Skip to main content

Calculations of Electrostatic Energies in Proteins Using Microscopic, Semimicroscopic and Macroscopic Models and Free-Energy Perturbation Approaches

  • Chapter
Book cover Biophysical Techniques in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 26))

This chapter discusses computer models for evaluating electrostatic interactions in proteins, with emphasis on calculations of the free energies of electron-transfer states in photosynthetic bacterial reaction centers. We describe the microscopic Protein Dipoles Langevin Dipoles (PDLD) method, semimicroscopic approaches including the Poisson-Boltzmann, PDLD/S and Generalized Born models, a macroscopic model with a homogeneous dielectric medium, and microscopic free-energy-perturbation methods based on molecular dynamics simulations. We also describe the use of molecular dynamics simulations to obtain free energy surfaces of the reactant and product states as functions of the reaction coordinate for electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alagona G, Ghio C and Kollman P (1986) Monte Carlo simulation studies of the solvation of ions. 1. Acetate ion and methylammonium cation. J Am Chem Soc 108: 185-191

    Google Scholar 

  • Alden RG, Parson WW, Chu ZT and Warshel A (1995) Calculations of electrostatic energies in photosynthetic reaction centers. J Am Chem Soc 117: 12284-12298

    Google Scholar 

  • Alden RG, Parson WW, Chu ZT and Warshel A (1996) Macroscopic and microscopic estimates of the energetics of charge separation in bacterial reaction centers. In: Michel-Beyerle ME (ed) The Reaction Center of Photosynthetic Bacteria: Structure and Dynamics, pp 105-116. Springer Verlag, Berlin

    Google Scholar 

  • Alexov EG and Gunner M (1997) Incorporating protein conformational flexibility into the calculation of the pH-dependent protein properties. Biophys J 72: 2075-2093

    PubMed  Google Scholar 

  • Alexov EG and Gunner M (1999) Calculated protein and proton to QB in bacterial photosynthetic reaction centers. Biochemistry 38: 8253-8270

    PubMed  Google Scholar 

  • Alexov E, Miksovska J, Baciou L, Schiffer M, Hanson DK, Sebban P and Gunner MR (2000) Modeling the effects of mutations on the free energy of the first electron transfer from − to QB in photosynthetic reaction centers. Biochemistry 39: 5940-5952

    PubMed  Google Scholar 

  • Allen MP and Tildesley DJ (1987) Computer Simulations of Lipids. Oxford University Press Oxford

    Google Scholar 

  • Antosiewicz J, McCammon JA and Gilson MK (1994) Prediction of pH-dependent properties of proteins. J Mol Biol 238: 415-436

    PubMed  Google Scholar 

  • Ã…qvist J (1996) Calculation of absolute binding free energies for charged ligands and effects of long-range electrostatic interactions. J Comput Chem 17: 1587-1597

    Google Scholar 

  • Ã…qvist J and Hansson T (1996) On the validity of electrostatic linear response in polar solvents. J Phys Chem 100: 9512-9521

    Google Scholar 

  • Baker NA, Sept D, Simpson J, Holst MJ and McCammon JA (2001) Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc Natl Acad Sci USA 98: 10037-10041

    PubMed  Google Scholar 

  • Bashford D and Case DA (2000) Generalized Born models of macromolecular solvation effects. Annu Rev Phys Chem 51: 129-152

    PubMed  Google Scholar 

  • Beck DA and Daggett V (2004) Methods for molecular dynamics simulations of protein folding/unfolding in solution. Methods 34: 112-120

    PubMed  Google Scholar 

  • Beck DAC, Armen RS and Daggett V (2005) Cutoff size need not strongly influence molecular dynamics results for solvated polypeptides. Biochemistry 44: 609-616

    PubMed  Google Scholar 

  • Belch AC, Berkowitz M and McCammon JA (1986) Solvation structure of a sodium chloride ion-pair in water. J Am Chem Soc 108: 1755-1761

    Google Scholar 

  • Beveridge DL and DiCapua FM (1989) Free energy via molecular simulation: Applications to chemical and biomolecular systems. Annu Rev Biophys Biophys Chem 18: 431-492

    PubMed  Google Scholar 

  • Blomberg MRA, Siegbahn PEM and Babcock GT (1998) Modeling electron transfer in biochemistry: A quantum chemical study of charge separation in Rhodobacter sphaeroides and Photosystem II. J Am Chem Soc 120: 8812-8824

    Google Scholar 

  • Blumberger J and Sprik M (2006) Quantum versus classical electron transfer energy as reaction coordinate for the aqueous Ru2+/Ru3+ redox reaction. Theor Chem Acc 115: 113-126

    Google Scholar 

  • Bogusz S, Cheatham III TE and Brooks BR (1998) Removal of pressure and free energy artifacts in charged periodic systems via net charge corrections to the Ewald potential. J Chem Phys 108: 7070-7084

    Google Scholar 

  • Born M (1920) Volumen und Hydratationswärme der Ionen. Z Phys 1: 45-47

    Google Scholar 

  • Brooks III CL and Karplus M (1983) Deformable stochastic boundaries in molecular dynamics. J Chem Phys 79: 6312-6325

    Google Scholar 

  • Buono GS, Figueirido F and Levy RM (1994) Intrinsic pKa’s of ionizable residues in proteins: An explicit solvent calculation for lysozyme. Proteins Struct Funct Gen 20: 85-97

    Google Scholar 

  • Burkert U and Allinger NL (1982) Molecular Mechanics. American Chemical Society, Washington DC

    Google Scholar 

  • Ceccarelli M and Marchi M (2003a) Simulation and modeling of the Rhodobacter sphaeroides bacterial reaction center: Structure and interactions. J Phys Chem B 107: 1423-1431

    Google Scholar 

  • Ceccarelli M and Marchi M (2003b) Simulation and modeling of the Rhodobacter sphaeroides bacterial reaction center II: Primary charge separation. J Phys Chem B 107: 5630-5641

    Google Scholar 

  • Chandrasekhar J, Spellmeyer DC and Jorgensen WL (1984) Energy component analysis for dilute aqueous solutions of Li+, Na+, F−and Cl− ions. J Am Chem Soc 106: 903-910

    Google Scholar 

  • Constanciel R and Contreras R (1984) Self-consistent field theory of solvent effects representation by continuum models: introduction of desolvation contribution. Theor Chim Acta 65: 1-11

    Google Scholar 

  • Creighton S, Hwang JK, Warshel A, Parson WW and Norris J (1988) Simulating the dynamics of the primary charge separation process in bacterial photosynthesis. Biochemistry 27: 774-781

    Google Scholar 

  • Darden T, York DM and Pedersen L (1993) Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems. J Chem Phys 98: 10089-10092

    Google Scholar 

  • Darden T, Toukmaji A and Pedersen LG (1997) Long-range electrostatic effects in biomolecular simulations. J Chim Phys Physico-Chimie Biol 94: 1346-1364

    Google Scholar 

  • Darden T, Perera L, Li LP and Pedersen L (1999) New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm. Struct Fold & Design 7: R55-R60

    Google Scholar 

  • de Leeuw SW, Perram JW and Smith ER (1986) Computer simulation of the static dielectric constant of systems with permanent electric dipoles. Annu Rev Phys Chem 37: 245-270

    Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H and Pedersen L (1995) A smooth particle mesh Ewald method. J Chem Phys 103: 8577-8593

    Google Scholar 

  • Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys 64: 253-287

    Google Scholar 

  • Fan H, Mark AE, Zhu J and Honig B (2005) Comparative study of generalized Born models: Protein dynamics. Proc Natl Acad Sci USA 102: 6760-6764

    PubMed  Google Scholar 

  • Figueirido F, DelBuono GS and Levy RM (1997) On the finite size corrections to the free energy of ionic hydration. J Phys Chem B 101: 5622-5623

    Google Scholar 

  • Forsyth WR and Robertson AD (2000) Insensitivity of perturbed carboxyl pKa values in the ovomucoid third domain to charge replacement at a neighboring residue. Biochemistry 39: 8067-8072

    PubMed  Google Scholar 

  • Gallicchio E and Levy RM (2004) AGBNP: An analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling. J Comput Chem 25: 479-499

    PubMed  Google Scholar 

  • Georgescu RE, Alexov EG and Gunner M (2002) Combining conformational flexibility and continuum electrostatics for calculating pKas in proteins. Biophys J 1731-1748

    Google Scholar 

  • Ghosh A, Rapp CS and Friesner RA (1998) Generalized Born model based on a surface integral formulation. J Phys Chem B 102: 10983-10990

    Google Scholar 

  • Gilson M and Honig B (1988) Calculation of the total electrostatic energy of a macromolecular system. Solvation energies, binding energies and conformational analysis. Proteins Struct Funct Gen 4: 7-18

    Google Scholar 

  • Gilson M, Rashin A, Fine R and Honig B (1985) On the calculation of electrostatic interactions in proteins. J Mol Biol 503-516

    Google Scholar 

  • Gilson M, Sharp KA and Honig B (1987) Calculating the electrostatic potential of molecules in solution: method and error assessment. J Comput Chem 9: 327-335

    Google Scholar 

  • Guenot J and Kollman P (1992) Molecular dynamics studies of a DNA-binding protein. 2. An evaluation of implicit and explicit solvent models for the molecular-dynamics simulation of the Escherichia coli Trp repressor. Protein Sci 1: 1185-11205

    PubMed  Google Scholar 

  • Guenot J and Kollman P (1993) Conformational and energetic effects of truncating nonbonded interactions in an aqueous protein dynamics simulation. J Comput Chem 14: 295-311

    Google Scholar 

  • Gunner M and Alexov EG (2000) A pragmatic approach to structure based calculation of coupled proton and electron transfer in proteins. Biochim Biophys Acta 1485: 63-87

    Google Scholar 

  • Gunner MR and Honig B (1991) Electrostatic control of midpoint potentials in the cytochrome subunit of the Rhodopseudomonas viridis reaction center. Proc Natl Acad Sci USA 88: 9151-9155

    PubMed  Google Scholar 

  • Gunner M, Nicholls A and Honig B (1996) Electrostatic potentials in Rhodopseudomonas viridis reaction centers: Implications for the driving force and directionality of electron transfer. J Phys Chem 100: 4277-4291

    Google Scholar 

  • Gunner M, Alexov EG, Torres E and Lipovaca S (1997) The importance of the protein in controling the electrochemistry of heme metalloproteins: Methods of calculation and analysis. J Biol Inorg Chem 2: 126-134

    Google Scholar 

  • Haffa ALM, Lin S, Williams JC, Bowen BP, Taguchi AKW, Allen JP and Woodbury NW (2004) Controlling the pathway of photosynthetic charge separation in bacterial reaction centers. J Phys Chem B 108: 4-7

    Google Scholar 

  • Hasegawa J and Nakatsuji H (1998) Mechanism and unidirectionality of the electron transfer in the photosynthetic reaction center of Rhodopseudomonas viridis: SAC-CI theoretical study. J Phys Chem B 102: 10420-10430

    Google Scholar 

  • Hawkins GD, Cramer CJ and Truhlar DG (1996) Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J Phys Chem 100: 19824-19839

    Google Scholar 

  • Heinzinger K (1985) Computer simulations of aqueous electrolyte solutions. Physica B 131: 196-216

    Google Scholar 

  • Hendrickson JB (1961) Molecular geometry. I. Machine computation of the common rings. J Am Chem Soc 83: 4537-4547

    Google Scholar 

  • Hingerty BE, Richie RH, Ferrell TL and Turner JE (1985) Dielectric effects in biopolymers. The theory of ionic saturation revisited. Biopolymers 24: 427-439

    Google Scholar 

  • Honig B and Nicholls A (1995) Classical electrostatics in biology and chemistry. Science 268: 1144-1149

    PubMed  Google Scholar 

  • Hughes JM, Hutter MC and Hush NS (2001) Modeling the bacterial photosynthetic reaction center. 4. The structural, electrochemical, and hydrogen-bonding properties of 22 mutants of Rhodobacter sphaeroides. J Am Chem Soc 123: 8550-8563

    PubMed  Google Scholar 

  • Hummer G and Szabo A (1996) Calculation of free-energy differences from computer simulations of initial and final states. J Chem Phys 105: 2004-2010

    Google Scholar 

  • Hummer G, Pratt LR and Garcia AE (1996) Free energy of ionic hydration. J Phys Chem 100: 1206-1215

    Google Scholar 

  • Hummer G, Pratt LR, Garcia AE, Berne BJ and Rick SW (1997) Electrostatic potentials and free energies of solvation of polar and charged molecules. J Phys Chem B 101: 3017-3020

    Google Scholar 

  • Hunenberger PH and McCammon JA (1999) Ewald artifacts in computer simulations of ionic solvation and ion-ion interaction: A continuum electrostatics study. J Chem Phys 110: 1856-1872

    Google Scholar 

  • Hwang J-K and Warshel A (1987) Microscopic examination of free energy relationships for electron transfer in polar solvents. J Am Chem Soc 109: 715-720

    Google Scholar 

  • Hwang J-K, King G, Creighton S and Warshel A (1988) Simulation of free energy relationships and dynamics of SN2 reactions in aqueous solution. J Am Chem Soc 110: 5297-5311

    Google Scholar 

  • Impey RW, Madden PA and McDonald IR (1983) Hydration and mobility of ions in solution. J Phys Chem 87: 5071-5083

    Google Scholar 

  • Ivashin N, Källenbring B, Larsson S and Hansson Ö (1998) Charge separation in photosynthetic reaction centers. J Phys Chem B 102: 5017-5022

    Google Scholar 

  • Johnson ET and Parson WW (2002) Electrostatic interactions in an integral membrane protein. Biochemistry 41: 6483-6494

    PubMed  Google Scholar 

  • Johnson ET, Müh F, Nabedryk E, Williams JC, Allen JP, Lubitz W, Breton J and Parson WW (2002) Electronic and vibronic coupling of the special pair of bacteriochlorophylls in photosynthetic reaction centers from wild-type and mutant strains of Rhodobacter sphaeroides. J Phys Chem B 106: 11859-11869

    Google Scholar 

  • Kastenholz MA and Hunenberger PH (2004) Influence of artificial periodicity and ionic strength in molecular dynamics simulations of charged biomolecules employing lattice-sum methods. J Phys Chem B 108: 774-788

    Google Scholar 

  • Katilius E, Babendure JL, Lin S and Woodbury NW (2004) Electron transfer dynamics in Rhodobacter sphaeroides reaction center mutants with a modified ligand for the monomer bacteriochlorophyll on the active side. Photosynth Res 81: 165-180

    Google Scholar 

  • Kato M and Warshel A (2005) Through the channel and around the channel: Validating and comparing microscopic approaches for the evaluation of free energy profiles for ion penetration through ion channels. J Phys Chem B 109: 19516-19522

    PubMed  Google Scholar 

  • Kim J, Mao J and Gunner M (2005) Are acidic and basic groups in buried proteins predicted to be ionized? J Mol Biol 348: 1283-1298

    PubMed  Google Scholar 

  • King G and Warshel A (1989) A surface constrained all-atom solvent model for effective simulations of polar solutions. J Chem Phys 91: 3647-3661

    Google Scholar 

  • King G and Warshel A (1990) Investigation of the free energy functions for electron transfer reactions. J Chem Phys 93: 8682-8692

    Google Scholar 

  • King G, Lee FS and Warshel A (1991) Microscopic simulations of macroscopic dielectric constants of solvated proteins. J Chem Phys 95: 4366-4377

    Google Scholar 

  • Kirmaier C, He C and Holten D (2001) Manipulating the direction of electron transfer in the bacterial reaction center by swapping Phe for Tyr near BChlM (L181) and Tyr for Phe near BChlL (M208). Biochem 40: 12132-12139

    Google Scholar 

  • Kirmaier C, Laible PD, Czarnecki K, Hata AN, Hanson DK, Bocian DF and Holten D (2002) Comparison of M-side electron transfer in Rb. sphaeroides and Rb. capsulatus reaction centers. J Phys Chem B 106: 1799-1808

    Google Scholar 

  • Kirmaier C, Laible PD, Hanson DK and Holten D (2004) B-side − in reaction centers from the F(L181)Y/Y(M208)F mutant of Rhodobacter capsulatus. J Phys Chem B 108: 11827-11832

    Google Scholar 

  • Klein BJ and Pack GR (1983) Calculations of the spatial distribution of charge density in the environment of DNA. Biopolymers 22: 2331-2352

    PubMed  Google Scholar 

  • Kollman P (1993) Free energy calculations: Applications to chemical and biochemical phenomena. Chem Rev 93: 2395-2417

    Google Scholar 

  • Kollman P (2000) Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc Chem Res 33: 889-897

    PubMed  Google Scholar 

  • Kozaki T, Morihashi K and Kikuchi O (1988) An MNDO effective charge model study of the solvent effect. The internal rotation about partial double bonds and the nitrogen inversion in amine. J Mol Struct 168: 265-277

    Google Scholar 

  • Kozaki T, Morihashi K and Kikuchi O (1989) MNDO effective charge model study of solvent effect on the potential energy surface of the SN2 reaction. J Am Chem Soc 111: 1547-1552

    Google Scholar 

  • Kubo R, Toda M and Hashitsume N (1985) Statistical Physics II: Nonequilibrium Statistical Mechanics. Springer-Verlag, Berlin

    Google Scholar 

  • Kuharski RA, Bader JS, Chandler D, Sprik M, Klein ML and Impey RW (1988) Molecular model for aqueous ferrous-ferric electron transfer. J Chem Phys 89: 3248-3257

    Google Scholar 

  • Kuwajima S and Warshel A (1988) The extended Ewald method: A general treatment of long-range electrostatic interactions in microscopic simulations. J Chem Phys 89: 3751-3759

    Google Scholar 

  • Lancaster CRD, Michel H, Honig B and Gunner M (1996) Calculated coupling of electron and protein transfer in the photosynthetic reaction center of Rhodopseudomonas viridis. Biophys J 70: 2469-2492

    PubMed  Google Scholar 

  • Lee FS and Warshel A (1992) A local reaction field method for fast evaluation of long-range electrostatic interactions in molecular simulations. J Chem Phys 97: 31003-3107

    Google Scholar 

  • Lee FS, Chu ZT, Bolger MB and Warshel A (1992) Calculations of antibody-antigen interactions: microscopic and semi-microscopic evaluation of the free energies of binding of phosphorylcholine analogs to McPC603. Protein Eng 5: 215-228

    PubMed  Google Scholar 

  • Lee FS, Chu ZT and Warshel A (1993) Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the POLARIS and ENZYMIX programs. J Comput Chem 14: 161-185

    Google Scholar 

  • Levitt M and Lifson S (1969) Refinement of protein conformations using a macromolecular energy minimization procedure. J Mol Biol 46: 269-279

    PubMed  Google Scholar 

  • Levitt M, Hirshberg M, Sharon R and Daggett V (1995) Potential-energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput Phys Commun 91: 215-231

    Google Scholar 

  • Lifson S and Warshel A (1968) A consistent force field for calculation of conformations, vibrational spectra and enthalpies of cycloalkanes and n-alkane molecules. J Chem Phys 49: 5116-5129

    Google Scholar 

  • Lockhart DJ and Kim PS (1993) Electrostatic screening of charge and dipole interactions with the helix backbone. Science 260: 198-202

    PubMed  Google Scholar 

  • Madura JD, Briggs JM, Wade RC, Davis ME, Luty BA and McCammon JA (1995) Electrostatics and diffusion of molecules in solution: Simulations with the University of Houston Brownian Dynamics Program. Comp Phys Commun 91: 57-95

    Google Scholar 

  • Marchi M and Procacci P (1998) Coordinates scaling and multiple time step algorithms for simulation of solvated proteins in the NPT ensemble. J Chem Phys 109: 5194-5202

    Google Scholar 

  • Marchi M, Gehlen JN, Chandler D and Newton M (1993) Diabatic surfaces and the pathway for primary electron transfer in a photosynthetic reaction center. J Am Chem Soc 115: 4178-4190

    Google Scholar 

  • McClesky EW (2000) Ion channel selectivity using an electric stew. Biophys J 79: 1691-1692

    Google Scholar 

  • Mehler EL and Eichele G (1984) Electrostatic effects in wateraccessible regions of proteins. Biochemistry 23: 3887-3891

    Google Scholar 

  • Mehler EL and Guarnieri F (1998) A self-consistent, microenvironment modulated screened Coulomb potential approximation to calculate pH-dependent electrostatic fields in proteins. Biophys J 77: 3-22

    Google Scholar 

  • Mezei M and Beveridge DL (1981) Monte Carlo studies of the structure of dilute aqueous solutions of Li+, Na+, K+, F− and Cl−. J Chem Phys 74: 6902-6910

    Google Scholar 

  • Miertus S, Scrocco E and Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the provision of solvent effects. J Chem Phys 55: 117-129

    Google Scholar 

  • Muegge I, Apostolakis J, Ermler U, Fritzsch G, Lubitz W and Knapp EW (1996) Shift of the special pair redox properties: Electrostatic energy computations of mutants of the reaction center from Rhodobacter sphaeroides. Biochemistry 35: 8359-8370

    PubMed  Google Scholar 

  • Nichols A and Honig B (1991) A rapid finite-difference algorithm utilizing successive over-relaxation to solve the PoissonBoltzmann equation. J Comput Chem 12: 435-445

    Google Scholar 

  • Nielsen JE, Andersen KV, Honig B, Hooft RV, Klebe G, Vriend G and Wade RC (1999) Improving macromolecular electrostatics calculations. Protein Eng 12: 657-662

    PubMed  Google Scholar 

  • Onufriev A, Case DA and Bashford D (2002) The effective Born radii in the generalized Born approximation: The importance of being perfect. J Comput Chem 23: 1297-1304

    PubMed  Google Scholar 

  • Parson WW, Chu ZT and Warshel A (1990) Electrostatic control of charge separation in bacterial photosynthesis. Biochim Biophys Acta 1017: 251-272

    PubMed  Google Scholar 

  • Parson WW, Chu ZT and Warshel A (1998) Reorganization energy of the initial electron-transfer step in photosynthetic bacterial reaction centers. Biophys J 74: 182-191

    PubMed  Google Scholar 

  • Qiu D, Shenkin PS, Hollinger FP and Still WC (1997) The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate Born radii. J Phys Chem 101: 3005-3014

    Google Scholar 

  • Rabenstein B, Ullmann GM and Knapp E (1998) Calculation of protonation patterns in proteins with structural relaxation and molecular ensembles: Application to the photosynthetic reaction center. Eur Biophys J Biophys Lett 27: 626-637

    Google Scholar 

  • Rees DC (1980) Experimental evaluation of the effective dielectric constant of proteins. J Mol Biol 141: 323-326

    PubMed  Google Scholar 

  • Rocchia W, Alexov EG and Honig B (2001) Extending the applicability of the nonlinear Poisson-Boltzmann equation: Multiple dielectric constants and multivalent ions. J Phys Chem B 105: 6507-6514

    Google Scholar 

  • Rocchia W, Sridharan S, Nicholls A, Alexov EG, Chiabrera A and Honig B (2002) Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects. J Comput Chem 23: 128-137

    PubMed  Google Scholar 

  • Saito M (1992) Molecular dynamics simulations of proteins in water without the truncation of long-range Coulomb interactions. Mol Simul 8: 321-333

    Google Scholar 

  • Saito M (1994) Molecular dynamics simulations of proteins in solution: Artifacts caused by the cutoff approximation. J Chem Phys 101: 4055-4061

    Google Scholar 

  • Schaefer M and Karplus M (1996) A comprehensive analytical treatment of continuum electrostatics. J Phys Chem 100: 1578-1599

    Google Scholar 

  • Scherer POJ and Fischer SF (1989) Long-range electron transfer within the hexamer of the photosynthetic reaction center Rhodopseudomonas viridis. J Phys Chem 93: 1633-1637

    Google Scholar 

  • Scherer POJ, Scharnagl C and Fischer SF (1995) Symmetry breakage in electronic structure of the photosynthetic reaction center of Rhodopseudomonas viridis. Chem Phys 197: 333-341

    Google Scholar 

  • Schutz CN and Warshel A (2001) What are the dielectric ‘constants’ of proteins and how to validate electrostatic models. Proteins Struct Funct Gen 44: 400-417

    Google Scholar 

  • Sham YY and Warshel A (1998) The surface constrained all atom model provides size independent results in calculations of hydration free energies. J Chem Phys 109: 7940-7944

    Google Scholar 

  • Sham YY, Chu ZT and Warshel A (1997) Consistent calculations of pKa’s of ionizable residues in proteins: Semi-microscopic and macroscopic approaches. J Phys Chem B 101: 4458-4472

    Google Scholar 

  • Sham YY, Muegge I and Warshel A (1998) The effect of protein relaxation on charge-charge interactions and dielectric constants in proteins. Biophys J 74: 1744-1753

    PubMed  Google Scholar 

  • Sharp KA and Honig B (1990a) Electrostatic interactions in macromolecules: Theory and applications. Ann Rev Biophys Biophys Chem 19: 301-332

    Google Scholar 

  • Sharp KA and Honig B (1990b) Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation. J Phys Chem 94: 7684-7692

    Google Scholar 

  • Sitkoff D, Sharp KA and Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98: 1978-1988

    Google Scholar 

  • Steinbach PJ and Brooks BR (1994) New spherical-cutoff methods for long-range forces in macromolecular simulation. J Comput Chem 15: 667-683

    Google Scholar 

  • Still WC, Tempczyk A, Hawley RC and Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112: 6127-6129

    Google Scholar 

  • Tachiya M (1989) Relation between the electron transfer rate and the free energy change of reaction. J Phys Chem 93: 7050-7052

    Google Scholar 

  • Tanford C and Kirkwood JG (1957) Theory of protein titration curves. I. General equations for impenetrable spheres. J Am Chem Soc 79: 5333-5339

    Google Scholar 

  • Thompson MA, Zerner MC and Fajer J (1991) A theoretical examination of the electronic structure and spectroscopy of the photosynthetic reaction center from Rhodopseudomonas viridis. J Am Chem Soc 113: 8210-8215

    Google Scholar 

  • Ullmann GM and Knapp E (1999) Electrostatic models for computing protonation and redox equilibria in proteins. Eur Biophys J Biophys Lett 28: 533-551

    Google Scholar 

  • Valleau JP and Torrie GM (1977) A guide to Monte Carlo for statistical mechanics. 2. Byways. In: Bern BJ (ed) Modern Theoretical Chemistry, Vol 5, pp 169-194. Plenum Press, New York

    Google Scholar 

  • Voigt P and Knapp E (2003) Tuning heme redox potentials in the cytochrome c subunit of photosynthetic reaction centers. J Biol Chem 278: 51993-52001

    PubMed  Google Scholar 

  • Warshel A (1979) Calculations of chemical processes in solutions. J Phys Chem 83: 1640-1650

    Google Scholar 

  • Warshel A (1981) Calculations of enzymic reactions: calculations of pKa, proton transfer reactions, and general acid catalysis reactions in enzymes. Biochemistry 20: 3167-3177

    PubMed  Google Scholar 

  • Warshel A (1982) Dynamics of reactions in polar solvents. Semiclassical trajectory studies of electron-transfer and protontransfer reactions. J Phys Chem 86: 2218-2224

    Google Scholar 

  • Warshel A (1987) What about protein polarity? Nature 333: 15-18

    Google Scholar 

  • Warshel A (1991) Computer Modeling of Chemical Reactions in Enzymes and Solutions. John Wiley & Sons, New York

    Google Scholar 

  • Warshel A and Lappicirella VA (1981) Calculations of ground and excited-state potential surfaces for conjugated heteroatomic molecules. J Am Chem Soc 103: 4664-4673

    Google Scholar 

  • Warshel A and Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103: 227-249

    PubMed  Google Scholar 

  • Warshel A and Papazyan A (1998) Electrostatic effects in macromolecules: Fundamental concepts and practical modeling. Curr Opin Struct Biol 8: 211-217

    PubMed  Google Scholar 

  • Warshel A and Parson WW (1991) Computer simulations of electron transfer reactions in solution and photosynthetic reaction centers. Annu Rev Phys Chem 42: 279-309

    PubMed  Google Scholar 

  • Warshel A and Parson WW (2001) Dynamics of biochemical and biophysical reactions: Insight from computer simulations. Q Rev Biophys 34: 563-670

    PubMed  Google Scholar 

  • Warshel A and Russell ST (1984) Calculations of electrostatic interactions in biological systems and in solutions. Q Rev Biophys 17: 283-421

    PubMed  Google Scholar 

  • Warshel A, Russell ST and Churg AK (1984) Macroscopic models for studies of electrostatic interactions in proteins: limitations and applicability. Proc Natl Acad Sci USA 81: 4785-4789

    PubMed  Google Scholar 

  • Warshel A, Naray-Szabo G, Sussman F and Hwang J-K (1989) How do serine proteases really work? Biochemistry 28: 3629-3673

    PubMed  Google Scholar 

  • Warshel A, Chu ZT and Parson WW (1994) On the energetics of the primary electron-transfer process in bacterial reaction centers. J Photochem Photobiol A: Chem 82: 123-128

    Google Scholar 

  • Warshel A, Papazyan A and Muegge I (1997) Microscopic and semimacroscopic redox calculations: What can and cannot be learned from continuum models. J Biol Inorg Chem 2: 143-152

    Google Scholar 

  • Warwicker J and Watson HC (1982) Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J Mol Biol 157: 671-679

    PubMed  Google Scholar 

  • Weber W, Hünenberger PH and McCammon JA (2000) Molecular dynamics simulations of a polyalanine octapeptide under Ewald boundary conditions: Influence of artificial periodicity on peptide conformation. J Phys Chem B 104: 3668-3675

    Google Scholar 

  • Wong CF and McCammon JA (1986) Dynamics and design of enzymes and inhibitors. J Am Chem Soc 108: 3830-3832

    Google Scholar 

  • York DM, Darden T and Pedersen LG (1993) The effect of long-range electrostatic interactions in simulations of macromolecular crystals. A comparison of the Ewald and truncated list methods. J Chem Phys 99: 8345-8348

    Google Scholar 

  • Zhou HX and Szabo A (1995) Microscopic formulation of the Marcus theory of electron transfer. J Chem Phys 103: 3481-3494

    Google Scholar 

  • Zhou Z and Swenson RP (1995) Electrostatic effects of surface acidic amino acid residues on oxidation-reduction potentials of the flavodoxin from Desulfovibrio vulgaris (Hildenborough). Biochemistry 34: 3183-3192

    PubMed  Google Scholar 

  • Zhu J, Alexov EG and Honig B (2005) Comparative study of generalized Born models: Born radii and peptide folding. J Phys Chem B 109: 3008-3022

    PubMed  Google Scholar 

  • Zwanzig RW (1954) High-temperature equation of state by a perturbation method. I. Nonpolar gases. J Chem Phys 22: 1420-1426

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Parson, W.W., Warshel, A. (2008). Calculations of Electrostatic Energies in Proteins Using Microscopic, Semimicroscopic and Macroscopic Models and Free-Energy Perturbation Approaches. In: Aartsma, T.J., Matysik, J. (eds) Biophysical Techniques in Photosynthesis. Advances in Photosynthesis and Respiration, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8250-4_20

Download citation

Publish with us

Policies and ethics