Advertisement

Photochemically Induced Dynamic Nuclear Polarization (Photo-CIDNP) Magic-Angle Spinning NMR

  • Eugenio Daviso
  • Gunnar Jeschke
  • Jörg Matysik
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 26)

Photochemically induced dynamic nuclear polarization (photo-CIDNP) is non-Boltzmann nuclear magnetization which can be observed by NMR spectroscopy as enhanced absorptive (positive) or emissive (negative) signals. In solids, photo-CIDNP has been observed since its discovery in 1994 in various photosynthetic reaction centers (RCs) by magic angle spinning (MAS) solid-state NMR. The photo-CIDNP effect in solids can be explained by a combination of several mechanisms, e.g., three-spin mixing (TSM) and differential decay (DD), which transfer the electron spin polarization obtained in the initial singlet radical pair to nuclei via hyperfi ne interaction. Therefore, photo-CIDNP MAS NMR allows to study the electronic structure of the electronic ground-state after the photocycle (chemical shifts) and of the radical pair (NMR intensities), providing insight into the photochemical machinery of RCs at the atomic scale. Recently, nuclear polarizations up to a factor of 10,000 above the Boltzmann equilibrium have been observed, opening new experimental possibilities for solid-state NMR.

Keywords

Radical Pair Magic Angle Spin Photosynthetic Reaction Center Nuclear Spin Polarization Triplet Radical Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alia, Roy E, Gast P, van Gorkom HJ, de Groot HJM, Jeschke G and Matysik J (2004) Photochemically induced dynamic nuclear polarization in Photosystem I of plants observed by 13C magic-angle spinning NMR. J Am Chem Soc 126: 12819-12826CrossRefPubMedGoogle Scholar
  2. Bak M, Rasmussen JT and Nielsen NC (2000) SIMPSON: A general simulation program for solid-state NMR spectroscopy. J Magn Reson 147: 296-330CrossRefPubMedGoogle Scholar
  3. Barber J (2003) Photosystem II: The engine of life. Q Rev Biophys 36: 71-89CrossRefPubMedGoogle Scholar
  4. Bargon J and Fischer H (1967) Kernresonanz-Emissionslinien während rascher Radikalreaktionen. 2. Chemisch induzierte dynamische Kernpolarization. Z Naturforsch A 22: 1556-1562Google Scholar
  5. Bargon J, Fischer H and Johnson U (1967) Kernresonanz-Emissionslinien während rascher Radikalreaktionen. 1. Aufnahmeverfahren und Beispiele. Z Naturforsch A 22A: 1551-1555Google Scholar
  6. Bennett AE, Rienstra CM, Auger M, Lakshmi KV and Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103: 6951-6958CrossRefGoogle Scholar
  7. Blankenship RE, Schaafsma TJ and Parson WW (1977) Magnetic-field effects on radical pair intermediates in bacterial photosynthesis. Biochim Biophys Acta 461: 297-305CrossRefPubMedGoogle Scholar
  8. Blankenship RE, Babcock GT, Warden JT and Sauer K (1975) Observation of a new EPR transient in chloroplasts that may reflect electron-donor to Photosystem II at room-temperature. FEBS Lett 51: 287-293CrossRefPubMedGoogle Scholar
  9. Boender GJ and Vega S (1998) Phase sensitive detection of 2D homonuclear correlation spectra in MAS NMR. J Magn Reson 133: 281-285CrossRefPubMedGoogle Scholar
  10. Boxer SG, Chidsey CED and Roelofs MG (1983) Magnetic-field effects on reaction yields in the solid-state — an example from photosynthetic reaction centers. Ann Rev Phys Chem 34: 389-417CrossRefGoogle Scholar
  11. Chidsey CED, Takiff L, Goldstein RA and Boxer SG (1985) Effect of magnetic-fields on the triplet-state lifetime in photosynthetic reaction centers — evidence for thermal repopulation of the initial radical pair. Proc Natl Acad Sci USA 82: 6850-6854CrossRefPubMedGoogle Scholar
  12. Closs GL and Closs LE (1969) Induced dynamic nuclear spin polarization in photoreductions of benzophenone by toluene and ethylbenzene. J Am Chem Soc 91: 4549-4550CrossRefGoogle Scholar
  13. Daviso E, Prakash S, Alia, Gast P, de Groot HJM, Jeschke G and Matysik J (2005) The effect of temperature on photo-CIDNP in a bacterial RC. In: van der Est A and Bruce A (eds) Photosynthesis: Fundamental Aspects to Global Perspectives, Proceedings of the 13th International Congress on Photosynthesis, pp 134-135. Allen Press, MontréalGoogle Scholar
  14. Diller A, Alia, Roy E, Gast P, van Gorkom HJ, Zaanen J, de Groot HJM, Glaubitz C and Matysik J (2005) Photo-CIDNP solid-state NMR on photosystems I and II: What makes P680 special? Photosynth Res 84: 303-308CrossRefPubMedGoogle Scholar
  15. Diller A, Roy E, Gast P, van Gorkom JH, de Groot HJM, Glaubitz C, Jeschke G, Matysik J and Alia A (2007) 15N-photo-CIDNP MAS NMR analysis of the electron donor of Photosystem II. Proc Natl Acad Sci USA 104: 12767-12771CrossRefPubMedGoogle Scholar
  16. Goez M (1997) Photochemically induced dynamic nuclear polarization. In: Neckers DC, Volman DH and von Bünau G (eds) Advances in Photochemistry, Vol 23, pp 63-163. Wiley, New YorkCrossRefGoogle Scholar
  17. Goldstein RA and Boxer SG (1987) Effects of nuclear-spin polarization on reaction dynamics in photosynthetic bacterial reaction centers. Biophys J 51: 937-946CrossRefPubMedGoogle Scholar
  18. Gullion T and Vega S (1992) A simple magic angle spinning NMR experiment for the dephasing of rotational echoes of dipolar coupled homonuclear spin pairs. Chem Phys Lett 194: 423-428CrossRefGoogle Scholar
  19. Haberkorn R and Michel-Beyerle ME (1979) Mechanism of magnetic-field effects in bacterial photosynthesis. Biophys J 26: 489-498CrossRefPubMedGoogle Scholar
  20. Haberkorn R, Michel-Beyerle ME and Marcus RA (1979) Spinexchange and electron-transfer rates in bacterial photosynthesis. Proc Natl Acad Sci USA 76: 4185-4188CrossRefPubMedGoogle Scholar
  21. Hoff AJ (1984) Electron-spin polarization of photosynthetic reactants. Q Rev Biophys 17: 153-282CrossRefPubMedGoogle Scholar
  22. Hoff AJ and Deisenhofer J (1997) Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria. Phys Rep 287: 2-247CrossRefGoogle Scholar
  23. Hoff AJ, Gast P and Romijn JC (1977a) Time-resolved ESR and chemically-induced dynamic electron polarization of primary reaction in a reaction center particle of Rhodopseudomonas sphaeroides wild-type at low-temperature. FEBS Lett 73: 185-190CrossRefGoogle Scholar
  24. Hoff AJ, Rademaker H, van Grondelle R and Duysens LNM (1977b) Magnetic-field dependence of yield of triplet-state in reaction centers of photosynthetic bacteria. Biochim Biophys Acta 460: 547-554CrossRefGoogle Scholar
  25. Hore PJ and Broadhurst RW (1993) Photo-CIDNP of biopolymers. Progr Nuc Magn Reson Spectrosc 25: 345-402CrossRefGoogle Scholar
  26. Jeschke G (1997) Electron-electron-nuclear three-spin mixing in spin-correlated radical pairs. J Chem Phys 106: 10072-10086CrossRefGoogle Scholar
  27. Jeschke G (1998) A new mechanism for chemically induced dynamic nuclear polarization in the solid state. J Am Chem Soc 120: 4425-4429CrossRefGoogle Scholar
  28. Jeschke G and Matysik J (2003) A reassessment of the origin of photochemically induced dynamic nuclear polarization effects in solids. Chem Phys 294: 239-255CrossRefGoogle Scholar
  29. Kaptein R and Oosterhoff JL (1969) Chemically induced dynamic nuclear polarization II: Relation with anomalous ESR spectra. Chem Phys Lett 4: 195-197CrossRefGoogle Scholar
  30. Lendzian F, Bittl R and Lubitz W (1998) Pulsed ENDOR of the photoexcited triplet states of bacteriochlorophyll a and of the primary donor P-865 in reaction centers of Rhodobacter sphaeroides R26. Photosynth Res 55: 189-197CrossRefGoogle Scholar
  31. Matysik J, Alia, Gast P, van Gorkom HJ, Hoff AJ and de Groot HJM (2000) Photochemically induced nuclear spin polarization in reaction centers of Photosystem II observed by 13C-solid-state NMR reveals a strongly asymmetric electronic structure of the P680+ primary donor chlorophyll. Proc Nat Acad Sci USA 97: 9865-9870CrossRefPubMedGoogle Scholar
  32. Matysik J, Alia, Gast P, Lugtenburg J, Hoff AJ and De Groot HJM (2001a) Photochemically induced dynamic nuclear polarization in bacterial photosynthetic reaction centres observed by 13C solid state NMR. In: Kiihne SR and de Groot HJM (eds) Perspectives on Solid State NMR in Biology, pp 215-225. Kluwer Academic Press, DordrechtGoogle Scholar
  33. Matysik J, Schulten E, Alia, Gast P, Raap J, Lugtenburg J, Hoff AJ and de Groot HJM, (2001b) Photo-CIDNP 13C magic angle spinning NMR on bacterial reaction centres: Exploring the electronic structure of the special pair and its surroundings. Biol Chem 382: 1271-1276CrossRefGoogle Scholar
  34. McDermott A, Zysmilich MG and Polenova T (1998) Solid state NMR studies of photoinduced polarization in photosynthetic reaction centers: Mechanism and simulations. Sol State Nuc Magn Reson 11: 21-47CrossRefGoogle Scholar
  35. Polenova T and McDermott AE (1999) A coherent mixing mechanism explains the photoinduced nuclear polarization in photosynthetic reaction centers. J Phys Chem B 103: 535-548CrossRefGoogle Scholar
  36. Prakash S (2006) Photo-CIDNP studies on reaction centres of Rhodobacter sphaeroides. PhD thesis, Leiden University (https://openaccess.leidenuniv.nl/dspace/handle/1887/4555)
  37. Prakash S, Alia, Gast P, Jeschke G, de Groot HJM and Matysik J (2003) Photochemically induced dynamic nuclear polarization in entire bacterial photosynthetic units observed by 13C magic-angle spinning NMR. J Molec Struct 661: 625-633CrossRefGoogle Scholar
  38. Prakash S, Alia, Gast P, de Groot HJM, Jeschke G and Matysik J 2005a) Build-up kinetics of light induced nuclear polarization observed in RCs of Rhodobacter sphaeroides. In: A van der Est and A Bruce (eds), Photosynthesis: Fundamental Aspects to Global Perspectives, Proceedings of the 13th International Congress on Photosynthesis, pp 301-302. Allen Press, MontréalGoogle Scholar
  39. Prakash S, Alia, Gast P, de Groot HJM, Jeschke G, and Matysik J (2005b) Magnetic field dependence of photo-CIDNP MAS NMR on photosynthetic reaction centers of Rhodobacter sphaeroides WT. J Am Chem Soc 127: 14290-14298CrossRefGoogle Scholar
  40. Prakash S, Tong SH, Alia, Gast P, de Groot HJM, Jeschke G and Matysik J (2005c) 15N photo-CIDNP MAS NMR on reaction centers of Rhodobacter sphaeroides. In: A van der Est and A Bruce, Photosynthesis: Fundamental aspects to global perspectives, Proceedings of the 13th International Congress on Photosynthesis, pp 236-237. Allen Press, MontréalGoogle Scholar
  41. Prakash S, Alia, Gast P, de Groot HJM, Matysik J, Jeschke G (2006) Photo-CIDNP MAS NMR in intact cells of Rhodobacter sphaeroides R26: Molecular and atomic resolution at nanomolar concentration. J Am Chem Soc 128: 12794-12799CrossRefPubMedGoogle Scholar
  42. Robyr P, Tomaselli M, Straka J, Grobpisano C, Suter UW, Meier BH and Ernst RR (1995) Rf-driven and proton-driven NMR polarization transfer for investigating local order — An application to solid polymers. Mol Phys 84: 995-1020CrossRefGoogle Scholar
  43. Roy E, Alia, Gast P, van Gorkom H, de Groot HJM, Jeschke G and Matysik J (2007) Photochemically induced dynamic nuclear polarisation in the reaction center of the green sulphur bacterium Chlorobium tepidum observed by 13C MAS NMR. Biochim Biophys Acta 1767: 610-615CrossRefPubMedGoogle Scholar
  44. Schulten EAM, Matysik J, Alia, Kiihne S, Raap J, Lugtenburg J, Gast P, Hoff AJ and de Groot HJM (2002) C-13 MAS NMR and photo-CIDNP reveal a pronounced asymmetry in the electronic ground state of the special pair of Rhodobacter sphaeroides reaction centers. Biochemistry 41: 8708-8717CrossRefPubMedGoogle Scholar
  45. Stoll S (2003) Spectral simulation in solid-state EPR. Ph.D. thesis, ETH ZürichGoogle Scholar
  46. Ward HR and Lawler RG (1967) Nuclear magnetic resonance emission and enhanced absorption in rapid organometallic reactions. J Am Chem Soc 89: 5518-5519CrossRefGoogle Scholar
  47. Webber AN and Lubitz W (2001) P700: The primary electron donor of Photosystem I. Biochim Biophys Acta 1507: 61-79CrossRefPubMedGoogle Scholar
  48. Werner HJ, Schulten K and Weller A (1978) Electron-transfer and spin exchange contributing to magnetic-field dependence of primary photo-chemical reaction of bacterial photosynthesis. Biochim Biophys Acta 502: 255-268.CrossRefPubMedGoogle Scholar
  49. Witt HT (2004) Steps on the way to building blocks, topologies, crystals and X-ray structural analysis of Photosystems I and II of water oxidising photosynthesis. Photosynth Res 80: 85-107CrossRefGoogle Scholar
  50. Zysmilich MG and McDermott A (1994) Photochemically induced dynamic nuclear-polarization in the solid-state 15N spectra of reaction centers from photosynthetic bacteria Rhodobacter sphaeroides R26. J Am Chem Soc 116: 8362-8363CrossRefGoogle Scholar
  51. Zysmilich MG and McDermott A (1996) Photochemically induced nuclear spin polarization in bacterial photosynthetic reaction centers: Assignments of the 15N SSNMR spectra. J Am Chem Soc 118: 5867-5873CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Eugenio Daviso
    • 1
  • Gunnar Jeschke
    • 2
  • Jörg Matysik
    • 1
  1. 1.Leiden Institute of ChemistryLeiden UniversityNetherlands
  2. 2.Physikalische ChemieUniversität KonstanzGermany

Personalised recommendations