Advertisement

Statistical Mechanical Modeling of Chemical Reactions in Condensed Phase Systems

  • Andrea Amadei
  • Massimiliano Aschi
  • Alfredo Di Nola
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 6)

Abstract

In this contribution it will be outlined the basic theoretical framework and two applications of a new theoretical–computational approach specifically designed for evaluating free-energy profiles (and related observables such as equilibrium and rate constants) for chemical reactions taking place in condensed phase. The methodology, based on the use of molecular dynamics simulations and perturbed matrix method, if combined with basic statistical mechanics, may represent a useful tool complementary to other approaches for addressing chemical processes occurring in complex atomic–molecular environments

Keywords

Molecular Dynamic Simulation Polarize Continuum Model Intrinsic Reaction Coordinate Mass Tensor Quantum Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Tomasi J, Persico M (1994) Chem Rev 94:2027CrossRefGoogle Scholar
  2. 2.
    Tongraar A, Liedl KR, Rode BM (1997) J Phys Chem A 101 6299–6309CrossRefGoogle Scholar
  3. 3.
    Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161–2200CrossRefGoogle Scholar
  4. 4.
    D’Abramo M, Aschi M, Marinelli F, Di Nola A, Amadei A (2007) J Mol Struct THEOCHEM 811:197–201CrossRefGoogle Scholar
  5. 5.
    Matyushov DV (2007) Acc Chem Res 40:294–301CrossRefGoogle Scholar
  6. 6.
    Pu J, Gao J, Truhlar DG (2006) Chem Rev 106:3140–3169CrossRefGoogle Scholar
  7. 7.
    Gao J (1996) Acc Chem Res 29:298–305CrossRefGoogle Scholar
  8. 8.
    Friesner R, Beachy MD (1998) Curr Opin Struct Biol 8:257–262CrossRefGoogle Scholar
  9. 9.
    Schwartz SD (ed) (2000) Theoretical methods in condensed phase chemistry, Springer, DordrechtGoogle Scholar
  10. 10.
    Yamazaki S, Kato S (2005) J Chem Phys 123:114510CrossRefGoogle Scholar
  11. 11.
    Losa AM, Martn ME, Galvn IF, Aguilar MA (2007) Chem Phys Lett 443:76–81CrossRefGoogle Scholar
  12. 12.
    Lima MCP, Coutinho K, Canuto S, Rocha WR (2006) J Phys Chem A 110:7253–7261CrossRefGoogle Scholar
  13. 13.
    Watney JB, Soudackov AV, Wong KF, Hammes-Schiffer S (2006) Chem Phys Lett 418:268–271CrossRefGoogle Scholar
  14. 14.
    Derat E, Cohen S, Shaik S, Altun A, Thiel W (2005) J Am Chem Soc 127:13611–13621CrossRefGoogle Scholar
  15. 15.
    Rivail JL, Rinaldi D, Ruiz-Lopez MF (1991) In: Formosinho SJ, Arnaut L, Csizmadia I (eds) Theoretical and computational models of organic chemistry, Kluwer, DordrechtGoogle Scholar
  16. 16.
    Jug K, Klle C, Neumann F (1999) J Comp Chem 20:301–304CrossRefGoogle Scholar
  17. 17.
    Bash PA, Field MJ, Karplus M (1987) J Am Chem Soc 109:8092CrossRefGoogle Scholar
  18. 18.
    Liu H, Muller-Plathe F, van Gunsteren WF (1995) J Chem Phys 102:1722CrossRefGoogle Scholar
  19. 19.
    Strajbl M, Sham YY, Vill J, Chu ZT, Warshel A (2000) J Phys Chem B 104:4578–4584CrossRefGoogle Scholar
  20. 20.
    Aschi M, Spezia R, Di Nola A, Amadei A (2001) Chem Phys Lett 344:374–380CrossRefGoogle Scholar
  21. 21.
    Spezia R, Aschi M, Di Nola A, Amadei A (2002) Chem Phys Lett 365:450–456CrossRefGoogle Scholar
  22. 22.
    Amadei A, D’Alessandro M, Aschi M (2004) J Phys Chem B 118:16250–16254CrossRefGoogle Scholar
  23. 23.
    Amadei A, D’Alessandro M, Paci M, Di Nola A, Aschi M (2006) J Phys Chem B 110:7538–7544CrossRefGoogle Scholar
  24. 24.
    Aschi M, D’Abramo M, Ramondo F, Daidone I, D’Alessandro M, Di Nola A, Amadei A (2006) J Phys Org Chem 19:518CrossRefGoogle Scholar
  25. 25.
    Amadei A, D’Abramo M, Daidone I, D’Alessandro M, Di Nola A, Aschi M (2007) Theor Chem Acc 117:637–647CrossRefGoogle Scholar
  26. 26.
    Amadei A, D’Abramo M, Zazza C, Aschi M (2003) Chem Phys Lett 381:187–193CrossRefGoogle Scholar
  27. 27.
    Amadei A, Chillemi G, Ceruso MA, Grottesi A, Di Nola A (2000) J Chem Phys 112:9–23CrossRefGoogle Scholar
  28. 28.
    Amadei A, Apol MEF, Brancato G, Di Nola A (2002) J Chem Phys 116:4437–4449CrossRefGoogle Scholar
  29. 29.
    Landau LD, Lifshitz EM (1980) Statistical physics. Part 1, 3rd (edn). Pergamon press, OxfordGoogle Scholar
  30. 30.
    Amadei A, Apol MEF, Berendsen HJC (1998) J Chem Phys, 109:3004–3016CrossRefGoogle Scholar
  31. 31.
    Amadei A, Apol MEF, Berendsen HJC (1997) J Chem Phys 106:1893–1912CrossRefGoogle Scholar
  32. 32.
    Fixman M (1974) Proc Nat Acad Sci USA 69:1527Google Scholar
  33. 33.
    Mc Quarrie DA (1976) Statistical mechanics, Harper Collins Publishers, New YorkGoogle Scholar
  34. 34.
    Austin RH, Beeson KW, Eisenstein L, Frauenfelder H, Gunsalus IC (1975) Biochemistry 14:5355CrossRefGoogle Scholar
  35. 35.
    Steinbach PJ, Ansari A, Berendzen J, Braunstein D, Chu K, Cowen BR, Ehrenstein D, Frauenfelder H, Johnson JB, Lamb DC, Luck S, Mourant GU, Nienhaus GU, Ormos P, Philipp R, Xie AH, Young RD (1991) Biochemistry 30:3988CrossRefGoogle Scholar
  36. 36.
    Srajer V, Ren Z, Teng TY, Schmidt M, Ursby T, Bourgeois D, Pradervand C, Schildkamp W, Wulff M, Moffat K (2001) Biochemistry 40:13802CrossRefGoogle Scholar
  37. 37.
    Bourgeois D, Vallone B, Scotte F, Arcovito A, Miele AE, Sciara G, Wulff M, Anfinrud P, Brunori M (2003) Proc Natl Acad Sci USA 100:8704CrossRefGoogle Scholar
  38. 38.
    Sottini S, Abbruzzetti S, Viappiani C, Ronda L, Mozzarelli A (2005) J Phys Chem B 109: 19523–19528CrossRefGoogle Scholar
  39. 39.
    Chen E, Goildberg RA, Kliger DS (1997) Annu Rev Biophys Biomol Struct 26:327CrossRefGoogle Scholar
  40. 40.
    Angeloni L, Feis A (2003) Photochem Photobiol Sci 2:730–740CrossRefGoogle Scholar
  41. 41.
    McMahon BH, Stojkovic BP, Hay PJ, Martin RL, Garcia AE (2000) J Chem Phys 113:6831CrossRefGoogle Scholar
  42. 42.
    Franzen SJ (2002) Phys Chem B 106:4533CrossRefGoogle Scholar
  43. 43.
    Harvey JN (2000) J Am Chem Soc 122:12401CrossRefGoogle Scholar
  44. 44.
    Harvey JN (2004) Faraday Discuss 127:156CrossRefGoogle Scholar
  45. 45.
    Sigfridsson E, Ryde UJ (2002) Inorg Biochem 91:101CrossRefGoogle Scholar
  46. 46.
    De Angelis F, Jarzecki AA, Car R, Spiro TG (2005) J Phys Chem B 109:3065CrossRefGoogle Scholar
  47. 47.
    Rovira C, Schultze B, Eichinger M, Evanseck JD, Parrinello M (2001) Biophys J 81:435CrossRefGoogle Scholar
  48. 48.
    Springer BA, Sligar SG, Olson SJ, Phillips JN Jr (1994) Chem Rev 94:699–714CrossRefGoogle Scholar
  49. 49.
    Olson SJ, Phillips JN Jr (1996) J Biol Chem 271:17593–17596CrossRefGoogle Scholar
  50. 50.
    Kleinert T, Doster W, Leyser H, Petry W, Schwarz W, Settles M (1998) Biochemistry 37:717–733CrossRefGoogle Scholar
  51. 51.
    Bossa C, Anselmi M, Roccatano D, Amadei A, Vallone B, Brunori M, Di Nola A (2004) Biophys J 86:3855–3862CrossRefGoogle Scholar
  52. 52.
    Bothner-By A, Harris RK (1965) J Org Chem 30:254CrossRefGoogle Scholar
  53. 53.
    George WO, Mansell VG (1968) J Chem Soc B 132Google Scholar
  54. 54.
    Bertz SH, Dabbagh G (1990) J Org Chem 55:5161CrossRefGoogle Scholar
  55. 55.
    Buemi G (2002) Chem Phys 277:241CrossRefGoogle Scholar
  56. 56.
    Berendsen HJC, Mavri J (1993) J Phys Chem 97:13464CrossRefGoogle Scholar
  57. 57.
    Borgis D, Hynes JT (1991) J Chem Phys 94:3619CrossRefGoogle Scholar
  58. 58.
    Garcia-Viloca M, Alhambra C, Truhlar DG, Gao J (2001) J Chem Phys 114:9953CrossRefGoogle Scholar
  59. 59.
    Wolf K, Mikenda W, Nusterer E, Schwartz K, Ulbricht C (1998) Chem Eur J 4:1418CrossRefGoogle Scholar
  60. 60.
    Mavri J, Berendsen HJC, van Gunsteren WF (1993) J Phys Chem 97:13469CrossRefGoogle Scholar
  61. 61.
    Gonzales C, Schlegel HB (1989) J Chem Phys 90:2154CrossRefGoogle Scholar
  62. 62.
    Brown SR, Tse A, Nakashima T, Haddon RC (1979) J Am Chem Soc 101:3157CrossRefGoogle Scholar
  63. 63.
    Perrin CL, Kim YJ (1998) J Am Chem Soc 120:12641CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Andrea Amadei
    • 1
  • Massimiliano Aschi
    • 2
  • Alfredo Di Nola
    • 3
  1. 1.Dipartimento di Scienze e Tecnologie ChimicheUniversità di Roma “Tor Vergata”00133 RomaItaly
  2. 2.Dipartimento di Chimica, Ingegneria Chimica e MaterialiUniversità dell’Aquila67010 l’AquilaItaly
  3. 3.Dipartimento di ChimicaUniversità di Roma “La Sapienza”00185 RomaItaly

Personalised recommendations