Optical Spectroscopy of Individual Light-Harvesting Complexes

  • Thijs J. Aartsma
  • Jürgen Köhler
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 26)

In this contribution we present an overview of the results of detailed spectroscopic investigations of individual light-harvesting complexes of photosynthetic purple bacteria at 1.2 K. By applying single-molecule detection techniques the properties of the electronically excited states of the assemblies of bacteriochlorophyll a (BChl a) pigment molecules in the individual complexes are revealed, without ensemble averaging. The results show that the excited states of the B800 ring of pigments in LH2 are largely localized on individual BChl a molecules, although accidental degeneracy gives rise to an excitonic character of the B800 excited states. In contrast, the absorption of a photon by the B850 ring can be consistently described in terms of an excitation that is more or less delocalized over the ring. This property is believed to contribute to the high effi ciency of energy transfer in these photosynthetic complexes. The analysis of the spectra in terms of disorder is reviewed in some detail. The results of LH2 are compared with those of similar complexes, LH3 and low-light LH2. In addition, we consider the fl uorescence spectra of individual LH2 and LH3 complexes.


Purple Bacterium Exciton State Rhodobacter Sphaeroides Site Energy Spectral Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alden RG, Johnson E, Nagarajan V, Parson WW, Law CJ and Cogdell RJ (1997) Calculations of spectroscopic properties of the LH2 bacteriochlorophyll-protein antenna complex from Rhodopseudomonas acidophila. J Phys Chem B 101: 4667-4680CrossRefGoogle Scholar
  2. Ambrose WP, Basché Th and Moerner WE (1991) Detection and spectrocopy of single pentacene molecules in a p-terphenyl crystal by means of fluorescence excitation. J Chem Phys 95: 7150-7162CrossRefGoogle Scholar
  3. Angerhofer A, Cogdell RJ and Hipkins MF (1986) A spectral characterization of the light-harvesting pigment-protein complexes from Rhodopseudomonas acidophila. Biochim Biophys Acta 848: 333-341CrossRefGoogle Scholar
  4. Basché Th, Moerner WE, Orrit M and Wild UP (eds) (1997) Single-molecule Optical Detection, Imaging and Spectroscopy. VCH Verlagsgesellschaft, WeinheimGoogle Scholar
  5. Bergström H, Sundström V, van Grondelle R, Gillbro T, Cogdell RJ (1988) Energy transfer dynamics of isolated B800-B820 pigment-protein complexes of Rhodobacter sphaeroides and Rhodopseudomonas acidophila. Biochim Biophys Acta 936: 90-98CrossRefGoogle Scholar
  6. Bergström H, Westerhuis WHJ, Sundström V, van Grondelle R, Niederman RA and Gillbro T (1988) Energy transfer within the isolated B875 light-harvesting pigment-protein complex of Rhodobacter sphaeroides at 77 K studied by picosecond absorption spectroscopy. FEBS Lett 233: 12-16CrossRefGoogle Scholar
  7. Bittl R, Schlodder E, Geisenheimer I, Lubitz W and Cogdell RJ (2001) Transient EPR and absorption studies of carotenoid triplet formation in purple bacterial antenna complexes. J Phys Chem B 105: 5525-5535CrossRefGoogle Scholar
  8. Blankenship RE (2002) Molecular Mechanisms of Photosynthesis. Blackwell Science, OxfordCrossRefGoogle Scholar
  9. Brixner T, Stenger J, Vaswani HM, Cho M, Blankenship RE and Fleming GR (2005) Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434: 625-628CrossRefPubMedGoogle Scholar
  10. Chachisvilis M, Kühn O, Pullerits T and Sundström V (1997) Excitons in photosynthetic purple bacteria: Wavelike motion or incoherent hopping? J Phys Chem 101: 7275-7283Google Scholar
  11. Cogdell RJ, Hipkins MF, MacDonald W and Truscott TG (1981) Energy transfer between the carotenoid and the bacteriochlorophyll within the B800-850 light-harvesting pigment-protein complex of Rhodopseudomonas sphaeroides. Biochim Biophys Acta 634: 191-202CrossRefPubMedGoogle Scholar
  12. Cogdell RJ, Isaacs NW, Freer AA, Arrelano J, Howard TD, Papiz MZ, Hawthornthwaite-Lawless AM and Prince S (1997) The structure and function of the LH2 (B800-850) complex from the purple photosynthetic bacterium Rhodopseudomonas acidophila strain 10050. Prog Biophys Molec Biol 68: 1-27CrossRefGoogle Scholar
  13. Cogdell RJ, Howard TD, Bittl R, Schlodder E, Geisenheimer I and Lubitz W (2000) How carotenoids protect bacterial photosynthesis. Phil Trans R Soc Lond B 355: 1345-1349CrossRefGoogle Scholar
  14. De Caro C, Visscher R, van Grondelle R and Völker S (1994) Inter- and intraband energy transfer in LH2-antenna complexes of purple bacteria. A fluorescence line-narrowing and holeburning study. J Phys Chem 98: 10584-10590CrossRefGoogle Scholar
  15. de Ruijter WPF (2005) Photodynamics of light-harvesting systems. PhD Thesis, Leiden UniversityGoogle Scholar
  16. de Ruijter WPF, Oellerich S, Segura JM, Lawless AM, Papiz M and Aartsma TJ (2004) Observation of the energy level structure of the low light adapted B800 LH4 complex by single molecule spectroscopy. J Phys Chem 87: 3413-3420Google Scholar
  17. Dempster SE, Jang S, Silbey RJ (2001) Single molecule spectroscopy of disordered circular aggregates: A perturbation analysis. J Phys Chem 114: 10015-10023CrossRefGoogle Scholar
  18. Fidder H, Knoester J and Wiersma DA (1991) Optical properties of disordered molecular aggregates: A numerical study. J Chem Phys 95: 7880-7890CrossRefGoogle Scholar
  19. Fowler GJS, Visschers RW, Grief GG, van Grondelle R and Hunter CN (1992) Genetically modified photosynthetic antenna complexes with blueshifted absorbance bands. Nature 355: 848-850CrossRefPubMedGoogle Scholar
  20. Gall A (1994) Purification, characterisation and crystallisation from a range of rhodospirillineae pigment-protein complexes. PhD Thesis, University of GlasgowGoogle Scholar
  21. Gardiner AT, Cogdell RJ and Takaichi S (1993) The effect of growth conditions on the light-harvesting apparatus in Rhodopseudomonas acidophila. Photosynth Res 38: 159-168CrossRefGoogle Scholar
  22. Gudowska-Nowak E, Newton MD and Fajer J (1990) Conformational and environmental-effects on bacteriochlorophyll optical spectra — correlations of calculated spectra with structural results. J Phys Chem 94: 5795-5801CrossRefGoogle Scholar
  23. Hartigan N, Tharia HA, Sweeney F, Lawless AM and Papiz MZ (2002) The 7.5 Å electron density and spectroscopic properties of a novel low-light B800 LH2 from Rhodopseudomonas palustris. Biophys J 82: 963-977CrossRefPubMedGoogle Scholar
  24. Hecht E (1998) Optics. Addison-Wesley Longman Inc, ReadingGoogle Scholar
  25. Hoff AJ and Deisenhofer J (1997) Photophysics of photosynthesis Structure and spectroscopy of reaction centers of purple bacteria. Phys Reports 287: 2-24CrossRefGoogle Scholar
  26. Hofmann C, Aartsma TJ, Michel H and Köhler J (2003a) Direct observation of tiers in the energy landscape of a chromoprotein: A single-molecule study. Proc Nat Acad Sci USA 100: 15534-15538CrossRefGoogle Scholar
  27. Hofmann C, Ketelaars M, Matsushita M, Michel H, Aartsma TJ and Köhler J (2003b) Single-molecule study of the electronic couplings in a circular array of molecules: Light-harvesting-2 complex from Rhodospirillum molischianum. Phys Rev Lett 90: 013004-013001CrossRefGoogle Scholar
  28. Hofmann C, Aartsma TJ and Köhler J (2004) Energetic disorder and the B850-exciton states of individual light-harvesting 2 complexes from Rhodopseudomonas acidophila Chem Phys Lett 395: 373-378CrossRefGoogle Scholar
  29. Hofmann C, Michel H, van Heel M and Köhler J (2005) Multivariate analysis of single-molecule spectra: Surpassing spectral diffusion. Phys Rev Lett 94: 95501-95504CrossRefGoogle Scholar
  30. Hu X, Damjanovic A, Ritz R and Schulten K (1998) Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proc Natl Acad Sci USA 95: 5935-5941CrossRefPubMedGoogle Scholar
  31. Jang S, Dempster SE and Silbey RJ (2001) Characterization of the static disorder in the B850 band of LH2. J Phys Chem B 105: 6655-6665CrossRefGoogle Scholar
  32. Jang J, Newton MD and Silbey RJ (2007) Multichromophoric Förster resonance energy transfer from B800 to B850 in the light harvesting complex 2: Evidence for subtle energetic optimization by purple bacteria. J Chem Phys 10.1021/jp070111lGoogle Scholar
  33. Jimenez R, Dikshit SN, Bradforth SE and Fleming GR (1996) Electronic excitation transfer in the LH2 complex of Rhodobacter sphaeroides J Phys Chem 100: 6825-6834CrossRefGoogle Scholar
  34. Jimenez R, van Mourik F, Yu JY and Fleming GR (1997) Three pulse photon echo measurements on LH1 and LH2 complexes of Rhodobacter sphaeroides. J Phys Chem B 101: 7350-7359CrossRefGoogle Scholar
  35. Joo T, Jia Y, Yu JY, Jonas DM and Fleming GR (1996) Dynamics in isolated bacterial light harvesting antenna (LH2) of Rhodobacter sphaeroides at room temperature. J Phys Chem 100: 2399-2409CrossRefGoogle Scholar
  36. Karrasch S, Bullough PA and Ghosh R (1995) The 85 Ångström projection map of the light-harvesting complex I from Rhodospirillum rubrum reveals a ring composed of 16 subunits EMBO J 14: 631-638PubMedGoogle Scholar
  37. Kennis JTM, Streltsov AM, Aartsma TJ, Nozawa T and Amesz J (1996) Energy transfer and exciton coupling in isolated B800-850 complexes of the photosynthetic purple sulfur bacterium Chromatium tepidum The effect of structural symmetry on bacteriochlorophyll excited states J Phys Chem B 100: 2438-2442CrossRefGoogle Scholar
  38. Kennis JTM, Streltsov AM, Vulto SIE, Aartsma TJ, Nozawa T and Amesz J (1997) Femtosecond dynamics in isolated LH2 complexes of various species of purple bacteria. J Phys Chem B 101: 7827-7834CrossRefGoogle Scholar
  39. Ketelaars M, van Oijen AM, Matsushita M, Köhler J, Schmidt J and Aartsma TJ (2001) Spectroscopy on the B850 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila; I. Experiments and Monte Carlo simulations. Biophys J 80: 1591-1603CrossRefPubMedGoogle Scholar
  40. Ketelaars M, Segura JM, Oellerich S, de Ruijter WP, Magis G, Aartsma TJ, Matsushita M, Schmidt J, Cogdell RJ and Köhler J (2006) Probing the electronic structure and conformational flexibility of individual light-harvesting 3 complexes by optical single-molecule spectroscopy. J Phys Chem B 110: 18710-18717CrossRefPubMedGoogle Scholar
  41. Koepke J, Hu XC, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 4: 581-597CrossRefPubMedGoogle Scholar
  42. Köhler J (1999) Magnetic resonance of a single molecular spin. Phys Reports 310: 261-339CrossRefGoogle Scholar
  43. Krüger BP, Scholes GD and Fleming GR (1998) Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B 102: 5378-5387CrossRefGoogle Scholar
  44. Ma Y-Z, Cogdell RJ and Gillbro T (1997) Energy transfer and exciton annihilation in the B800-850 antenna complex of the photosynthetic purple bacterium Rhodopseudomonas acidophila (strain 10050). A femtosecond transient absorption study. J Phys Chem B 101:1087-1095CrossRefGoogle Scholar
  45. Ma Y-Z, Cogdell RJ and Gillbro T ( 1998) Femtosecond energytransfer dynamics between bacteriochlorophylls in the B800-820 antenna complex of the photosynthetic purple bacterium Rhodopseudomonas acidophila (Strain 7750). J Phys Chem B 102: 881-887CrossRefGoogle Scholar
  46. Matsushita M, Ketelaars M, van Oijen AM, Köhler J, Aartsma TJ and Schmidt J (2001) Spectroscopy on the B500 band of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila. II. Exciton states of an elliptically deformed ring aggregate. Biophys J 80, 1604-1614CrossRefPubMedGoogle Scholar
  47. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517-521CrossRefGoogle Scholar
  48. McLuskey K, Prince SM, Cogdell RJ and Isaacs NW (2001) The crystallographic structure of the B800-820 LH3 light-harvesting complex from the purple bacteria Rhodopseudomonas acidophila Strain 7050. Biochemistry 40: 8783-8789CrossRefPubMedGoogle Scholar
  49. Monger TG, Cogdell RJ and Parson WW (1976) Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria. Biochim Biophys Acta 449: 136-153CrossRefPubMedGoogle Scholar
  50. Monger TG and Parson WW (1977) Singlet-triplet fusion in Rhodopseudomonas sphaeroides chromatophores: A probe of the organization of the photosynthetic apparatus. Biochim Biophys Acta 460: 393-407CrossRefPubMedGoogle Scholar
  51. Monshouwer R, I Ortiz de Zarate I, F van Mourik F and R van Grondelle R (1995) Low-intensity pump-probe spectroscopy on the B800 to B850 transfer in the light harvesting 2 complex of Rhodobacter sphaeroides. Chem Phys Lett 246: 341-346CrossRefGoogle Scholar
  52. Monshouwer R, Abrahamsson M, van Mourik F and van Grondelle R (1997) Superradiance and exciton delocalisation in bacterial photosynthetic light-harvesting systems. J Phys Chem B 101: 7241-7248CrossRefGoogle Scholar
  53. Mostovoy MV and Knoester J (2000) Statistics of optical spectra from single ring aggregates and its application to LH2. J Phys Chem B 104: 12355-12364CrossRefGoogle Scholar
  54. Novoderezhkin VI, Monshouwer R and van Grondelle R (1999) Exciton (de)localization in the LH2 antenna of Rhodobacter sphaeroides as revealed by relative difference absorption measurements of the LH2 antenna and the B820 subunit. J Phys Chem B 103: 10540-10548CrossRefGoogle Scholar
  55. Neu P and Silbey RJ (1997) Nonequilibrium spectral diffusion due to laser heating in stimulated-photon-echo spectroscopy of low-temperature glasses. Phys Rev B 56: 11571-11578CrossRefGoogle Scholar
  56. Pawley JB, ed (1995) Handbook of Biological Confocal Microscopy. Plenum Press, New York, LondonGoogle Scholar
  57. Plakhotnik T, Donley EA and Wild UP (1997) Single-molecule spectroscopy. Annu Rev Phys Chem 48: 181-212CrossRefPubMedGoogle Scholar
  58. Prince SM, Howard TD, Myles DAA, Wilkinson C, Papiz MZ, Freer AA, Cogdell RJ and Isaacs NW (2003) Detergent structure in crystals of the integral membrane light-harvesting complex LH2 from Rhodopseudomonas acidophila strain 10050. J Mol Biol 326: 307-315CrossRefPubMedGoogle Scholar
  59. Rebane KK (1994) Zero-phonon line as the foundation stone of high-resolution matrix spectroscopy, persistent spectral hole burning, single impurity molecule spectroscopy. Chem Phys 189: 139-148CrossRefGoogle Scholar
  60. Reddy NRS, Small GJ, Seibert M and Picorel R (1991) Energy transfer dynamics of the B800-B850 antenna complex of Rhodobacter sphaeroides: A hole burning study. Chem Phys Lett 181: 391-399CrossRefGoogle Scholar
  61. Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW and Cogdell RJ (2003) Crystal Structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302: 1969-1972CrossRefPubMedGoogle Scholar
  62. Rutkauskas D, Novoderezkhin R, Cogdell RJ and van Grondelle R (2004) Fluorescence spectral fluctuations of single LH2 complexes from Rhodopseudomonas acidophila strain 10050. Biochemistry 43: 4431-4438CrossRefPubMedGoogle Scholar
  63. Rutkauskas D, Novoderezhkin V, Cogdell RJ and van Grondelle R (2005) Fluorescence spectroscopy of conformational changes of single LH2 complexes. Biophys J 88: 422-435CrossRefPubMedGoogle Scholar
  64. Sauer K, Cogdell RJ, Prince SM, Freer A, Isaacs NW and Scheer H (1996) Structure-based calculations of the optical spectra of the LH2 bacteriochlorophyll-protein complex from Rhodopseudomonas acidophila. Photochem Photobiol 64: 564-576CrossRefGoogle Scholar
  65. Scholes GD, Gould IR, Cogdell RJ and Fleming GR (1999) Ab initio molecular orbital calculations of electronic couplings in the LH2 bacterial light-harvesting complex of Rhodopseudomonas acidophila. J Phys Chem B 103: 2543-2553CrossRefGoogle Scholar
  66. Sundström V, Pullerits T and van Grondelle R (1999) Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103: 2327-2346CrossRefGoogle Scholar
  67. Thorn Leeson D and Wiersma DA (1995) Real time observation of low-temperature protein motions. Phys Rev Lett 74: 2138-2141CrossRefPubMedGoogle Scholar
  68. Thorn Leeson D, Berg O and Wiersma DA (1994) Low-temperature protein dynamics studied by the long-lived stimulated photon echo. J Phys Chem 98: 3913-3916CrossRefGoogle Scholar
  69. Tinkham M (2003) Group Theory and Quantum Mechanics. Courier Dover Publications, New YorkGoogle Scholar
  70. Trautman JK, Shreve AP, Violette CA, Frank HA, Owens TG and Albrecht AC (1990) Femtosecond dynamics of energy transfer in B800-850 light-harvesting complexes of Rhodobacter sphaeroides. Proc Nat Acad Sci USA 87: 215-219CrossRefPubMedGoogle Scholar
  71. van Grondelle R, Dekker JP, Gillbro T and Sundström V (1994) Energy transfer and trapping in photosynthesis Biochim Biophys Acta 1187: 1-65Google Scholar
  72. van Heel M, Gowen B, Matadeen R, Orlova EV, Finn R, Pape T, Cohen D, Stark H, Schmidt R, Schatz M and Patwardhan A (2000) Single-particle electron cryo-microscopy: Towards atomic resolution. Q Rev Biophys 33: 307-369CrossRefPubMedGoogle Scholar
  73. van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ and Schmidt J (1998) Spectroscopy of single light-harvesting complexes from purple photosynthetic bacteria at 1.2 K. J Phys Chem B 102: 9363-9366CrossRefGoogle Scholar
  74. van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ and Schmidt J (1999a) Unraveling the electronic structure of individual photosynthetic pigment-protein complexes. Science 285: 400-402CrossRefGoogle Scholar
  75. van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ and Schmidt J (1999b) Spectroscopy of individual LH2 complexes of Rhodopseudomonas acidophila: localized excitations in the B800 band. Chem Phys 247: 53-60CrossRefGoogle Scholar
  76. van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ and Schmidt J (2000) Spectroscopy of Individual LH2 complexes of Rhodopseudomonas acidophila: Diagonal disorder, sample heterogeneity, spectral diffusion and energy transfer in the B800 band. Biophys J 78: 1570-1577CrossRefPubMedGoogle Scholar
  77. Vulto SIE, Kennis JTM, Streltsov AM, Amesz J and Aartsma TJ (1999a) Energy relaxation within the B850 absorption band of the isolated light-harvesting complex LH2 from Rhodopseudomonas acidophila at low temperature. J Phys Chem B 103: 878-883CrossRefGoogle Scholar
  78. Vulto SIE, de Baat MA, Neerken S, Nowak FR, van Amerongen H, Amesz J and Aartsma TJ (1999b) Excited state dynamics in FMO antenna complexes from photosynthetic green sulfur bacteria: A kinetic model. J Phys Chem B 103: 8153-8161CrossRefGoogle Scholar
  79. Webb RH (1996) Confocal optical microscopy. Rep Progr Phys 59: 427-471CrossRefGoogle Scholar
  80. Wu HM, Savikhin S, Reddy NRS, Jankowiak R, Cogdell RJ, Struve WS and Small GJ (1996) Femtosecond and hole-burning studies of B800’s excitation energy relaxation dynamics in the LH2 antenna complex of Rhodopseudomonas acidophila (Strain 10050). J Phys Chem 100: 12022-12033CrossRefGoogle Scholar
  81. Wu HM and Small GJ (1997) Symmetry adapted basis defect patterns for analysis of the effects of energy disorder on cyclic arrays of coupled chromophores. Chem Phys 218: 225-234CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Thijs J. Aartsma
    • 1
  • Jürgen Köhler
    • 2
  1. 1.Department of BiophysicsLeiden UniversityNetherlands
  2. 2.Lehrstuhl für Experimentalphysik IVUniversität BayreuthGermany

Personalised recommendations