Magic Angle Spinning (MAS) NMR for Structure Determination in Photosynthesis

  • Huub J. M. de Groot
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 26)

Using solid-state nuclear magnetic resonance (NMR), structure and its underlying details, such as the rigidity, order, dynamics or electrostatic heterogeneity of the large membrane protein complexes involved in photosynthesis can be resolved at specifi c spots with a resolution well beyond the capabilities of X-ray and other diffraction methods. Following a brief explanation of the theoretical background of the magic angle spinning NMR methods, applications are presented involving specifi c and extensive labeling methods. The specifi c labeling methods provide access to the structure of the large reaction center protein complexes involved in photosynthesis and can be used to study and resolve details of the structure such as rigidity or dynamics of cofactors, H-bonding of the quinones, ground state charge effects on histidines and ligation characteristics of the Ca2+ binding site in Photosystem II. In this way spots of physical frustration in the spatial, protonic and electronic structure of the ground state that are important for the biological mechanisms can be identifi ed. In addition, the first de novo structure determination of systems comprised of smaller building blocks was made for the chlorosomes in the green photosynthetic bacterium Chlorobium tepidum. When the MAS data for the chlorosomes are compared with data collected from the isolated labeled BChl c aggregated in n-hexane, it can be shown that the major component of the MAS signals in the chlorosomes is from aggregated BChl c and a bilayer tube model for the structure was obtained from MAS NMR correlation spectroscopy and molecular modeling. In addition molecular mechanisms steering the suprastructure were identifi ed by model studies. They provide a view on evolutionary selection and may be of interest for future design of artifi cial photosynthesis structures. Finally it is shown how pattern labeling of the LH2 protein leads to sequence specifi c assignments in a strategy that can be used to resolve structure of small membrane proteins and complexes.


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy Magic Angle Spin Photosynthetic Reaction Center Nuclear Magnetic Resonance Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alia, MatysikJ, Soede-Huijbregts C, Baldus M, Raap J, Lugtenburg J, Gast P, van Gorkom HJ, Hoff AJ and de Groot HJM (2001) Correlation spectroscopy of the histidine residues in Light-Harvesting Complex II from photosynthetic bacteria reveals partial internal charge transfer in the B850/His complex. J Am Chem Soc 123: 4803-4809CrossRefPubMedGoogle Scholar
  2. Alia, Matysik J, de Boer I, Gast P, van Gorkom HJ, de Groot HJM (2004) Heteronuclear 2D (1H-13C) MAS NMR resolves the electronic structure of coordinated histidines in light-harvesting complex II: Assessment of charge transfer and electronic delocalization effect. J Biomol NMR 28: 157-64CrossRefPubMedGoogle Scholar
  3. Andrew ER, Bradbury A and Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182: 1659-1659CrossRefGoogle Scholar
  4. Balaban TS, Holzwarth AR, Schaffner K, Boender GJ and de Groot HJM (1995) CP/MAS 13C-NMR Dipolar Correlation Spectroscopy of 13C enriched chlorosomes and isolated bacteriochlorophyll c aggregates of Chlorobium tepidum: The self-organisation of pigments is the main structural feature of chlorosomes. Biochemistry 34: 15259-15266CrossRefPubMedGoogle Scholar
  5. Bennett AE, Ok JH, Griffin RG and Vega S (1992) Chemical-shift correlation spectroscopy in rotating solids — radio frequencydriven dipolar recoupling and longitudinal exchange. J Chem Phys 96: 8624-8627CrossRefGoogle Scholar
  6. Bennett AE, Rienstra CM, Auger M, Lakshmi KV and Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103: 6951-6958CrossRefGoogle Scholar
  7. Bielecki A, Kolbert AC and Levitt MH (1989) Frequency-switched pulse sequences — homonuclear decoupling and dilute spin NMR in solids. Chem Phys Lett 155: 341-346CrossRefGoogle Scholar
  8. Blankenship RE, Olson JM and Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria (Advances in Photosynthesis and Respiration, Vol 2), pp 399-435. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  9. Boender GJ, Balaban TS, Holzwarth AR, Schaffner K, Raap J, Prytulla S, Oschkinat H and de Groot HJM (1995a) Comparison of the stacking of chlorophylls in chlorosomes versus aggregates of bacteriochlorophyll c and chlorophyll a using 2D MAS NMR spectroscopy. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol I, pp 347-350. Kluwer Academic Publishers, DordrechtGoogle Scholar
  10. Boender GJ, Raap J, Prytulla S, Oschkinat H and de Groot HJM (1995b) MAS NMR structure refinement of uniformly 13C enriched chlorophyll-a/water aggregates with 2D dipolar correlation spectroscopy. Chem Phys Lett 237: 502-508CrossRefGoogle Scholar
  11. Boers RB, Gast P, Hoff AJ, de Groot HJM and Lugtenburg J (2002) Synthesis and spectroscopic characterization of [5-13C]- and [6-13C]-ubiquinone-10 for studies of bacterial photosynthetic reaction centers. Eur J Org Chem 1: 189-202CrossRefGoogle Scholar
  12. Castellani F, van Rossum BJ, Diehl A, Schubert M, Rehbein K and Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420: 98-102CrossRefPubMedGoogle Scholar
  13. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13: 289-302CrossRefPubMedGoogle Scholar
  14. de Boer I (2004) Modeling of chlorosomal light-harvesting antennae: Molecular control of self-assembly of chlorins resolved by MAS NMR. PhD thesis. Leiden UniversityGoogle Scholar
  15. de Boer I and de Groot HJM (2005) Magic Angle Spinning NMR of the chlorosomes. In: Grimm B, Porra R, Rüdiger W, Scheer H (eds) Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (Advances in Photosynthesis and Respirations, Vol 25). Kluwer Academic Publishers, DordrechtGoogle Scholar
  16. de Boer I, Bosman L, Raap J, Oschkinat H and de Groot HJM (2002). 2D 13C-13C MAS NMR correlation spectroscopy with mixing by true 1H spin diffusion reveals long-range intermolecular distance restraints in ultra high magnetic field. J Magn Reson 157: 286-291CrossRefPubMedGoogle Scholar
  17. de Boer I, Matysik J, Amakawa M, Jakai S, Tamiaki H, Holzwarth AR and de Groot HJM (2003) MAS NMR Structure of a microcrystalline Cd-bacteriochlorophyll d analog. J Am Chem Soc 125: 13374-13375CrossRefPubMedGoogle Scholar
  18. de Boer I, Matysik J, Erkelens K, Sasaki S, Miyatake T, Yagai H, Tamiaki H, Holzwarth AR and de Groot HJM (2004) MAS NMR structures of aggregated Cadmium chlorins reveal molecular control of self-assembly of chlorosomal bacteriochlorophylls. J Phys Chem B 108: 16556-16566CrossRefGoogle Scholar
  19. de Boer I, Matysik J, Sasaki S, Miyatake T, Yagai S, Tamiaki H, Holzwarth AR and de Groot HJM (2005) Self-organization of BChl c in chlorosomes studied by MAS NMR of aggregated Cd-chlorins. In: van der Est A and Bruce D (Eds) Photosynthesis: Fundamental Aspects to Global Perspectives, pp 121-122. Alliance Communications Group, LawrenceGoogle Scholar
  20. de Groot HJM, Raap J, Winkel C, Hoff AJ and Lugtenburg J (1990) Magic Angle Spinning 13C NMR with atomic resolution of a photosynthetic reaction center enriched in [4´-13C] tyrosine. Chem Phys Lett 169: 307-310CrossRefGoogle Scholar
  21. de Groot HJM, Gebhard R, van der Hoef K, Violette CA, Hoff AJ, Frank HA, Lugtenburg J (1992) 13C Magic Angle Spinning NMR evidence for a 15,15´-cis configuration of the spheroidene chromophore in the Rhodobacter sphaeroides photosynthetic reaction center. Biochemistry 31: 12446-12450CrossRefPubMedGoogle Scholar
  22. Duer MJ (2004) Introduction to Solid State NMR Spectroscopy. Blackwell, OxfordGoogle Scholar
  23. Egorova-Zachernyuk TA, van Rossum BJ, Boender GJ, Franken E, Ashurst J, Raap J, Gast P, Hoff AJ, Oschkinat H and de Groot HJM (1997) Characterization of pheophytin ground states in Rhodobacter sphaeroides R26 photosynthetic reaction centers, from multispin pheophytin enrichment and 2D 13C MAS MR dipolar correlation spectroscopy. Biochemistry 36: 7513-7519CrossRefPubMedGoogle Scholar
  24. Ernst RR, Bodenhausen G and Wokaun A (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon Press, OxfordGoogle Scholar
  25. Farchaus JW, Wachtveitl J, Mathis P and Oesterhelt D (1993) Tyrosine 162 of the photosynthetic reaction center L-subunit plays a critical role in the cytochrome c 2 mediated rereduction of the photooxidized bacteriochlorophyll dimer in Rhodobacter sphaeroides. 1. Site-directed mutagenesis and initial characterization. Biochemistry 32: 10885-10893CrossRefPubMedGoogle Scholar
  26. Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831-1838CrossRefPubMedGoogle Scholar
  27. Fischer MR, de Groot HJM, Raap J, Winkel C, Hoff AJ and Lugtenburg J (1992) 13C Magic Angle Spinning NMR study of the light-induced and temperature-dependent changes in Rhodobacter sphaeroides R26 reaction centers enriched in [4´-13C] tyrosine. Biochemistry 31: 11038-11049CrossRefPubMedGoogle Scholar
  28. Garcia-Viloca M, Gao J, Karplus M and Truhlar DG (2004) How enzymes work: Analysis by modern rate theory and computer simulations. Science 303: 186-195CrossRefPubMedGoogle Scholar
  29. Goward GR, Sebastiani D, Schnell I, Spiess HW, Kim HD and Ishida H (2003) Benzoxazine oligomers: Evidence for a helical structure from solid-state NMR spectroscopy and DFT-based dynamics and chemical shift calculations. J Am Chem Soc 125: 5792-5800CrossRefPubMedGoogle Scholar
  30. Hartmann SR and Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128: 2042-2053CrossRefGoogle Scholar
  31. Holzwarth AR and Schaffner K (1994) On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria — a molecular study. Photosynth Res 41: 225-233CrossRefGoogle Scholar
  32. Ivancich A, Artz K, Williams JC, Allen JP and Mattioli TA (1998) Effects of hydrogen bonds on the redox potential and electronic structure of the bacterial primary electron donor. Biochemistry 37: 11812-11820CrossRefPubMedGoogle Scholar
  33. Kiihne S and de Groot HJM (eds) (2001) Perspectives on Solid State NMR in Biology. Kluwer Academic Publishers, DordrechtGoogle Scholar
  34. Lee M and Goldburg WI (1965) Nuclear-magnetic-resonance line narrowing by a rotating rf field. Phys Rev A 140: 1261-1271CrossRefGoogle Scholar
  35. Luca S, Fillipov D, van Boom J, Oschkinat H, de Groot HJM and Baldus M (2001) Secondary chemical shifts in immobilized peptides and proteins: A qualitative basis for structure refinement under magic angle spinning. J Biomol NMR: 20:325-331CrossRefPubMedGoogle Scholar
  36. Matysik J, Alia, Nachtegaal G, van Gorkom HJ, Hoff AJ and de Groot HJM (2000) Exploring the calcium binding site in photosystem II membranes by solid state 113Cd-NMR. Biochemistry 39: 6751-6755CrossRefPubMedGoogle Scholar
  37. Möltgen H, Kleinermanns K, Jesorka A, Schaffner K and Holzwarth AR (2002) Self-assembly of [Et,Et]-bacteriochlorophyll c(F) on highly oriented pyrolytic graphite revealed by scanning tunneling microscopy. Photochem Photobiol 75: 619-626CrossRefPubMedGoogle Scholar
  38. Mulder FM, Heinen W, van Duin M, Lugtenburg J and de Groot HJM (1998) Spin diffusion with 13C selection and detection for the characterization of morphology in labeled polymer blends with MAS NMR. J Am Chem Soc 120: 12891-12894CrossRefGoogle Scholar
  39. Ladizhansky V, Vinogradov E, van Rossum BJ, de Groot HJM and Vega S (2003) Multiple-spin effects in fast magic angle spinning Lee-Goldburg cross-polarization experiments in uniformly labeled compounds. J Chem Phys 118: 5547-5557CrossRefGoogle Scholar
  40. Lowe IJ (1959) Free induction decays of rotating solids. Phys Rev Lett 2: 285-287CrossRefGoogle Scholar
  41. Luca S, Fillipov D, van Boom J, Oschkinat H, de Groot HJM and Baldus M (2001) Secondary chemical shifts in immobilized peptides and proteins: A qualitative basis for structure refinement under magic angle spinning. J Biomol NMR 20: 325-331CrossRefPubMedGoogle Scholar
  42. Nozawa T, Ohtomo K, Suzuki M, Nakagawa H, Shikama Y, Konami H and Wang ZY (1994) Structures of chlorosomes and aggregated BChl c in Chlorobium tepidum from solid state high resolution CP/MAS 13C NMR. Photosynth Res 41: 211-223CrossRefGoogle Scholar
  43. Pauling L (1946) Molecular architecture and biological reactions. Chem Eng News 24: 1375-1377Google Scholar
  44. Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F and Tycko R (2002) A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99: 16742-1674CrossRefPubMedGoogle Scholar
  45. Prokhorenko VI, Holzwarth AR, Nowak FR and Aartsma TJ (2002) Growing-in of optical coherence in the FMO antenna complexes. J Phys Chem B 106: 5761-5768CrossRefGoogle Scholar
  46. Rienstra CM, Tucker-Kellogg L, Jaroniec CP, Hohwy M, Reif B, McMahon MT, Tidor B, Lozano-Perez T and Griffin RG (2002) De novo determination of peptide structure with solid-state magic-angle spinning NMR spectroscopy. Proc Natl Acad Sci USA 99: 10260-10265CrossRefPubMedGoogle Scholar
  47. Rose ME (1967) Elementary Theory of Angular Momentum. Wiley, New YorkGoogle Scholar
  48. Safran SA, Pincus PA, Andelman D and MacKintosh FC (1991) Stability and phase behavior of mixed surfactant vesicles. Phys Rev A 43: 1071-1078CrossRefPubMedGoogle Scholar
  49. Samoson A, Tuherm T, Past J, Reinhold A, Anupõld T, Heinmaa I (2005) New horizons for magic angle spinning NMR. Topics in Curr Chem 246: 15-31Google Scholar
  50. Schulten EAM, van Rossum BJ, Ashurst J, Oschkinat H, Raap J, Lugtenburg J and de Groot HJM (1998) Two-dimensional (1H-13C) solid state MAS NMR of isotope labeled chlorophyll a. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol I, pp 453-456. Kluwer Academic Publishers, DordrechtGoogle Scholar
  51. Sham YY, Muegge I, and Warshel A (1998) The effect of protein relaxation on charge-charge interactions and dielectric constants of proteins. Biophys J 74: 1744-1753CrossRefPubMedGoogle Scholar
  52. Shochat S, Arlt T, Francke C, Gast P, van Noort PI, Otte SCM, Schelvis HPM, Schmidt S, Vijgenboom E, Vrieze J, Zinth W and Hoff AJ (1994) Spectroscopic characterization of reaction centers of the (M)Y210W mutant of the photosynthetic bacterium Rhodobacter sphaeroides. Photosynth Res 40: 55-66CrossRefGoogle Scholar
  53. Shochat S, Gast P, Hoff AJ, Boender GJ, van Leeuwen S, van Liemt WBS, Vijgeboom E, Raap J, Lugtenburg J and de Groot HJM (1995) 13C MAS NMR evidence for a homogeneously ordered environment of tyrosine M210 in reaction centres of Rhodobacter sphaeroides. Spectrochim Acta A 51: 135-144CrossRefGoogle Scholar
  54. Schmidt-Rohr K and Spiess HW (1996) Multidimensional Solid State NMR and Polymers. Academic Press, LondonGoogle Scholar
  55. Umetsu U, Matysik J, Hollander JG, Wang ZY, Adshiri Tada F, Nozawa T and de Groot HJM (2004) Magic-angle spinning nuclear magnetic resonance under ultrahigh field reveals two forms of intermolecular interaction within CH2Cl2-treated (31R)-type bacteriochlorophyll c solid aggregate. J Phys Chem B 108: 2726-2734CrossRefGoogle Scholar
  56. van Gammeren A, Hulsbergen FB, Erkelens K and de Groot HJM (2004a) Synthetic analogues of the histidine-chlorophyll complex: a NMR study to mimic structural features of the photosynthetic reaction center and the light-harvesting complex. J Biol Inorg Chem 9: 109-117CrossRefGoogle Scholar
  57. van Gammeren A, Hulsbergen FB, Hollander J, de Groot HJM (2004b) Biosynthetic site-specific 13C labeling of the lightharvesting 2 protein complex: a model for solid state NMR structure determination of transmembrane proteins. J Biomol NMR 30: 267-274CrossRefPubMedGoogle Scholar
  58. van Gammeren A, Buda F, Hulsbergen FB, Kiihne S, Hollander JG, Egorova-Zachernyuk TA, Fraser NJ, Cogdell RJ and de Groot HJM (2005a) Selective chemical shift assignment of both B800 and B850 bacteriochlorophylls of uniformly [13C, 15N] labeled light-harvesting complexes from Rhodopseudomonas acidophila strain 10050 by solid state NMR at ultra-high magnetic field. J Am Chem Soc 127: 3213-3219CrossRefGoogle Scholar
  59. van Gammeren AJ, Hulsbergen FB, Hollander JG, de Groot HJM (2005b) Residual backbone and side-chain 13C and 15N resonance assignments of the intrinsic transmembrane light-harvesting 2 protein complex by solid state Magic Angle Spinning NMR spectroscopy. J Biomol NMR 31: 279-293CrossRefGoogle Scholar
  60. van Liemt W, Boender GJ, Gast P, Hoff AJ, Lugtenburg J and de Groot HJM (1995) 13C Magic Angle Spinning NMR characterization of the functionally asymmetric QA binding in Rhodobacter sphaeroides R26 photosynthetic reaction centers using site-specific 13C-labeled ubiquinone-10. Biochemistry 34: 10229-10236CrossRefPubMedGoogle Scholar
  61. van Rossum BJ (2000) Structure refinement of photosynthetic components with multidimensional MAS NMR dipolar correlation spectroscopy. PhD thesis, Leiden University, LeidenGoogle Scholar
  62. van Rossum BJ, van Liemt WBS, Boender GJ, Gast P, Hoff AJ, Lugtenburg J and de Groot HJM (1995) 13C MAS NMR relaxation study of the QA binding in Rhodobacter sphaeroides-R26 reaction centers. In: Mathis P (ed) Photosynthesis: from Light to Biosphere, Vol 1, pp 899-902. Kluwer Academic Publishers, DordrechtGoogle Scholar
  63. van Rossum BJ, Boender GJ and de Groot, HJM (1996) High field for enhanced proton resolution in high speed CP/MAS heteronuclear 1H-13C dipolar correlation spectroscopy. J Magn Reson A120: 274-277Google Scholar
  64. van Rossum BJ, Förster H and de Groot HJM (1997a) High-field and high-speed CP-MAS 13C NMR heteronuclear dipolarcorrelation spectroscopy of solids with frequency-switched Lee-Goldburg homonuclear decoupling. J Magn Reson 124: 516-519CrossRefGoogle Scholar
  65. van Rossum BJ, Wachtveitl J, Raap J, van der Hoef K, Gast P, Lugtenburg J, Oesterhelt D and de Groot HJM (1997b) 13C MAS NMR evidence for structural similarity of L162YL mutant Rhodobacter sphaeroides R26 RC, despite widely different cytochrome c 2-mediated re-reduction kinetics of the oxidized primary donor. Spectrochim Acta A 53: 2201-2208CrossRefGoogle Scholar
  66. van Rossum BJ, Boender GJ, Mulder FM, Raap J, Balaban TS, Holzwarth A, Schaffner K, Prytulla S, Oschkinat H and de Groot HJM (1998) Multidimensional CP-MAS 13C NMR of uniformly enriched chlorophyll. Spectrochimia Acta A 54: 1167-1176CrossRefGoogle Scholar
  67. van Rossum BJ, de Groot C, de Groot HJM, Ladizhansky V and Vega S (2000) A method for measuring hetronuclear (1H-13C) distances in high speed MAS NMR. J Am Chem Soc 122: 3465-3472CrossRefGoogle Scholar
  68. van Rossum BJ, Steensgaard DB, Mulder FM, Boender GJ, Schaffner K, Holzwarth AR and de Groot HJM (2001) A refined model of the chlorosomal antennae of the green bacterium Chlorobium tepidum from proton chemical shift constraints obtained with high-field 2D and 3-D MAS NMR dipolar correlation spectroscopy. Biochemistry 40: 1587-1595CrossRefPubMedGoogle Scholar
  69. van Rossum BJ, Schulten EAM, Raap J, Oschkinat H and de Groot HJM (2002) A 3-D structural model of solid self-assembled chlorophyll a/H2O from multispin labeling and MAS NMR 2D dipolar correlation spectroscopy in high magnetic field. J Magn Res 155: 1-14CrossRefGoogle Scholar
  70. van Rossum BJ, van Liemt WBS, Gast P, Lugtenburg J and de Groot HJM (2007) 13C-1H heteronuclear dipolar correlation studies of the hydrogen bonding of the quinones in Rhodobacter sphaeroides R26 RCs. Appl Magn Reson, in pressGoogle Scholar
  71. Vinogradov E, Madhu PK and Vega S (1999) High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee-Goldburg experiment. Chem Phys Lett 314: 443-450CrossRefGoogle Scholar
  72. Yagai S, Miyatake T, Shimono Y, Tamiaki H (2001) Supramolecular structure of self-assembled synthetic zinc-13´-oxo-chlorins possessing a primary, secondary or tertiary alcoholic 3(1)-hydroxyl group: Visible spectroscopic and molecular modeling studies. Photochem Photobiol 73: 153-163CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Huub J. M. de Groot
    • 1
  1. 1.Leiden Institute of ChemistryLeiden UniversityNetherlands

Personalised recommendations