Skip to main content

Mass Spectrometry-Based Methods for Studying Kinetics and Dynamics in Biological Systems

  • Chapter
Book cover Biophysical Techniques in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 26))

In recent years, mass spectrometry (MS) has become one of the most widely used analytical techniques. MS allows studies on compounds ranging in size from single atoms to mega-Dalton biomolecular assemblies. This chapter provides an overview of recent MS applications in biophysical chemistry. The focus of our discussion is on ‘time-resolved’ techniques for tracking changes in complex biological reaction mixtures on time scales of milliseconds to days, thereby providing important structural and mechanistic insights. After a general introduction to biological MS, we discuss practical aspects of time-resolved membrane inlet mass spectrometry (MIMS), such as membrane properties and the use of different sample chambers. The MIMS technique allows online detection of dissolved gases and volatile compounds. It is particularly useful for resolving competing biochemical reactions involving common reactants, because isotopic labeling of substrates can be performed. As examples we present mechanistic studies on Photosystem II, carbonic anhydrase and hydrogenase. In the third part of this chapter we discuss the kinetics and mechanisms of protein folding and unfolding in solution, which can be explored via electrospray ionization mass spectrometry (ESI-MS). On-line coupling of ESI-MS with continuous-flow rapid mixing devices allows monitoring conformational changes of polypeptide chains with millisecond time resolution, as well as the detection and characterization of (un)folding intermediates. Due to its ‘softness’ the ESI process retains even weakly bound noncovalent complexes during the transition into the gas phase, such that protein-protein and protein-ligand interactions can be monitored directly. Additional insights into the conformational dynamics of proteins can be obtained by using time-resolved ESI-MS in conjunction with hydrogen/deuterium exchange methods. It is hoped that this chapter will stimulate the application of time-resolved MS techniques to a wide range of hitherto unexplored research areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An SM, Gardner WS and Kana T (2001) Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometry analysis. Appl Environ Microb 67: 1171-1178

    CAS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181: 223-230

    CAS  PubMed  Google Scholar 

  • Bachmann A and Kiefhaber T (2001) Apparent two-state tendamistat folding is a sequential process along a defined route. J Mol Biol 306: 375-386

    CAS  PubMed  Google Scholar 

  • Bader KP and Roben A (1995) Mass spectrometric detection and analysis of nitrogen fixation in Oscillatoria chalybea. Z Naturforsch C 50: 199-204

    CAS  Google Scholar 

  • Bader KP, Thibault P and Schmid GH (1983) A study on oxygen evolution and on the S-state distribution in thylakoid preparations of the filamentous blue-green alga Oscillatoria chalybea. Z Naturforsch C 38: 778-792

    Google Scholar 

  • Bader KP, Thibault P and Schmid GH (1987) Study on the properties of the S3 state by mass spectrometry in the filamentous cyanobacterium Oscillatoria chalybea. Biochim Biophys Acta 893: 564-571

    CAS  Google Scholar 

  • Bader KP, Renger G and Schmid GH (1993) A mass spectrometric analysis of the water splitting reaction. Photosynth Res 38: 355-361

    CAS  Google Scholar 

  • Badger MR and Andrews TJ (1982) Photosynthesis and inorganic carbon usage by the marine cyanobacterium Synechococcus Sp. Plant Physiol 70: 517-523

    CAS  PubMed  Google Scholar 

  • Badger MR and Price GD (1989) Carbonic anhydrase activity associated with the cyanobacterium Synechococcus PCC7942. Plant Physiol 89: 51-60

    CAS  PubMed  Google Scholar 

  • Badger MR and Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Phys 45: 369-392 Badger MR, Palmqvist K and Yu JW (1994) Measurement of CO2 and HCO3- fluxes in cyanobacteria and microalgae during steady state photosynthesis. Physiol Plantarum 90: 529-536

    CAS  Google Scholar 

  • Bai Y, Milne JS, Mayne L and Englander SW (1993) Primary structure effects on peptide group hydrogen exchange. Proteins: Struct Funct Genet 17: 75-86

    CAS  Google Scholar 

  • Baltruschat H (2004) Differential electrochemical mass spectrometry. J Am Soc Mass Spectr 15: 1693-1706

    CAS  Google Scholar 

  • Baltruschat H and Schmiemann U (1993) The adsorption of unsaturated organic species at single crystal electrodes studied by differential electrochemical mass spectrometry. Ber Bunsen  Phys Chem 97: 452-460

    CAS  Google Scholar 

  • Beckmann M and Lloyd D (2001) Mass spectrometric monitoring of gases (CO2, CH4, O2) in a mesotrophic peat core from Kopparas Mire, Sweden. Global Change Biol 7: 171-180

    Google Scholar 

  • Beckmann M, Sheppard SK and Lloyd D (2004) Mass spectrometric monitoring of gas dynamics in peat monoliths: Effects of temperature and diurnal cycles on emissions. Atmos Environ 38: 6907-6913

    CAS  Google Scholar 

  • Beechem JM, Ameloot M and Brand L (1985) Global and target analysis of complex decay phenomena. Anal Instrum 14: 379-402

    Article  CAS  Google Scholar 

  • Berberan-Santos MN and Martinho JMG (1990) The integration of kinetic rate equations by matrix methods. J Chem Ed 67: 375-379

    CAS  Google Scholar 

  • Bethke PC, Badger MR and Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell 16: 332-341

    CAS  PubMed  Google Scholar 

  • Britt RD, Campbell KA, Peloquin JM, Gilchrist ML, Aznar CP, Dicus MM, Robblee J and Messinger J (2004) Recent pulsed EPR studies of the Photosystem II oxygen evolving complex: Implications as to water oxidation mechanisms. Biochim Biophys Acta 1655: 158-171

    CAS  PubMed  Google Scholar 

  • Bruckenstein S and Gadde RR (1971) Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products. J Am Chem Soc 93: 793-794

    CAS  Google Scholar 

  • Bruins AP, Covey TR and Henion JD (1987) Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry. Anal Chem 59: 2642-2646

    CAS  Google Scholar 

  • Brutscher B, Brüschweiler R and Ernst RR (1997) Backbone dynamics and structural characterization of the partially folded A state of ubiquitin by 1H, 13C and 15N nuclear magnetic resonance spectroscopy. Biochemistry 36: 13043-13053

    CAS  PubMed  Google Scholar 

  • Busenlehner LS and Armstrong RN (2005) Insights into enzyme structure and dynamics elucidated by amide H/D exchange mass spectrometry. Arch Biochem Biophys 433: 34-46

    CAS  PubMed  Google Scholar 

  • Calvo KC, Weisenberger CR, Anderson LB and Klapper MH (1981) Permeable membrane mass spectrometric measurement of reaction kinetics. Anal Chem 53: 981-985

    CAS  Google Scholar 

  • Canvin DT, Berry JA, Badger MR, Fock H and Osmond CB (1980) Oxygen exchange in leaves in the light. Plant Physiol 66: 302-307

    CAS  PubMed  Google Scholar 

  • Cartaxana P and Lloyd D (1999) N2, N2O and O2 profiles in a Tagus estuary salt marsh. Estuar Coast Shelf S 48: 751-756

    CAS  Google Scholar 

  • Chemical Rubber Company (2005) CRC Handbook of Chemistry and Physics. Chemical Rubber, Cleveland

    Google Scholar 

  • Chen J and Smith DL (2000) Unfolding and disassembly of the chaperonin GroEL occurs via a tetradecameric intermediate with a folded equatorial domain. Biochemistry 39: 4250-4258

    CAS  PubMed  Google Scholar 

  • Chernushevich IV, Loboda AV and Thomson BA (2001) An introduction to quadrupole time-of-flight mass spectrometry. J Mass Spectrom 36: 849-865

    CAS  PubMed  Google Scholar 

  • Chowdhury SK, Katta V and Chait BT (1990) Probing conformational changes in proteins by mass spectrometry. J Am Chem Soc 112: 9012-9013

    CAS  Google Scholar 

  • Christianson DW and Fierke CA (1996) Carbonic anhydrase: Evolution of the zinc binding site by nature and by design. Acc Chem Res 29: 331-339

    CAS  Google Scholar 

  • Clausen J, Beckmann K, Junge W and Messinger J (2005) Evidence that bicarbonate is not the substrate in photosynthetic oxygen evolution. Plant Physiol 139: 1444-1450

    CAS  PubMed  Google Scholar 

  • Conrath U, Amoroso G, Kohle H and Sultemeyer DF (2004) Non-invasive online detection of nitric oxide from plants and some other organisms by mass spectrometry. Plant J 38: 1015-1022

    CAS  PubMed  Google Scholar 

  • Cournac L, Redding K, Ravenel J, Rumeau D, Josse EM, Kuntz M and Peltier G (2000) Electron flow between Photosystem II and oxygen in chloroplasts of Photosystem I deficient algae is mediated by a quinol oxidase involved in chlororespiration. J Biol Chem 275: 17256-17262

    CAS  PubMed  Google Scholar 

  • Demmers JAA, Haverkamp J, Heck AJR, Koeppe RE and Killian A (2000) Electrospray ionization mass spectrometry as a tool to analyze hydrogen/deuterium exchange kinetics of transmembrane peptides in lipid bilayers. Proc Natl Acad Sci USA 97: 3189-3194

    CAS  PubMed  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426: 884-890

    CAS  PubMed  Google Scholar 

  • Douglas DJ, Frank AJ and Mao D (2005) Linear ion traps in mass spectrometry. Mass Spectrom Rev 24: 1-29

    CAS  PubMed  Google Scholar 

  • Duda DM, Tu CK, Fisher SZ, An HQ, Yoshioka C, Govindasamy L, Laipis PJ, Agbandje-McKenna M, Silverman DN and McKenna R (2005) Human carbonic anhydrase III: Structural and kinetic study of catalysis and proton transfer. Biochemistry 44: 10046-10053

    CAS  PubMed  Google Scholar 

  • Dyson HJ and Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Op Struct Biol 12: 54-60

    CAS  Google Scholar 

  • Engen JR and Smith DL (2001) Investigating protein structure and dynamics by hydrogen exchange mass spectrometry. Anal Chem 73: 256A-265A

    CAS  PubMed  Google Scholar 

  • Fenn JB (2003) Electrospray wings for molecular elephants (Nobel Lecture). Angew Chem Int Ed 42: 3871-3894

    CAS  Google Scholar 

  • Fenn JB, Mann M, Meng CK, Wong SF and Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246: 64-71

    CAS  PubMed  Google Scholar 

  • Ferraro DM, Lazo ND and Robertson AD (2004) EX1 hydrogen exchange and protein folding. Biochemistry 43: 587-594

    CAS  PubMed  Google Scholar 

  • Fisher Z, Prada JAH, Tu C, Duda D, Yoshioka C, An HQ, Govindasamy L, Silverman DN and McKenna R (2005) Structural and kinetic characterization of active site histidine as a proton shuttle in catalysis by human carbonic anhydrase II. Biochemistry 44: 1097-1105

    CAS  PubMed  Google Scholar 

  • Govindjee, Owens OV and Hock G (1963) A mass-spectroscopic study of the Emerson enhancement effect. Biochim Biophys Acta 75: 281-284

    CAS  PubMed  Google Scholar 

  • Griffith WP and Kaltashov IA (2003) Highly asymmetric interactions between globin chains during hemoglobin assembly revealed by electrospray ionization mass spectrometry. Biochemistry 42: 10024-10033

    CAS  PubMed  Google Scholar 

  • Gross JW and Frey PA (2002) Rapid mix-quench MALDI-TOF mass spectrometry for analysis of enzymatic systems. Meth Enzymol 354: 27-49

    CAS  PubMed  Google Scholar 

  • Hanson DT, Franklin LA, Samuelsson G and Badger MR (2003) The Chlamydomonas reinhardtii cia3 mutant lacking a thylakoid lumen-localized carbonic anhydrase is limited by CO2 supply to rubisco and not Photosystem II function in vivo. Plant Physiol 132: 2267-2275

    CAS  PubMed  Google Scholar 

  • Hartung T and Baltruschat H (1990) Differential electrochemical mass spectrometry using smooth electrodes: Adsorption and H/D-exchange reactions of benzene on Pt. Langmuir 6: 953-957

    CAS  Google Scholar 

  • Heck AJR and Van den Heuvel RHH (2004) Investigation of intact protein complexes by mass spectrometry. Mass Spectrom Rev 23: 368-389

    CAS  PubMed  Google Scholar 

  • Higuchi Y and Yagi T (1999) Liberation of hydrogen sulfide during the catalytic action of Desulfovibrio hydrogenase under the atmosphere of hydrogen. Biophys Res Comm 255: 295-299

    CAS  Google Scholar 

  • Higuchi Y, Toujou F, Tsukamoto K and Yagi T (2000) The presence of a SO molecule in [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki as detected by mass spectrometry. J Inorg Biochem 80: 205-211

    CAS  PubMed  Google Scholar 

  • Hillier W and Messinger J (2005) Mechanism of photosynthetic oxygen production. In: Wydrzynski T and Satoh K (eds) Photosystem II: The Water/Plastoquinone Oxidoreductase in Photosynthesis (Advances in Photosynthesis and Respiration, Vol 22) pp 567-608. Springer, Dordrecht

    Google Scholar 

  • Hillier W and Wydrzynski T (2004) Substrate water interactions within the Photosystem II oxygen evolving complex. Phys Chem Chem Phys 6: 4882-4889

    CAS  Google Scholar 

  • Hillier W, Messinger J and Wydrzynski T (1998) Kinetic determination of the fast exchanging substrate water molecule in the S3 state of Photosystem II. Biochemistry 37: 16908-16914

    CAS  PubMed  Google Scholar 

  • Hillier W, McConnell I, Badger MR, Boussac A, Klimov VV, Dismukes GC and Wydrzynski T (2006) Quantitative assessment of intrinsic carbonic anhydrase activity and the capacity for bicarbonate oxidation in Photosystem II. Biochemistry 5: 2094-102

    Google Scholar 

  • Hoch G and Kok B (1963) A mass spectrometer inlet system for sampling gases dissolved in liquid phases. Arch Biochem Biophys 101: 160-170

    CAS  PubMed  Google Scholar 

  • Hoch G, Owens OHV and Kok B (1963) Photosynthesis and Respiration. Arch Biochem Biophys 101: 171-180

    CAS  PubMed  Google Scholar 

  • Holzwarth AR (1995) Time-resolved fluorescence spectroscopy. Meth Enzymol 246: 334-362

    CAS  PubMed  Google Scholar 

  • Houston CT, Taylor WP, Widlanski TS and Reilly JP (2000) Investigation of enzyme kinetics using quench-flow techniques with MALDI TOF mass spectrometry. Anal Chem 72: 3311-3319

    CAS  PubMed  Google Scholar 

  • Johnson RC, Cooks RG, Allen TM, Cisper ME and Hemberger PH (2000) Membrane introduction mass spectrometry: Trends and applications. Mass Spectrom Rev 19: 1-37

    CAS  PubMed  Google Scholar 

  • Kaltashov IA and Eyles SJ (2002a) Crossing the phase boundary to study protein dynamics and function: Combination of amide hydrogen exchange in solution and ion fragmentation in the gas phase. J Mass Spectrom 37: 557-565

    CAS  Google Scholar 

  • Kaltashov IA and Eyles SJ (2002b) Studies of biomolecular conformations and conformational dynamics by mass spectrometry. Mass Spectrom Rev 21: 37-71

    CAS  Google Scholar 

  • Kaltashov IA and Eyles SJ (2005) Mass spectrometry in biophysics. John Wiley and Sons, Hoboken

    Google Scholar 

  • Karas M and Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal Chem 60: 2299-2301

    CAS  PubMed  Google Scholar 

  • Kebarle P and Ho Y (1997) On the mechanism of electrospray mass spectrometry. In: Cole RB (ed) Electrospray Ionization Mass Spectrometry, pp 3-63. John Wiley and Sons, New York

    Google Scholar 

  • Knight JB, Vishwanath A, Brody JP and Austin RH (1998) Hydrodynamic focusing on a silicon chip: Mixing nanoliters in microseconds. Phys Rev Lett 80: 3863-3866

    CAS  Google Scholar 

  • Kok B and Varner JE (1967) Extraterrestial life detection based on oxygen isotope exchange reactions. Science 155: 1110-1112

    CAS  PubMed  Google Scholar 

  • Kolakowski BM and Konermann L (2001) From small-molecule reactions to protein folding: Studying biochemical kinetics by stopped-flow electrospray mass spectrometry. Anal Biochem 292: 107-114

    CAS  PubMed  Google Scholar 

  • Konermann L (1999) Monitoring reaction kinetics by continuous-flow methods: The effects of convection and molecular diffusion under laminar flow conditions. J Phys Chem A 103: 7210-7216

    CAS  Google Scholar 

  • Konermann L and Douglas DJ (2002) Pre-steady-state kinetics of enzymatic reactions studied by electrospray mass spectrometry with on-line rapid-mixing techniques. Meth Enzymol 354: 50-64

    CAS  PubMed  Google Scholar 

  • Konermann L and Simmons DA (2003) Protein-folding kinetics and mechanisms studied by pulse-labeling and mass spectrometry. Mass Spectrom Rev 22: 1-26

    CAS  PubMed  Google Scholar 

  • Konermann L, Collings BA and Douglas DJ (1997) Cytochrome c folding kinetics studied by time-resolved electrospray ionization mass spectrometry. Biochemistry 36: 5554-5559

    CAS  PubMed  Google Scholar 

  • Konermann L, Silva EA and Sogbein OF (2001) Electrochemically induced pH changes resulting in protein unfolding in the ion source of an electrospray mass spectrometer. Anal Chem 73: 4836-4844

    CAS  PubMed  Google Scholar 

  • Krasna AI (1978) Oxygen stable hydrogenase and assay. Meth Enzymol 53: 296-314

    CAS  PubMed  Google Scholar 

  • Kretschmann H and Witt HT (1993) Chemical reduction of the water splitting enzyme system of photosynthesis and its light induced reoxidation characterized by optical and mass spectrometric measurements: A basis for the estimation of the states of the redox active manganese and of water in the quaternary oxygen evolving S-state cycle. Biochim Biophys Acta 1144: 331-345

    CAS  Google Scholar 

  • Krishna MMG, Hoang L, Lin Y and Englander SW (2004) Hydrogen exchange methods to study protein folding. Methods 34: 51-64

    CAS  PubMed  Google Scholar 

  • Laiko VV, Baldwin MA and Burlingame AL (2000) Atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 72: 652-657

    CAS  PubMed  Google Scholar 

  • Li Z, Sau AK, Shen S, Whitehouse C, Baasov T and Anderson KS (2003) A snapshot of enzyme catalysis using electrospray mass spectrometry. J Am Chem Soc 125: 9938-9939

    CAS  PubMed  Google Scholar 

  • Liesener A and Karst U (2005) Monitoring enzymatic conversions by mass spectrometry: A critical review. Anal Bioanal Chem 382: 1451-1464

    CAS  PubMed  Google Scholar 

  • Lindskog S and Coleman JE (1973) Catalytic mechanism of carbonic anhydrase. Proc Natl Acad Sci USA 70: 2505-2508

    CAS  PubMed  Google Scholar 

  • Lloyd D, Thomas KL, Cowie G, Tammam JD and Williams AG (2002) Direct interface of chemistry to microbiological systems: Membrane inlet mass spectrometry. J Microbiol Meth 48: 289-302

    CAS  Google Scholar 

  • Mano J, Takahashi M-A and Asada K (1987) Oxygen evolution from hydrogen peroxide in Photosystem II: Flash induced catalytic activity of water oxidizing Photosystem II membranes. Biochemistry 26: 2495-2501

    CAS  Google Scholar 

  • Mao FM and Leck JH (1987) The quadrupole mass spectrometer in practical operation. Vacuum 37: 669-675

    CAS  Google Scholar 

  • Marshall AG, Hendrickson CL and Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass Spectrom Rev 17: 1-35

    CAS  PubMed  Google Scholar 

  • Martin JP, Johnson RD, Kok B and Radmer R (1975) Unified mars life detection system. J Astronaut Sci 23: 99-119

    Google Scholar 

  • Maxwell K, Badger MR and Osmond CB (1998) A comparison of CO2 and O2 exchange patterns and the relationship with chlorophyll fluorescence during photosynthesis in C3 and CAM plants. Aust J Plant Physiol 25: 45-52

    Google Scholar 

  • McEvoy JP and Brudvig GW (2004) Structure based mechanism of photosynthetic water oxidation. Phys Chem Chem Phys 6: 4754-4763

    CAS  Google Scholar 

  • Messinger J (2004) Evaluation of different mechanistic proposals for water oxidation in photosynthesis on the basis of Mn4OxCa structures for the catalytic site and spectroscopic data. Phys Chem Chem Phys 6: 4764-4771

    CAS  Google Scholar 

  • Messinger J, Badger M and Wydrzynski T (1995) Detection of one slowly exchanging substrate water molecule in the S3 state of Photosystem II. Proc Natl Acad Sci USA 92: 3209-3213

    CAS  PubMed  Google Scholar 

  • Meyer S, Koch R and Metzger JO (2003) Investigation of reactive intermediates of chemical reactions in solution by electrospray ionization mass spectrometry: Radical cation chain reactions. Angew Chem Int Edit 42: 4700-4703

    CAS  Google Scholar 

  • Miranker A, Robinson CV, Radford SE and Dobson CM (1996) Investigation of protein folding by mass spectrometry. FASEB J 10: 93-101

    CAS  PubMed  Google Scholar 

  • Norris AJ, Whitelegge JP, Faull KF and Toyokuni T (2001) Analysis of enzyme kinetics using electrospray ionization mass spectrometry and multiple reaction monitoring: Fucosyltransferase V. Biochemistry 40: 3774-3779

    CAS  PubMed  Google Scholar 

  • Northrop DB and Simpson FB (1997) Beyond enzyme kinetics: Direct determination of mechanisms by stopped-flow mass spectrometry. Bioorg Med Chem 5: 641-644

    CAS  PubMed  Google Scholar 

  • Pain RH (2000) Mechanisms of Protein Folding. Oxford University Press, New York

    Google Scholar 

  • Pan JX, Wilson DJ and Konermann L (2005) Pulsed hydrogen exchange and electrospray charge-state distribution as complementary probes of protein structure in kinetic experiments: Implications for ubiquitin folding. Biochemistry 44: 8627-8633

    CAS  PubMed  Google Scholar 

  • Poulsen AK, Rompel A and McKenzie CJ (2005) Water oxidation catalyzed by a dinuclear Mn complex: A functional model for the oxygen-evolving center of Photosystem II. Angew Chem Int Edit 44: 6916-6920

    CAS  Google Scholar 

  • Prior JJ, Christie PD, Murray RJ, Ormejohnson WH and Cooney CL (1995) Continuous monitoring of nitrogenase activity in Azotobacter vinelandii fermentation using off-gas mass spectrometry. Biotechnol Bioeng 47: 373-383

    CAS  PubMed  Google Scholar 

  • Radmer R (1979) Mass spectrometric determination of hydroxylamine photo-oxidation by illuminated chloroplasts. Biochim Biophys Acta 546: 418-425

    CAS  PubMed  Google Scholar 

  • Radmer R and Kok B (1971) Unified procedure for detection of life on mars. Science 174: 233-239

    CAS  PubMed  Google Scholar 

  • Radmer R and Ollinger O (1980a) Measurement of the oxygen cycle: The mass spectrometric analysis of gases dissolved in a liquid phase. Meth Enzymol 69: 547-560

    CAS  Google Scholar 

  • Radmer R and Ollinger O (1980b) Light driven uptake of oxygen, carbon dioxide, and bicarbonate by the green algae Scenedesmus. Plant Physiol 65: 723-729

    CAS  Google Scholar 

  • Radmer R and Ollinger O (1980c) Isotopic composition of photosynthetic O2 flash yields in the presence of H218O and HC18O3-. FEBS Lett 110: 57-61

    CAS  Google Scholar 

  • Radmer R and Ollinger O (1981) Mass spectrometric studies of hydrazine photooxidation by illuminated chloroplasts. Biochim Biophys Acta 637: 80-87

    CAS  Google Scholar 

  • Radmer R and Ollinger O (1982) Nitrogen and oxygen evolution by hydroxylamine treated chloroplasts. FEBS Lett 144: 162-166

    CAS  Google Scholar 

  • Radmer R and Ollinger O (1983) Topography of the O2 evolving site determined with water analogs. FEBS Lett 152: 39-43 Radmer R and Ollinger O (1986) Do the higher oxidation states of the photosynthetic O2 evolving system contain bound H2O. FEBS Lett 195: 285-289

    Google Scholar 

  • Radmer RJ, Kok B and Martin JP (1976) System for biological and soil chemical tests on a planetary lander. J Spacecraft Rockets 13: 719-726

    CAS  Google Scholar 

  • Renger G (2001) Photosynthetic water oxidation to molecular oxygen: Apparatus and mechanism. Biochim Biophys Acta 1503: 210-228

    CAS  PubMed  Google Scholar 

  • Ribas-Carbo M, Robinson SA and Giles L (2005) The application of oxygen isotope technique to respiratory pathway partitioning. In: Lambers H and Ribas-Carbo M (eds) Plant Respiration: From Cell to Ecosystem (Advances in Photosynthesis and Respiration,Vol 18), pp 31-42. Springer, Dordrecht

    Google Scholar 

  • Roboz J (1968) Mass spectrometry: Instrumentation and techniques. Wiley, New York

    Google Scholar 

  • Ruuska SA, Badger MR, Andrews TJ and von Caemmerer S (2000) Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: Little evidence for significant Mehler reaction. J Exp Bot 51: 357-368

    CAS  PubMed  Google Scholar 

  • Schermann SM, Simmons DA and Konermann L (2005) Mass spectrometry-based approaches to protein-ligand interactions. Exp Rev Proteomics 2: 475-485

    CAS  Google Scholar 

  • Shastry MCR, Luck SD and Roder H (1998) A continuous-flow mixing method to monitor reactions on the microsecond time scale. Biophys J 74: 2714-2721

    CAS  PubMed  Google Scholar 

  • Shima S, Lyon EJ, Thauer RK, Mienert B and Bill E (2005) Mössbauer studies of the iron-sulfur cluster-free hydrogenase: The electronic state of the mononuclear Fe active site. J Am Chem Soc 127: 10430-10435

    CAS  PubMed  Google Scholar 

  • Shoemaker BA, Portman JJ and Wolynes PG (2000) Speeding molecular recognition by using the folding funnel: The fly-casting mechanism. Proc Natl Acad Sci USA 97: 8868-8873

    CAS  PubMed  Google Scholar 

  • Silva ACB, Augusti R, Dalmazio I, Windmoller D and Lago RM (1999) MIMS evaluation of pervaporation processes. Phys Chem Chem Phys 1: 2501-2504

    CAS  Google Scholar 

  • Silverman DN (1982) Carbonic anhydrase 18O exchange catalyzed by an enzyme with rate contributing proton transfer steps. Methods in Enzymology 87: 732-752

    CAS  PubMed  Google Scholar 

  • Silverman DN and Tu CK (1976) Carbonic anhydrase catalyzed hydration studied by 13C and 18O labeling of carbon dioxide. J Am Chem Soc 98: 978-984

    CAS  PubMed  Google Scholar 

  • Simmons DA, Dunn SD and Konermann L (2003) Conformational dynamics of partially denatured myoglobin studied by timeresolved electrospray mass spectrometry with online hydrogen-deuterium exchange. Biochemistry 42: 9248-9248

    CAS  Google Scholar 

  • Simmons DA, Wilson DJ, Lajoie GA, Doherty-Kirby A and Konermann L (2004) Subunit disassembly and unfolding kinetics of hemoglobin studied by time-resolved electrospray mass spectrometry. Biochemistry 43: 14792-14801

    CAS  PubMed  Google Scholar 

  • Siuzdak G (1996) Mass spectrometry for biotechnology. Academic Press, New York

    Google Scholar 

  • Smith DL, Deng Y and Zhang Z (1997) Probing the noncovalent structure of proteins by amide hydrogen exchange mass spectrometry. J Mass Spectrom 32: 135-146

    CAS  PubMed  Google Scholar 

  • So AKC, Van Spall HGC, Coleman JR and Espie GS (1998) Catalytic exchange of 18O from 13C18O-labelled CO2 by wild-type cells and ecaA, ecaB, and ccaA mutants of the cyanobacteria Synechococcus PCC7942 and Synechocystis PCC6803. Can J Bot 76: 1153-1160

    CAS  Google Scholar 

  • Tanaka K (2003) The origin of macromolecule ionization by laser irradiation (Nobel Lecture). Angew Chem Int Edit 42: 3861-3870

    CAS  Google Scholar 

  • Tegtmeyer D, Heindrichs A and Heitbaum J (1989) Electrochemical on line mass spectrometry on a rotating electrode inlet system. Ber Bunsen Phys Chem 93: 201-206

    CAS  Google Scholar 

  • Tortell PD (2005) Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry. Limnol Oceanogr Meth 3: 24-37

    CAS  Google Scholar 

  • Vignais PM (2005) H/D exchange reactions and mechanistic aspects of the hydrogenases. Coordin Chem Rev 249: 1677-1690

    CAS  Google Scholar 

  • Whitelegge JP, Le Coutre J, Lee JC, Engel CK, Prive GG, Faull KF and Kaback HR (1999) Toward the bilayer proteome, electrospray ionization-mass spectrometry of large, intact transmembrane proteins. Proc Natl Acad Sci USA 96: 10695-10698

    CAS  PubMed  Google Scholar 

  • Wilson DJ and Konermann L (2003) A capillary mixer with adjustable reaction chamber volume for millisecond time-resolved studies by electrospray mass spectrometry. Anal Chem 75: 6408-6414

    CAS  PubMed  Google Scholar 

  • Wilson DJ and Konermann L (2004) Mechanistic studies on enzymatic reactions by electrospray ionization MS using a capillary mixer with adjustable reaction chamber volume for time resolved measurements. Anal Chem 76: 2537-2543

    CAS  PubMed  Google Scholar 

  • Wilson DJ and Konermann L (2005) Ultrarapid desalting of protein solutions for electrospray mass spectrometry in a microchannel laminar flow device. Anal Chem 77: 6887-6894

    CAS  PubMed  Google Scholar 

  • Wilson DJ, Rafferty SP and Konermann L (2005) Kinetic unfolding mechanism of the inducible nitric oxide synthase oxygenase domain determined by time-resolved electrospray mass spectrometry. Biochemistry 44: 2276-2283

    CAS  PubMed  Google Scholar 

  • Wittung-Stafshede P (2002) Role of cofactors in protein folding. Acc Chem Res 35: 201-208

    CAS  PubMed  Google Scholar 

  • Wolter O and Heitbaum J (1984) Differential electrochemical mass spectroscopy (DEMS) — a new method for the study of electrode processes. Ber Bunsen Phys Chem 88: 2-6

    CAS  Google Scholar 

  • Xiao H and Kaltashov IA (2005) Transient structural disorder as a facilitator of protein ligand binding: Native H/D exchange-mass spectrometry study of cellular retinoic acid binding protein I. J Am Soc Mass Spectrom 16: 869-879

    CAS  PubMed  Google Scholar 

  • Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A and Yachandra VK (2006) Where water is oxidized to dioxygene: Structure of the photosynthetic Mn4Ca cluster. Science 314: 821-825

    CAS  PubMed  Google Scholar 

  • Zechel DL, Konermann L, Withers SG and Douglas DJ (1998) Pre-steady state kinetic analysis of an enzymatic reaction monitored by time-resolved electrospray ionization mass spectrometry. Biochemistry 37: 7664-7669

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Konermann, L., Messinger, J., Hillier, W. (2008). Mass Spectrometry-Based Methods for Studying Kinetics and Dynamics in Biological Systems. In: Aartsma, T.J., Matysik, J. (eds) Biophysical Techniques in Photosynthesis. Advances in Photosynthesis and Respiration, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8250-4_9

Download citation

Publish with us

Policies and ethics