dev. Genes Evol. 215: 143–157.CrossRefPubMedGoogle Scholar
  35. Osawa, M., Hanada, K., Hamada, H., Nakauchi, H. 1996. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273: 242–245.CrossRefPubMedGoogle Scholar
  36. Pederson, K.J. 1959. Cytological studies on the planarian neoblast. Z. Zellforsch. 50: 799–817.CrossRefGoogle Scholar
  37. Randolph, H. 1897. Observations and experiments on regeneration in planarians. Arch. Entw. Mech. Org. 5: 352–372.Google Scholar
  38. Reddien, P.W., Oviedo, N.J., Jennings, J.R., Jenkin, J.C., Sánchez Alvarado, A. 2005. SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310: 1327–1330.CrossRefPubMedGoogle Scholar
  39. Robb, S.M., Ross, E., Sánchez Alvarado, A. 2007. SmedGD: the Schmidtea mediterranea genome database. Nucleic Acids Res. 36: D599–D606.CrossRefPubMedGoogle Scholar
  40. Rossi, L., Salvetti, A., Lena, A., Batistoni, R., Deri, P., Pugliesi, C., Loreti, E., Gremigni, V. 2006. DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells. Dev. Genes. Evol. 216: 335–346.CrossRefPubMedGoogle Scholar
  41. Rossi, L., Salvetti, A., Marincola, F.M., Lena, A., Deri, P., Mannini, L., Batistoni, R., Wang, E., Gremigni, V. 2007a. Deciphering the molecular machinery of stem cells: a look at the neoblast gene expression profile. Genome Biol. 8: R62.CrossRefPubMedGoogle Scholar
  42. Rossi, L., Salvetti, A., Batistoni, R., Deri, P., Gremigni, V. 2007b. Planarians, a tale of stem cells. Cell. Mol. Life Sci. 65: 16–23.CrossRefGoogle Scholar
  43. Saito, Y., Koinuma, S., Watanabe, K., Agata, K. 2003. Medio-Lateral intercalation in planarians revealed by grafting experiments. Dev. Dyn. 226: 334–340.CrossRefPubMedGoogle Scholar
  44. Salvetti, A., Rossi, L., Lena, A., Batistoni, R., Deri, P., Rainaldi, G., Locci, M.T., Evangelista, M., Gremigni, V. 2005. DjPum, a homologue of Drosophila Pumilio, is essential to planarian stem cell maintenance. Development 132: 1863–1874.CrossRefPubMedGoogle Scholar
  45. Sánchez Alvarado, A. 2006. Planarian regeneration: its end is its beginning. Cell 124: 241–245.CrossRefPubMedGoogle Scholar
  46. Sánchez Alvarado, A., Newmark, P. 1999. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc. Natl. Acad. Sci. U S A 96: 5049–5054.CrossRefPubMedGoogle Scholar
  47. Sánchez Alvarado, A., Newmark, P.A., Robb, S.M., Juste, R. 2002. The Schmidtea mediterranea database as a molecular resource for studying platyhelminthes, stem cells and regeneration. Development 129: 5659–5665.CrossRefPubMedGoogle Scholar
  48. Sato, K., Shibata, N., Orii, H., Amikura, R., Sakurai, T., Agata, K., Kobayashi, S., Watanabe, K. 2006. Identification and origin of the germline stem cells as revealed by the expression of nanos-related gene in planarians. Dev. Growth Differ. 48: 615–628.CrossRefPubMedGoogle Scholar
  49. Shibata, N., Umesono, Y., Orii, H., Sakurai, T., Watanabe, K, Agata, K. 1999. Expression of vasa(vas)-related genes in germline cells and totipotent somatic stem cells of planarians. Dev. Biol. 206: 73–87.CrossRefPubMedGoogle Scholar
  50. Teshirogi, W. 1962. Dynamic morphological change and timetable during the regeneration of the turbellarian. Sci. Rep. Hirosaki Univ. 9: 21–48.Google Scholar
  51. Teshirogi, W., Ishida, S. (Eds.) 1987. Biology of Planarians–Foundation, Application & Experiment, Kyoritsu syuppan, Tokyo.Google Scholar
  52. Umesono, Y., Watanabe, K., Agata, K. 1997. A planarian orthopedia homolog is specifically expressed in the branch region of both the mature and regenerating brain. Dev. Growth. Differ. 39: 723–727.CrossRefPubMedGoogle Scholar
  53. Umesono, Y., Watanabe, K., Agata, K. 1999. Distinct structural domains in the planarian brain defined by the expression of evolutionarily conserved homeobox genes. Dev. Genes Evol. 209: 31–39.CrossRefPubMedGoogle Scholar
  54. Wang, Y., Zayas, R.M., Guo, T., Newmark, P.A. 2007. nanos function is essential for development and regeneration of planarian germ cells. Proc. Natl. Acad. Sci. U S A 104: 5901–5906.CrossRefPubMedGoogle Scholar
  55. Wetzel, B.K. 1961. Studies on the fine structure of regenerating Dugesia tigrina. Diss. Harvard Univ. Cambridge, Massachusetts.Google Scholar
  56. Wittlieb, J., Khalturin, K., Lohmann, J.U., Anton-Erxleben, F., Bosch, T.C. 2006. Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc. Natl. Acad. Sci. U S A 103: 6208–6211.CrossRefPubMedGoogle Scholar
  57. Wolff, E., Dubois, F. 1948. Sur la migration des cellules de régénération chez les planaires. Rev. Suisse. Zool. 55: 218–227.Google Scholar
  58. Yoshida-Kashikawa, M., Shibata, N., Takechi, K., Agata, A. 2007. DjCBC-1, a conserved DEAD box RNA helicase of the RCK/p54/Me31B family, is a component of RNA-protein complexes in planarian stem cells and neurons. Dev. Dyn. 236: 3436–3450.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • Kiyokazu Agata
    • 1
  1. 1.Department of BiophysicsKyoto University Kitashirakawa-OiwakeJapan

Personalised recommendations