Theory of Excitation Energy Transfer and Optical Spectra of Photosynthetic Systems

  • Thomas Renger
  • Alfred R. Holzwarth
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 26)

In this chapter, we discuss the theories applicable for calculating energy transfer kinetics and optical spectra of photosynthetic pigment-protein complexes. The various theoretical approaches for obtaining expressions for rate constants and optical spectra are reviewed. At the extremes we distinguish weak and strong coupling between electronic excitations of the pigments. If the coupling is strong compared to the dynamic and static disorder introduced by the protein environment, then delocalized electronic states are formed after light excitation. The excitation energy relaxes between those delocalized states. In the weak coupling limit localized states are created by excitation and the excitation energy is transferred via a hopping mechanism. In general in photosynthetic antenna and reaction centers neither limit applies in a strict sense. Thus more sophisticated theories describing the intermediate cases have to be applied, and these should also account for the coupling of the excited states to the vibrational states of the environment. We discuss the recent attempts of solving the challenging problem to apply a non-perturbative description of both the pigment-pigment as well as the pigment-protein couplings. Applications of these theories to the spectroscopy of photosynthetic systems over the last decade are also reviewed.


Exciton State Excitation Energy Transfer Site Energy Green Sulfur Bacterium Excitonic Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolphs J and Renger T (2006) How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys J 91: 2778-2797PubMedGoogle Scholar
  2. Agarwal R, Prall BS, Rizvi AH, Yang M and Fleming GR (2002) Two-color three pulse photon echo peak shift spectroscopy. J Chem Phys 116: 6243-6252Google Scholar
  3. Balaban TS, Holzwarth AR, Schaffner K, Boender GJ and de Groot HJM (1995) CP-MAS 13C-NMR Dipolar correlation spectroscopy of 13C enriched chlorosomes and isolated bacteriochlorophyll c aggregates of Chlorobium tepidum: The self-organization of pigments is the main structural feature of chlorosomes. Biochemistry 34: 15259-15266PubMedGoogle Scholar
  4. Balaban TS, Tamiaki H and Holzwarth AR (2005) Chlorins programmed for self-assembly. In: Würthner F (ed) Supramolecular Dye Chemistry (Topics in Current Chemistry, Vol 258), pp 1-38. Springer Verlag, HeidelbergGoogle Scholar
  5. Bauman D and Wrobel D (1980) Dichroism and polarized fluorescence of chlorophyll a, chlorophyll c and bacteriochlorophyll a dissolved in liquid crystals. Biophys Chem 12: 83-91PubMedGoogle Scholar
  6. Blankenship RE, Olson JM and Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 399-435. Kluwer Academic Publishers, DordrechtGoogle Scholar
  7. Bradforth SE, Jimenez R, van Mourik F, van Grondelle R and Fleming GR (1995) Excitation transfer in the core light-harvesting complex (LH-1) of Rhodobacter sphaeroides: An ultrafast fluorescence depolarization and annihilation study. J Phys Chem 99: 16179-16191Google Scholar
  8. Brixner T, Mancal T, Stiopkin IV and Fleming GR (2004a) Phasestabilized two-dimensional electronic spectroscopy. J Chem Phys 121: 4221-4236Google Scholar
  9. Brixner T, Stiopkin IV and Fleming GR (2004b) Tunable two-dimensional femtosecond spectroscopy. Opt Lett 29: 884-886 Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE and Fleming GR (2005) Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434: 625-628Google Scholar
  10. Brüggemann B, Sznee K, Novoderezhkin V, van Grondelle R and May V (2004) From structure in dynamics: Modeling exciton dynamics in the photosynthetic antenna PS1. J Phys Chem B 108: 13536-13546Google Scholar
  11. Byrdin M, Jordan P, Krauss N, Fromme P, Stehlik D, Schlodder E (2002) Light harvesting in Photosystem I: Modeling based on the 2.5Å-structure of Photosystem I from Synechococcus elongatus. Biophys J 83: 433-457PubMedGoogle Scholar
  12. Chachisvilis M, Pullerits T, Jones MR, Hunter CN and Sundström V (1994) Vibrational dynamics in the light-harvesting complexes of the photosynthetic bacterium Rhodobacter sphaeroides. Chem Phys Lett 224: 345-351Google Scholar
  13. Chachisvilis M, Fidder H, Pullerits T and Sundström V (1995a) Coherent nuclear motions in photosynthetic pigments and dye molecules, probed by ultrafast spectroscopy. J Raman Spectrosc 26: 513-522Google Scholar
  14. Chachisvilis M, Fidder H and Sundström V (1995b) Electronic coherence in pseudo two-colour pump-probe spectroscopy. Chem Phys Lett 234: 141-150Google Scholar
  15. Chang JC (1977) Monopole effects on electronic excitation interactions between large molecules. I. Application to energy transfer in chlorophylls. J Chem Res 67: 3901-3909Google Scholar
  16. Cho MH and Fleming GR (2005) The integrated photon echo and solvation dynamics. II. Peak shifts and two-dimensional photon echo of a coupled chromophore system. J Chem Phys 123: 114506-118PubMedGoogle Scholar
  17. Cho MH, Vaswani HM, Brixner T, Stenger J and Fleming GR (2005) Exciton analysis in 2D electronic spectroscopy. J Phys Chem B 109: 10542-10556PubMedGoogle Scholar
  18. Cho MH, Brixner T, Stiopkin I, Vaswani H and Fleming GR (2006) Two dimensional electronic spectroscopy of molecular complexes. J Chin Chem Soc 53: 15-24Google Scholar
  19. Connelly JP, Müller MG, Hucke M, Gatzen G, Mullineaux CW, Ruban AV, Horton P and Holzwarth AR (1997) Ultrafast spectroscopy of trimeric light harvesting complex II from higher plants. J Phys Chem B 101: 1902-1909Google Scholar
  20. Creemers TMH, De Caro CA, Visschers RW, van Grondelle R and Völker S (1999) Spectral hole burning and fluorescence line narrowing in subunits of the light-harvesting complex LH1 of purple bacteria. J Phys Chem B 103: 9770-9776Google Scholar
  21. Damjanovic A, Ritz T and Schulten K (1999) Energy transfer between carotenoids and bacteriochlorophylls in light-harvesting complex II of purple bacteria. Phys Rev E 59:3293-3311Google Scholar
  22. Damjanovic A, Kosztin I, Kleinekathöfer U and Schulten K (2002a) Excitons in a photosynthetic light-harvesting system: A combined molecular dynamics, quantum chemistry, and polaron model study. Phys Rev E 65: 031919-1-24Google Scholar
  23. Damjanovic A, Vaswani H, Fromme P and Fleming GR (2002b) Chlorophyll excitations in Photosystem I of Synechococcus elongatus. J Phys Chem B 106: 10251-10262Google Scholar
  24. Davydov AS (1971) Theory of Molecular Excitons. Plenum Press, New YorkGoogle Scholar
  25. de Boeij WP, Pshenichnikov MS and Wiersma DA (1996) On the relation between the echo-peak shift and Brownian-oscillator correlation function. Chem Phys Lett 253: 53-60Google Scholar
  26. Dekker JP and van Grondelle R (2000) Primary charge separation in Photosystem II. Photosynth Res 63: 195-208PubMedGoogle Scholar
  27. Didraga C and Knoester J (2004a) Excitons in tubular molecular aggregates. J Luminesc 110: 239-245Google Scholar
  28. Didraga C and Knoester J (2004b) Optical spectra and localization of excitons in inhomogeneous helical cylindrical aggregates. J Chem Phys 121: 10687-10698Google Scholar
  29. Durrant JR, Hastings G, Hong Q, Barber J, Porter G and Klug DR (1992a) Determination of P680 singlet state lifetimes in Photosystem 2 reaction centres. Chem Phys Lett 188: 54-60Google Scholar
  30. Durrant JR, Hastings G, Joseph DM, Barber J, Porter G and Klug DR (1992b) Subpicosecond equilibration of excitation energy in isolated Photosystem II reaction centers. Proc Natl Acad Sci USA 89: 11632-11636Google Scholar
  31. Durrant JR, Klug DR, Kwa SL, van Grondelle R, Porter G and Dekker JP (1995) A multimer model for P680, the primary electron donor of Photosystem II. Proc Natl Acad Sci USA 92: 4798-4802PubMedGoogle Scholar
  32. Eccles J and Honig B (1983) Charged amino acids as spectroscopic determinants for chlorophyll in vivo. Proc Natl Acad Sci USA 80: 4959-4962PubMedGoogle Scholar
  33. Engels GS, Calhoun TR, Read EL, Ahn TK, Mancal T, Chen Y-C, Blankenship RE and Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446: 782-786Google Scholar
  34. Fenna RE, Matthews BW (1975) Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258: 573-577Google Scholar
  35. Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831-1838PubMedGoogle Scholar
  36. Fetisova Z, Freiberg A, Mauring K, Novoderezhkin V, Taisova A and Timpmann K (1996) Excitation energy transfer in chlorosomes of green bacteria: Theoretical and experimental studies. Biophys J 71: 995-1010PubMedGoogle Scholar
  37. Fleming GR and Jimenez R (1997) Ultrafast spectroscopy of excitation transfer dynamics in biological systems. In: Sundström V (ed) Femtochemistry and Femtobiology: Ultrafast Reaction Dynamics at Atomic-Scale Resolution (Proceedings Nobel Symposium 101), pp 701-723. Imperial College Press, LondonGoogle Scholar
  38. Fleming GR and Scholes GD (2004) Physical chemistry — Quantum mechanics for plants. Nature 431: 256-257PubMedGoogle Scholar
  39. Fleming GR, Yang M, Agarwal R, Prall BS, Kaufman LJ and Neuwahl F (2003) Two dimensional electronic spectroscopy. Bull Korean Chem Soc 24: 1081-1090CrossRefGoogle Scholar
  40. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys Leipzig 2: 55-75Google Scholar
  41. Förster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern Quantum Chemistry. Part III. Action of Light and Organic Crystals, pp 93-137. Academic Press, New YorkGoogle Scholar
  42. Fragata M, Norden B and Kurucsev T (1988) Linear dichroism (250-700 nm) of chlorophyll a and pheophytin a oriented in a lamellar phase of glycerylmonooctanoate/H2O. Characterization of electronic transitions. Photochem Photobiol 47: 133-143Google Scholar
  43. Franken EM, Neerken S, Louwe RJW, Amesz J and Aartsma TJ (1998) A permanent hole burning study of the FMO antenna complex of the green sulfur bacterium Prosthecochloris aes-tuarii. Biochemistry 37: 5046-5051PubMedGoogle Scholar
  44. Gatzen G, Müller MG, Griebenow K and Holzwarth AR (1996) Primary processes and structure of the Photosystem II reaction center: 3. Kinetic analysis of picosecond energy transfer and charge separation processes in the D1-D2-Cyt-b 559 complex measured by time-resolved fluorescence. J Phys Chem 100: 7269-7278Google Scholar
  45. Georgakopoulou S, Cogdell RJ, van Grondelle R and van Am erongen H (2003) Linear-dichroism measurements on the LH2 antenna complex of Rhodopseudomonas acidophila strain 10050 show that the transition dipole moment of the carotenoid rhodopin glucoside is not collinear with the long molecular axis. J Phys Chem B 107: 655-658Google Scholar
  46. Georgievskii Y, Hsu C-P, Marcus RA (1999) Linear response in theory of electron transfer reactions as an alternative to the molecular harmonic oscillator model. J Chem Phys 110: 5307-5317Google Scholar
  47. Giorgi LB, Nixon PJ, Merry SAP, Joseph DM, Klug DR, Durrant JR, De Las Rivas J, Barber J and Porter G (1996) Comparison of primary charge separation in the Photosystem II reaction center complex isolated from wild-type and D1-130 mutants of the cyanobacterium Synechocystis PCC 6803. J Biol Chem 271: 2093-2101PubMedGoogle Scholar
  48. Gradinaru CC, Özdemir S, Gülen D, van Stokkum IHM, van Grondelle R and van Amerongen H (1998a) The flow of excitation energy in LHCII monomers: Implications for the structural model of the major plant antenna. Biophys J 75: 3064-3077.Google Scholar
  49. Gradinaru CC, Pascal AA, van Mourik F, Robert B, Horton P, van Grondelle R, van Amerongen H (1998b). Ultrafast evolution of the excited states in the chlorophyll a/b complex CP29 from green plants studied by energy-selective pump-probe spectroscopy. Biochemistry 37:1143-1149Google Scholar
  50. Greenfield SR, Seibert M, Govindjee and Wasielewski MR (1997) Direct measurement of the effective rate constant for primary charge separation in isolated Photosystem II reaction centers. J Phys Chem B 101: 2251-2255Google Scholar
  51. Greenfield SR, Wasielewski MR and Seibert M (1998) Femtosecond PS II reaction center studies at 7K. In: Garab G (ed) Photosynthesis: Mechanism and Effects, pp 1029-1032. Kluwer Academic Publishers, DordrechtGoogle Scholar
  52. Greenfield SR, Seibert M and Wasielewski MR (1999) Time-resolved absorption changes of the pheophytin QX band in isolated Photosystem II reaction centers at 7 K: Energy transfer and charge separation. J Phys Chem B 103: 8364-8374Google Scholar
  53. Groot M-L, van Mourik F, Eijckelhoff C, van Stokkum IHM, Dekker JP and van Grondelle R (1997) Charge separation in the reaction center of Photosystem II studied as a function of temperature. Proc Natl Acad Sci USA 94: 4389-4394PubMedGoogle Scholar
  54. Groot M-L, Pawlowicz NP, van der Wilderen LJGW, Breton J, van Stokkum IHM and van Grondelle R (2005) Initial electron donor and acceptor in isolated Photosystem II reaction centers identified with femtosecond mid-IR spectroscopy. Proc Natl Acad Sci USA 102: 13087-13092PubMedGoogle Scholar
  55. Gudowska-Nowak E, Newton MD and Fajer J (1990). Conformational and environmental effects on bacteriochlorophyll optical spectra: Correlations of calculated spectra with structural results. J Phys Chem 94: 5795-5801Google Scholar
  56. Hastings G, Durrant JR, Barber J, Porter G and Klug DR (1992) Observation of pheophytin reduction in photosystem two reaction centers using femtosecond transient absorption spectroscopy. Biochemistry 31: 7638-7647PubMedGoogle Scholar
  57. Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W and Diederich K (1996) Structural basis of light harvesting by carotenoids: Peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788-1791PubMedGoogle Scholar
  58. Holzwarth AR (2004) Light Absorption and Harvesting. In: Archer MD and Barber J (eds) Molecular to Global Photosynthesis, pp 43-115. Imperial College Press, LondonGoogle Scholar
  59. Holzwarth AR (2007) Ultrafast primary reactions in the photosystems of oxygen-evolving organisms. In: Zinth W (ed) Ultrafast Processes in Chemistry and Biology. Springer-Verlag, Heidelberg, Berlin, in pressGoogle Scholar
  60. Holzwarth AR, Müller MG, Niklas J and Lubitz W (2005) Charge recombination fluorescence in Photosystem I reaction centers from Chlamydomonas reinhardtii. J Phys Chem B 109: 5903-5911PubMedGoogle Scholar
  61. Holzwarth AR, Müller MG, Niklas J and Lubitz W (2006a) Ultrafast transient absorption studies on Photosystem I reaction centers from Chlamydomonas reinhardtii. 2. Mutations around the P700 reaction center chlorophylls provide new insight into the nature of the primary electron donor. Biophys J 90: 552-565Google Scholar
  62. Holzwarth AR, Müller MG, Reus M, Nowaczyk M, Sander J and Rögner M (2006b) Kinetics and mechanism of electron transfer in intact Photosystem II and in the isolated reaction center: Pheophytin is the primary electron acceptor. Proc Natl Acad Sci USA 103: 6895-6900Google Scholar
  63. Hsu C-P, Fleming GR, Head-Gordon M and Head-Gordon T (2001) Excitation energy transfer in condensed media. J Chem Phys 114: 3065-3072Google Scholar
  64. Jang SJ, Newton MD and Silbey RJ (2004) Multichromophoric Förster resonance energy transfer. Phys Rev Lett 92: 218301-1-4.PubMedGoogle Scholar
  65. Jimenez R, van Mourik F, Yu JY and Fleming GR (1997) Threepulse photon echo measurements on LH1 and LH2 complexes of Rhodobacter sphaeroides: A nonlinear spectroscopic probe of energy transfer. J Phys Chem B 101:7350-7359.Google Scholar
  66. Joo T, Jia Y, Yu J-Y, Jonas DM and Fleming GR (1996) Dynamics in isolated bacterial light harvesting antenna (LH2) of Rhodobacter sphaeroides at room temperature. J Phys Chem 100: 2399-2409Google Scholar
  67. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krau± N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Å resolution. Nature 411: 909-917PubMedGoogle Scholar
  68. Kleima FJ, Wendling M, Hofmann E, Peterman EJG, van Grondelle R and van Amerongen H (2000) Peridinin chlorophyll a protein: Relating structure and steady-state spectroscopy. Biochemistry 39: 5184-5195PubMedGoogle Scholar
  69. Knapp E-W (1984) Lineshapes of molecular aggregates. Exchange narrowing and intersite correlation. Chem Phys 85: 73-82Google Scholar
  70. Knox RS and Spring BQ (2003) Dipole strengths in the chlorophylls. Photochem Photobiol 77: 497-501PubMedGoogle Scholar
  71. Konermann L, Gatzen G and Holzwarth AR (1997) Primary processes and structure of the Photosystem II reaction center. 5. Modeling of the fluorescence kinetics of the D1-D2-Cyt-b 559 complex at 77K. J Phys Chem B 101: 2933-2944Google Scholar
  72. Krauß N, Schubert W-D, Klukas O, Fromme P, Witt HT and Saenger W (1996) Photosystem I at 4Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nature Struct Biol 3: 965-973PubMedGoogle Scholar
  73. Krueger BP, Scholes GD and Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab inito transition density cube method. J Phys Chem B 102: 5378-5386Google Scholar
  74. Krueger BP, Scholes GD, Yu J-Y, Fleming GR (1999) The light harvesting process in purple bacteria. Acta Phys Pol A 95: 63-83Google Scholar
  75. Kubo R and Toyozawa Y (1955) Application of the method of generating function to radiative and non-radiative transitions of a trapped electron in a crystal. Prog Theor Phys 13: 160-182Google Scholar
  76. Kühlbrandt W (1994) Structure and function of the plant lightharvesting complex, LHC-II. Curr Opinion Struct Biol 4: 519-528Google Scholar
  77. Kühn O, Renger T, May V, Voigt J, Pullerits T and Sundström V (1999) Exciton-vibrational coupling in photosynthetic antenna complexes: Theory meets experiment. Trends Photochem Photobiol 4: 213-256Google Scholar
  78. Lax M (1952) The Franck-Condon Principle and its application to crystals. J Chem Phys 20: 1752-1760Google Scholar
  79. Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X and Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428: 287-292PubMedGoogle Scholar
  80. Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2005a) Towards complete cofactor arrangement in the 3.0 Å resolution structure of Photosystem II. Nature 438: 1040-1044Google Scholar
  81. Loll B, Kern J, Zouni A, Saenger W, Biesiadka J and Irrgang K-D (2005b) The antenna system of Photosystem II from Thermosynechococcus elongatus at 3.2 Å resolution. Photosynth Res 86: 175-184Google Scholar
  82. Madjet ME, Abdurahman A and Renger T (2006) Intermolecular coulomb couplings from ab initio electrostatic potentials: Application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. J Phys Chem B 110: 17268-17281PubMedGoogle Scholar
  83. Mancal T and Fleming GR (2004) Probing electronic coupling in excitonically coupled heterodimer complexes by two-color three-pulse photon echoes. J Chem Phys 121: 10556-10565PubMedGoogle Scholar
  84. Matthews BW and Fenna RE (1980) Structure of a green bacteriochlorophyll protein. Acc Chem Res 13: 309-317Google Scholar
  85. May V and Kühn O (2000) Charge and Energy Transfer Dynamics in Molecular Systems: A theoretical introduction. John Wiley & Sons, BerlinGoogle Scholar
  86. Miloslavina Y, Szczepaniak M, Müller MG, Sander J, Nowaczyk M, Rögner M and Holzwarth AR (2006). Charge separation ki-netics in intact Photosystem II core particles is trap-limited. A picosecond fluorescence study. Biochemistry 45: 2436-2442.PubMedGoogle Scholar
  87. Mukai K, Abe S and Sumi H (1999) Theory of rapid excitation-energy transfer from B800 to optically-forbidden exciton states of B850 in the antenna system LH2 of photosynthetic purple bacteria. J Phys Chem B 103: 6096-6102Google Scholar
  88. Müller MG, Hucke M, Reus M and Holzwarth AR (1996a) An-nihilation processes in the isolated D1-D2-Cyt-b 559 reaction center complex of Photosystem II. An intensity dependence study of femtosecond transient absorption. J Phys Chem 100: 9537-9544Google Scholar
  89. Müller MG, Hucke M, Reus M and Holzwarth AR (1996b) Primary processes and structure of the Photosystem II reaction center: IV. Low intensity femtosecond transient absorption spectra of D1-D2 reaction centers. J Phys Chem 100: 9527-9536Google Scholar
  90. Müller MG, Niklas J, Lubitz W and Holzwarth AR (2003) Ultrafast transient absorption studies on Photosystem I reaction center from Chlamydomonas reinhardtii. 1. A new interpretation of the energy trapping and early electron transfer steps in Photosystem I. Biophys J 85: 3899-3922PubMedGoogle Scholar
  91. Novoderezhkin V, Wendling M and van Grondelle R (2003) Intraand interband transfers in the B800-B850 antenna of Rhodospirillum molischianum: Redfield theory modeling of polarized pump-probe kinetics. J Phys Chem B 107: 11534-11548Google Scholar
  92. Novoderezhkin VI, Palacios MA, van Amerongen H and van Grondelle R (2004a) Energy-transfer dynamics in the LHCII complex of higher plants: Modified Redfield approach. J Phys Chem B 108: 10363-10375Google Scholar
  93. Novoderezhkin VI, Yakovlev AG, van Grondelle R and Shuvalov VA (2004b) Coherent nuclear and electronic dynamics in primary charge separation in photosynthetic reaction centers: A Redfield theory approach. J Phys Chem B 108: 7445-7457Google Scholar
  94. Novoderezhkin VI, Andrizhiyevskaya EG, Dekker JP and van Grondelle R (2005a) Pathways and timescales of primary charge separation in the Photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption. Biophys J 89: 1464-1481Google Scholar
  95. Novoderezhkin VI, Palacios MA, van Amerongen H and van Grondelle R (2005b) Excitation dynamics in the LHCII com-plex of higher plants: Modeling based on the 2.72 Å crystal structure. J Phys Chem B 109: 10493-10504Google Scholar
  96. Ohta K, Yang M and Fleming GR (2001) Ultrafast exciton dynamics of J-aggregates in room temperature solution studied by third-order nonlinear optical spectroscopy and numerical simulation based on exciton theory. J Chem Phys 115: 7609-7621Google Scholar
  97. Olson JM (2004) The FMO protein. Photosynth Res 80: 181-187PubMedGoogle Scholar
  98. Pearlstein RM (1991a) Theoretical interpretation of antenna spectra. In: Scheer H (ed) Chlorophylls, pp 1047-1078. CRC Press, New YorkGoogle Scholar
  99. Pearlstein RM (1991b) Theory of the optical-spectra of the bacte-riochlorophyll a antenna protein trimer from Prosthecochlori aestuarii. Photosynth Res 31: 213-226Google Scholar
  100. Pearlstein RM and Hemenger RP (1978) Bacteriochlorophyll electronic transition moment directions in bacteriochlorophyll a-protein. Proc Natl Acad Sci USA 75: 4920-4924PubMedGoogle Scholar
  101. Peterman EJG, Pullerits T, van Grondelle R and van Amerongen H (1997) Electron-phonon coupling and vibronic fine structure of light-harvesting complex II of green plants: Temperature dependent absorption and high-resolution fluorescence spec-troscopy. J Phys Chem B 101: 4448-4457Google Scholar
  102. Pieper J, Voigt J, Renger G and Small GJ (1999) Analysis of phonon structure in line-narrowed optical spectra. Chem Phys Lett 310: 296-302Google Scholar
  103. Prall BS, Parkinson DY, Fleming GR, Yang M and Ishikawa N (2004) Two-dimensional optical spectroscopy: Two-color pho-ton echoes of electronically coupled phthalocyanine dimers. J Chem Phys 120: 2537-2540PubMedGoogle Scholar
  104. Prokhorenko VI and Holzwarth AR (2000) Primary processes and structure of the Photosystem II reaction center: A photon echo study. J Phys Chem B 104: 11563-11578Google Scholar
  105. Prokhorenko VI, Steensgaard DB and Holzwarth AR (2000) Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. Biophys J 79: 2105-2120PubMedGoogle Scholar
  106. Prokhorenko VI, Holzwarth AR, Nowak FR and Aartsma TJ (2002) Growing-in optical coherence in the FMO antenna complexes. J Phys Chem B 106: 9923-9933Google Scholar
  107. Prokhorenko VI, Steensgaard DB and Holzwarth AR (2003) Exciton theory for supramolecular chlorosomal aggregates. 1. Aggregate size dependence of the linear spectra. Biophys J 85: 3173-3186PubMedGoogle Scholar
  108. Pullerits T and Sundström V (2005) From biological to synthetic light-harvesting materials — the elementary steps. In: Andrews DL (ed) Energy Harvesting Materials. World Scientific Publishing Company, SingaporeGoogle Scholar
  109. Pullerits T, Monshouwer R, van Mourik F and van Grondelle R (1995) Temperature dependence of electron-vibronic spectra of photosynthetic systems. Computer simulations and comparison with experiment. Chem Phys 194: 395-407Google Scholar
  110. Raszewski G, Saenger W and Renger T (2005) Theory of optical spectra of Photosystem II reaction centers: Location of the triplet state and the identity of the primary electron donor. Biophys J 88: 986-998PubMedGoogle Scholar
  111. Renger T (2004) Theory of optical spectra involving charge transfer states: Dynamic localization predicts a temperature dependent optical band shift. Phys Rev Lett 93: 188101PubMedGoogle Scholar
  112. Renger G and Holzwarth AR (2005) Primary electron transfer. In: Wydrzynski TJ and Satoh K (eds) Photosystem II: The LightDriven Water: Plastoquinone Oxidoreductase (Advances in Photosynthesis and Respiration, Vol 22), pp 139-175. Springer, DordrechtGoogle Scholar
  113. Renger T and Marcus RA (2002a) On the relation of protein dynamics and exciton relaxation in pigment-protein complexes: An estimation of the spectral density and a theory for the calculation of optical spectra. J Chem Phys 116: 9997-10019Google Scholar
  114. Renger T and Marcus RA (2002b) Photophysical properties of PS-2 reaction centers and a discrepancy in exciton relaxation times. J Phys Chem B 106: 1809-1819Google Scholar
  115. Renger T and Marcus RA (2003) Variable-range hopping electron transfer through disordered bridge states: Application to DNA. J Phys Chem A 107: 8404-8419Google Scholar
  116. Renger T and May V (1997) Theory of multiple exciton effects in the photosynthetic antenna complex LHC-II. J Phys Chem B 101: 7232-7240Google Scholar
  117. Renger T and May V (1998) Ultrafast exciton motion in photosynthetic antenna systems: The FMO-complex. J Phys Chem A 102: 4381-4391Google Scholar
  118. Renger T and May V (2000) Simulations of frequency-domain spectra: Structure-function relationships in photosynthetic pigment-protein complexes. Phys Rev Lett 84: 5228-5231PubMedGoogle Scholar
  119. Renger T, Voigt J, May V and Kühn O (1996) Dissipative exciton motion in a chlorophyll a/b dimer of the light harvesting complex of Photosystem II: Simulation of pump- probe spectra. J Phys Chem 100:15654-15662Google Scholar
  120. Renger T, May V and Kühn O (2001) Ultrafast excitation energy transfer dynamics in photosynthetic pigment-protein complexes. Phys Reports Rev Sect Phys Lett 343: 137-254Google Scholar
  121. Renger T, Trostmann I, Theiss C, Madjet ME, Richter M, Paulsen H, Eichler HJ, Knorr A and Renger G (2007) Refinement of a structural model of a pigment-protein complex by accurate optical lineshape theory and experiments. J Phys Chem B, in pressGoogle Scholar
  122. Rutkauskas D, Novoderezhkin V, Cogdell RJ and van Grondelle R (2004) Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050. Biochemistry 43: 4431-4438PubMedGoogle Scholar
  123. Rutkauskas D, Novoderezhkin V, Cogdell RJ and van Grondelle R (2005) Fluorescence spectroscopy of conformational changes of single LH2 complexes. Biophys J 88: 422-435PubMedGoogle Scholar
  124. Salverda JM, Vengris M, Krueger BP, Scholes GD, Czamoleski AR, Novoderezhkin V, van Amerongen H and van Grondelle R (2003) Energy transfer in light-harvesting complexes LHCII and CP29 of spinach studied with three pulse echo peak shift and transient grating. Biophys J 84: 450-465PubMedGoogle Scholar
  125. Sauer K, Cogdell RJ, Prince SM, Freer A, Isaacs NW and Scheer H (1996) Structure-based calculations of the optical spectra of the LH2 bacteriochlorophyll-protein complex from Rhodopseudomonas acidophila. Photochem Photobiol 64: 564-576Google Scholar
  126. Scholes GD and Fleming GR (2000) On the mechanism of light harvesting in photosynthetic purple bacteria: B800 to B850 energy transfer. J Phys Chem B 104: 1854-1868Google Scholar
  127. Scholes GD, Jordanides XJ and Fleming GR (2001) Adapting the Förster theory of energy transfer for modeling dynamics in aggregated molecular assemblies. J Phys Chem B 105: 1640-1651Google Scholar
  128. Sener MK, Lu DY, Park SH, Schulten K and Fromme P (2002a) Spectral disorder and excitation transfer dynamics in cyanobacterial Photosystem I. Biophys J 82: 292AGoogle Scholar
  129. Sener MK, Lu DY, Ritz T, Park S, Fromme P and Schulten K (2002b) Robustness and optimality of light harvesting in cyanobacterial Photosystem I. J Phys Chem B 106: 7948-7960Google Scholar
  130. Sener MK, Park S, Lu DY, Damjanovic A, Ritz T, Fromme P and Schulten K (2004) Excitation migration in trimeric cyanobacterial Photosystem I. J Chem Phys 120: 11183-11195PubMedGoogle Scholar
  131. Standfuss J, van Scheltinga ACT, Lamborghini M and Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5Å resolution. EMBO J 24: 919-928PubMedGoogle Scholar
  132. Sumi H (1999) Theory on rates of excitation-energy transfer between molecular aggregates through distributed transition dipoles with application to the antenna system in bacterial photosynthesis. J Phys Chem B 103: 252-260Google Scholar
  133. Sundström V (2000) Light in elementary biological reactions. Progr Quant Electr 24: 187-238Google Scholar
  134. van Amerongen H, Valkunas L and van Grondelle R (2000) Photosynthetic Excitons. World Scientific, SingaporeGoogle Scholar
  135. van Grondelle R and Novoderezhkin V (2001) Dynamics of excitation energy transfer in the LH1 and LH2 light-harvest-ing complexes of photosynthetic bacteria. Biochemistry 40: 15057-15068PubMedGoogle Scholar
  136. van Grondelle R and Novoderezhkin VI (2006) Energy transfer in photosynthesis: experimental insights and quantitative models. Phys Chem Chem Phys 8: 793-807PubMedGoogle Scholar
  137. van Mourik F, Groot M-L, van Grondelle R, Dekker JP and van Stokkum IHM (2004) Global and target analysis of fluorescence measurements on Photosystem 2 reaction centers upon red excitation. Phys Chem Chem Phys 6: 4820-4824Google Scholar
  138. van Rossum B-J, Steensgaard DB, Mulder FM, Boender G-J, Schaffner K, Holzwarth AR and de Groot HJM (2001) A refined model of chlorosomal antennae of Chlorobium tepidum from proton chemical shift constraints obtained with High-Field 2-D and 3-D MAS NMR dipolar correlation spectroscopy. Biochemistry 40: 1587-1595PubMedGoogle Scholar
  139. Vaswani HM, Stenger J, Fromme P, Fleming GR (2006) One- and two-color photon echo peak shift studies of Photosystem I. J Phys Chem B 110: 26303-26312PubMedGoogle Scholar
  140. Visser HM, Groot M-L, van Mourik F, van Stokkum IHM, Dekker JP and van Grondelle R (1995) Subpicosecond transient absorption difference spectroscopy on the reaction center of Photosystem II: Radical pair formation at 77 K. J Phys Chem 99: 15304-15309Google Scholar
  141. Vulto SIE, de Baat MA, Louwe RJW, Permentier HP, Neef T, Miller M, van Amerongen H and Aartsma TJ (1998a) Exciton simulations of optical spectra of the FMO complex from the green sulfur bacterium Chlorobium tepidum at 6 K. J Phys Chem B 102: 9577-9582Google Scholar
  142. Vulto SIE, Neerken S, Louwe RJW, de Baat MA, Amesz J and Aartsma TJ (1998b) Excited-state structure and dynamics in FMO antenna complexes from photosynthetic green sulfur bacteria. J Phys Chem B 102: 10630-10635Google Scholar
  143. Vulto SIE, de Baat MA, Neerken S, Nowak FR, van Amerongen H, Amesz J, Aartsma TJ (1999) Excited state dynamics in FMO antenna complexes from photosynthetic green sulfur bacteria: A kinetic model. J Phys Chem B 103: 8153-8161Google Scholar
  144. Warshel A and Parson WW (1987) Spectroscopic properties of photosynthetic reaction centers. 1. Theory. J Am Chem Soc 109: 6143-6152Google Scholar
  145. Weiss C (1972) The π electron structure and absorption spectra of chlorophylls in solution. J Mol Spectrosc 44: 37-80Google Scholar
  146. Wendling M, Pullerits T, Przyjalgowski MA, Vulto SIE, Aartsma TJ, van Grondelle R and van Amerongen H (2000) Electronvibrational coupling in the Fenna-Matthews-Olson complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements. J Phys Chem B 104: 5825-5831Google Scholar
  147. Wendling M, Przyjalgowski MA, Gulen D, Vulto SIE, Aartsma TJ, van Grondelle R and van Amerongen H (2002) The quantitative relationship between structure and polarized spectroscopy in the FMO complex of Prosthecochloris aestuarii: Refining experiments and simulations. Photosynth Res 71: 99-123PubMedGoogle Scholar
  148. Yang M and Fleming GR (2002) Influence of phonons on exciton transfer dynamics: Comparison of the Redfield, Förster, and modified Redfield equations. Chem Phys 275: 355-372Google Scholar
  149. Yang MN and Fleming GR (2003) Construction of kinetic domains in energy trapping processes and application to a photosynthetic light harvesting complex. J Chem Phys 119: 5614-5622Google Scholar
  150. Yang M, Damjanovic A, Vaswani HM and Fleming GR (2003) Energy transfer in Photosystem I of cyanobacteria Synechococcus elongatus: Model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys J 85: 140-158PubMedGoogle Scholar
  151. Zhang WM, Meier T, Chernyak V, Mukamel S (1998) Excitonmigration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes. J Chem Phys 108: 7763-7774Google Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Thomas Renger
    • 1
  • Alfred R. Holzwarth
    • 2
  1. 1.Institut für Chemie und BiochemieFreie Universität BerlinGermany
  2. 2.Max-Planck-Institut für Bioanorganische ChemieGermany

Personalised recommendations