Advertisement

Molecular Dynamics Methods for Bioelectronic Systems in Photosynthesis

  • Ioan Kosztin
  • Klaus Schulten
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 26)

With the widespread availability of high performance computer clusters and effi cient parallel molecular modeling software, molecular dynamics (MD) simulations became an indispensable tool for the study of the structurefunction relationship in proteins with known crystal structures. However, understanding at atomic level the functioning of membrane bound pigment-protein complexes (PPCs), which in photosynthetic organisms convert the energy of the absorbed light into electronic excitations and electrochemical potential gradients, continues to remain a challenging problem. Indeed, the theoretical description of PPCs at physiological temperature in their native environment is a complicated stochastic quantum mechanics problem that requires determining and characterizing the quantum states of the interacting pigment molecules in the presence of thermal fl uctuations. Until recently most theoretical approaches for calculating the optical spectra and the electronic transfer rates of PPCs were based on empirical stochastic models in which several fi tting parameters are adjusted to simulate the corresponding experimental results. In this chapter a general approach, which combines MD simulations, quantum chemistry (QC) calculations and quantum many-body theory, for predicting and characterizing charge transfer, spectral and optical properties (e.g., linear absorption and circular dichroism spectra) of PPCs is presented. The method requires only atomic-level crystal structure information and consists of three major steps: (i) the conformational dynamics of the protein matrix embedded into a fully solvated lipid bilayer is followed by means of classical MD simulations; (ii) the lowest energy quantum states of each pigment molecule are determined along the MD trajectory by means of QC calculations; and (iii) the transfer rate and/or optical spectra are determined in terms of a lineshape function which, within the cumulant approximation, can be calculated from the results of the QC calculations. To demonstrate its features, the combined MD/QC method is applied to calculate the linear optical spectra of the light harvesting complex LH2 from Rhodospirillum molischianum and the electron transfer rates in photosynthetic reaction center from Rhodobacter sphaeroides.

Keywords

Chem Phys Molecular Dynamics Method Electron Transfer Rate Transition Dipole Moment Photosynthetic Reaction Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beekman LMP, Frese RN, Fowler GJS, Picorel R, Cogdell RJ, van Stokkum, IHM, Hunter CN and van Grondelle R (1997) Characterization of the light-harvesting antennas of photosynthetic purple bacteria by Stark spectroscopy. 2. LH2 complexes: Influence of the protein environment. J Phys Chem B 101: 7293-7301CrossRefGoogle Scholar
  2. Bixon M and Jortner J (1986) Coupling of protein modes to electron transfer in bacterial photosynthesis. J Phys Chem 90: 3795-3800CrossRefGoogle Scholar
  3. Chernyak V, Zhang WM and Mukamel S (1998) Multidimensional femtosecond spectroscopies of molecular aggregates and semiconductor nanostructures: The nonlinear exciton equations. J Chem Phys 109: 9587-9601CrossRefGoogle Scholar
  4. Cory MG, Zerner MC, Hu X and Schulten K (1998) Electronic excitations in aggregates of bacteriochlorophylls. J Phys Chem B 102: 7640-7650CrossRefGoogle Scholar
  5. Damjanovic A, Kosztin I, Kleinekathofer U and Schulten K (2002a) Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study. Phys Rev E 65: 031919Google Scholar
  6. Damjanovic A, Vaswani HM, Fromme P and Fleming GR (2002b) Chlorophyll excitations in photosystem I of Synechococcus elongates. J Phys Chem B 106: 10251-10262CrossRefGoogle Scholar
  7. Darden T, York D and Pedersen L (1993) Particle mesh Ewald. An N·log(N) method for Ewald sums in large systems. J Chem Phys 98: 10089-10092CrossRefGoogle Scholar
  8. Deisenhofer J, Epp O, Mikki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318: 618-624CrossRefGoogle Scholar
  9. Egorov SA, Everitt KF and Skinner JL (1999) Quantum dynamics and vibrational relaxation. J Phys Chem A 103: 9494-9499CrossRefGoogle Scholar
  10. Feller SE, Zhang YH, Pastor RW and Brooks BR (1995) Constant pressure molecular dynamics simulation — the Langevin piston method. J Chem Phys 103: 4613-4621CrossRefGoogle Scholar
  11. Foloppe N, Breton J and Smith JC (1992) Potential energy function for photosynthetic reaction centre chromophores: energy minimisations of a crystalline bacteriopheophytin a analog. In: Breton J and Vermeglio A (eds) The Photosynthetic Bacterial Reaction Center II: Structure, Spectroscopy and Dynamics, pp 43-48. Plenum Press, New York/LondonGoogle Scholar
  12. Foloppe N, Ferrand M, Breton J and Smith JC (1995) Structural model of the photosynthetic reaction center of Rhodobacter capsulatus. Proteins 22: 226-244CrossRefPubMedGoogle Scholar
  13. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski JAM, Stratmann RE, Burant JC, Dapprich JMM, Daniels AD, Kudin KN, Strain MC, Farkas JT, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli CA, Clifford S, Ochterski J, Petersson GA, Ayala QC, Morokuma K, Malick DK, Rabuck AD, Raghavachari JBF, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin DJF, Keith T, Al-Laham MA, Peng CY, Nanayakkara CG, Challacombe M, Gill PMW, Johnson BG, Chen MWW, Andres JL, Head-Gordon M, Replogle ES and Pople JA (1998) Gaussian 98. Gaussian Inc., PittsburghGoogle Scholar
  14. Georgakopoulou S, Frese RN, Johnson E, Koolhaas C, Cogdell RJ, van Grondelle R and van der Zwan G (2002) Absorption and CD spectroscopy and modeling of various LH2 complexes from purple bacteria. Biophys J 82: 2184-2197CrossRefPubMedGoogle Scholar
  15. Gunn JR and Dawson KA (1989) Microscopic model of amphiphilic assembly. J Chem Phys 91: 6393-6403CrossRefGoogle Scholar
  16. He Z, Sundström V and Pullerits T (2002) Influence of the protein binding site on the excited states of bacteriochlorophyll: DFT calculations of B800 in LH2. J Phys Chem B 106: 11606-11612CrossRefGoogle Scholar
  17. Holstein T (1959) Polaron motion. I. Molecular-crystal model. Ann Phys 8: 325-342CrossRefGoogle Scholar
  18. Hopfield JJ (1974) Electron transfer between biological molecules by thermally activated tunnelling. Proc Natl Acad Sci USA 71: 3640-3644CrossRefPubMedGoogle Scholar
  19. Hu X and Schulten K (1997) How nature harvests sunlight. Physics Today 50: 28-34CrossRefGoogle Scholar
  20. Hu X, Damjanovic A, Ritz T and Schulten K (1998a) Architecture and function of the light harvesting apparatus of purple bacteria. Proc Natl Acad Sci USA 95: 5935-5941CrossRefGoogle Scholar
  21. Hu X, Damjanovic A, Ritz T and Schulten K (1998b) Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proc Natl Acad Sci USA 95: 5935-5941CrossRefGoogle Scholar
  22. Hu X, Ritz T, Damjanovic A, Autenrieth F and Schulten K (2002) Photosynthetic apparatus of purple bacteria. Q Rev Biophys 35: 1-62PubMedGoogle Scholar
  23. Humphrey W, Dalke A and Schulten K (1996) VMD — Visual Molecular Dynamics. J Mol Graphics 14: 33-38CrossRefGoogle Scholar
  24. Ihalainen JA, Linnanto J, Myllyperkio P, van Stokkum IHM, Ucker B, Scheer H and Korppi-Tommola JEI (2001) Energy transfer in LH2 of Rhodospirillum molischianum, studied by subpicosecond spectroscopy and configuration interaction exciton calculations. J Phys Chem B 105: 9849-9856CrossRefGoogle Scholar
  25. Jang SJ and Silbey RJ (2003) Single complex line shapes of the B850 band of LH2. J Chem Phys 118: 9324-9336CrossRefGoogle Scholar
  26. Janosi L, Kosztin I and Damjanovic A (2006) Theoretical prediction of spectral and optical properties of bacteriochlorophylls in thermally disordered LH2 antenna complexes. J Chem Phys 124: 014903Google Scholar
  27. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW and Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 926-935CrossRefGoogle Scholar
  28. Kirmaier C and Holten D (1988) Temperature effects on the ground state absorption spectra and electron transfer kinetics of bacterial reaction centers. In: Breton J and Vermeglio A (eds) The Photosynthetic Bacterial Reaction Center: Structure and Dynamics, pp 219-228. Plenum Press, New York/LondonGoogle Scholar
  29. Koepke J, Hu XC, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 4: 581-597CrossRefPubMedGoogle Scholar
  30. Koolhaas MHC, van der Zwan G and van Grondelle R (2000) Local and nonlocal contributions to the linear spectroscopy of light-harvesting antenna systems. J Phys Chem B 104: 4489-4502CrossRefGoogle Scholar
  31. Leggett AJ, Chakravarty S, Dorsey AT, Fisher MPA, Garg A and Zwerger W (1985) Dynamics of the dissipative two-state system. Rev Mod Phys 59: 1-85CrossRefGoogle Scholar
  32. Linnanto J and Korppi-Tommola J (2004) Semi-empirical PM5 molecular orbital study on chlorophylls and bacteriochlorophylls: Comparison of semi-empirical, ab initio, and density functional results. J Comput Chem 25: 123-38CrossRefPubMedGoogle Scholar
  33. Linnanto J, Korppi-Tommopa JEI and Helenius VM (1999) Electronic states, absorption spectrum and circular dichroism spectrum of the photosynthetic bacterial LH2 antenna of Rho-dopseudomonas acidophila as predicted by exciton theory and semi-empirical calculations. J Phys Chem B 103: 8739-8750CrossRefGoogle Scholar
  34. MacKerell Jr.AD, Bashford D, Bellott M, Dunbrack Jr RL, Evanseck J.D, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher III WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102: 3586-3616CrossRefGoogle Scholar
  35. Mahan GD (1990) Many-Particle Physics, 2nd Edition. Plenum Press, New YorkGoogle Scholar
  36. Makri N (1999) The linear response approximation and its lowest order corrections: An influence functional approach. J Phys Chem B 103: 2823-2829CrossRefGoogle Scholar
  37. Marcus RA (1956a) Electrostatic free energy and other properties of states having nonequilibrium polarization. J Chem Phys 24: 979-989CrossRefGoogle Scholar
  38. Marcus RA (1956b) On the energy of oxidation-reduction reactions involving electron transfer. J Chem Phys 24: 966-978CrossRefGoogle Scholar
  39. Marcus RA and Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811: 265-322Google Scholar
  40. Martin JL, Breton J, Lambry JC and Fleming G (1988) The primary electron transfer in photosynthetic purple bacteria: Long range electron transfer in the femtosecond domain at low temperature.In: Breton J and Vermeglio A (eds) The Photosynthetic Bacterial Reaction Center: Structure and Dynamics, pp 195-203. Plenum Press, New York/LondonGoogle Scholar
  41. May V and Kühn O (2000) Charge and Energy Transfer Dynamics in Molecular Systems. Wiley-VCH, BerlinGoogle Scholar
  42. McDermott G, Prince S, Freer A, Hawthornthwaite-Lawless A, Papiz M, Cogdell RJ and Isaacs N (1995) Crystal structure of an integral membrane light-harvesting complex from photo-synthetic bacteria. Nature 374: 517-521CrossRefGoogle Scholar
  43. Meier T, Zhao Y, Chernyak V and Mukamel S (1997) Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes. J Chem Phys 107: 3876-3893CrossRefGoogle Scholar
  44. Mercer I, Gould I and Klug D (1999) A quantum mechanical/moecular mechanical approach to relaxation dynamics: Calculation of the optical properties of solvated bacteriochlorophyll-a. J. Phys. Chem. B 103: 7720-7727CrossRefGoogle Scholar
  45. Miyamoto S and Kollman PA (1992) SETTLE: An analytical version of the SHAKE and RATTLE algorithm for rigid water molecules. J Comput Chem 13: 952-962CrossRefGoogle Scholar
  46. Mukamel S (1995) Principles of nonlinear optical spectroscopy. Oxford University Press, New YorkGoogle Scholar
  47. Nagarajan V, Parson WW, Gaul D and Schenck C (1990) Effect of specific mutations of tyrosine-(M)210 on the primary photosynthetic electron-transfer process in Rhodobacter sphaeroides. Proc Natl Acad Sci USA 87: 7888-7892CrossRefPubMedGoogle Scholar
  48. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L and Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26: 1781-1802CrossRefPubMedGoogle Scholar
  49. Ray J and Makri N (1999) Short-range coherence in the energy transfer of photosynthetic light-harvesting systems. J Phys Chem A 103: 9417-9422CrossRefGoogle Scholar
  50. Renger T, May V and Kuhn O (2001) Ultrafast excitation energy transfer dynamics in photosynthetic pigment-protein complexes. Phys Rep 343: 138-254CrossRefGoogle Scholar
  51. Ridley J and Zerner M (1973) An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines. Theor Chim Acta 32: 111-134CrossRefGoogle Scholar
  52. Ringnalda MN, Langlois JM, Murphy RB, Greeley BH, Cortis C, Russo TV, Marten B, Jr RED, Pollard WT, Cao Y, Muller RP, Mainz DT, Wright JR, Miller III WAG and Friesner RA (1996) PS-GVB v2.3. Schrödinger Inc, Portland, ORGoogle Scholar
  53. Schlenkrich M, Brickmann J, MacKerellJr AD and Karplus M (1996) Empirical potential energy function for phospholipids: Criteria for parameter optimization and applications In: Merz KM and Roux B (eds) Biological Membranes: A Molecular Perspective from Computation and Experiment, pp 31-81. Birkhäuser, BostonGoogle Scholar
  54. Scholes GD and Fleming GR (2000) On the mechanism of light harvesting in photosynthetic purple bacteria: B800 to b850 energy transfer. J Phys Chem B 104: 1854-1868CrossRefGoogle Scholar
  55. Schulten K and Tesch M (1991) Coupling of protein motion to electron transfer: Molecular dynamics and stochastic quantum mechanics study of photosynthetic reaction centers. Chem Phys 158: 421-446CrossRefGoogle Scholar
  56. Somsen OJG, van Grondelle R and van Amerongen H (1996) Spectral broadening of interacting pigments: Polarized absorption by photosynthetic proteins. Biophys J 71: 1934-1951CrossRefPubMedGoogle Scholar
  57. Sumi H and Marcus RA (1986) Dynamical effects in electron transfer reactions. J Chem Phys 84: 4894-4914CrossRefGoogle Scholar
  58. Sundström V, Pullerits T and van Grondelle R (1999) Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103: 2327-2346CrossRefGoogle Scholar
  59. van Amerongen H, Valkunas L and van Grondelle R (2000) Photosynthetic Excitons. World Scientific, SingaporeGoogle Scholar
  60. Visscher K, Bergström H, Sundström V, Hunter C and van Grondelle R (1989) Temperature dependence of energy transfer from the long wavelength antenna BChl-896 to the reaction center in Rhodospirillum Rubrum, Rhodobacter sphaeroides (w.t. and M21 mutant) from 77 to 177 K, studied by picosecond absorption spectroscopy. Photosynth Res 22: 211-217CrossRefGoogle Scholar
  61. Warshel A and Hwang J-K (1986) Simulations of the dynamics of electron transfer reactions in polar solvent: Semiclassical trajectories and dispersed polaron approaches. J Chem Phys 84: 4938-4957CrossRefGoogle Scholar
  62. Warshel A, Chu ZT and Parson WW (1989) Dispersed polaron simulations of electron transfer in photosynthetic reaction centers. Science 246: 112-116CrossRefPubMedGoogle Scholar
  63. Wolynes PG (1987) Dissipation, tunneling and adiabaticity criteria for curve crossing problems in the condensed phase. J Chem Phys 86: 1957-1966CrossRefGoogle Scholar
  64. Wu HM, Ratsep M, Jankowiak R, Cogdell RJ and Small GJ (1997) Comparison of the LH2 antenna complexes of Rhodopseudomonas acidophila (strain 10050) and Rhodobacter sphaeroides by high-pressure absorption, high-pressure hole burning, and temperature-dependent absorption spectroscopies. J Phys Chem B 101: 7641-7653CrossRefGoogle Scholar
  65. Xu D and Schulten K (1992) Multi-mode coupling of protein motion to electron transfer in the photosynthetic reaction center: Spin-boson theory based on a classical molecular dynamics simulation. In: Breton J and Vermeglio A (eds) The Photosynthetic Bacterial Reaction Center: II. Structure, Spectroscopy and Dynamics, NATO ASI Series A: Life Sciences, pp 301-312. Plenum Press, New YorkGoogle Scholar
  66. Xu D and Schulten K (1994) Coupling of protein motion to electron transfer in a photosynthetic reaction center: Investigating the low temperature behaviour in the framework of the spin-boson model. Chem Phys 182: 91-117CrossRefGoogle Scholar
  67. Yang M, Agarwal R and Fleming GR (2001) The mechanism of energy transfer in the antenna of photosynthetic purple bacteria. J Photochem Photobiol A 142: 107-119CrossRefGoogle Scholar
  68. Zerner M, Loew G, Kirchner R and Mueller-Westerhoff UJ (1980) An intermediate neglect of differential overlap technique for spectroscopy of transition-metal complexes. Ferrocene. J Am Chem Soc 102: 589-599CrossRefGoogle Scholar
  69. Zhang JP, Fujii R, Qian P, Inaba T, Mizoguchi T and Koyama Y (2000) Mechanism of the carotenoid-to-bacteriochlorophyll energy transfer via the S1 state in the LH2 complexes from purple bacteria. J Phys Chem B 104: 3683-3691CrossRefGoogle Scholar
  70. Zheng C, McCammon JA and Wolynes PG (1989) Quantum simulation of nuclear rearrangement in electron transfer reactions. Proc Natl Acad Sci USA 86: 6441-6444CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Ioan Kosztin
    • 1
  • Klaus Schulten
    • 2
  1. 1.Department of Physics and AstronomyUniversity of Missouri-ColumbiaColumbiaUSA
  2. 2.Beckman Institute and Department of PhysicsUniversity of IllinoisUrbanaUSA

Personalised recommendations