(Sub)-Picosecond Spectral Evolution of Fluorescence Studied with a Synchroscan Streak-Camera System and Target Analysis

  • Ivo H. M. Van Stokkum
  • Bart Van Oort
  • Frank Van Mourik
  • Bas Gobets
  • Herbert Van Amerongen
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 26)

A synchroscan streak camera in combination with a spectrograph can simultaneously record temporal dynamics and wavelength of fl uorescence representable as an image with time and wavelength along the axes. The instrument response width is about 1% of the time range (of typically 200 ps to 2 ns). The spectral window of 250 nm may lie between 250 and 850 nm. Such spectrotemporal measurements using low excitation intensities have become routine. Sophisticated data analysis methods are mandatory to extract meaningful physicochemical parameters from the wealth of information contained in the streak image. In target analysis a kinetic scheme is used in combination with assumptions on the spectra of the species to describe the system. In this chapter the principals of operation of a streak-camera setup are described, along with the fundamental and technical limitations that one encounters. The correction and calibration steps that are needed as well as data processing and analysis are discussed. Several case studies of bioluminescence are presented, with a particularly in-depth analysis of trimeric Photosystem I core particles of the cyanobacterium Spirulina platensis.


Singular Value Decomposition Singular Vector Streak Camera Purple Membrane Spectral Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrizhiyevskaya EG, Frolov D, van Grondelle R, and Dekker JP (2004a) Energy transfer and trapping in the Photosystem I complex of Synechococcus PCC 7942 and in its supercomplex with IsiA. Biochim Biophys Acta 1656: 104-113CrossRefGoogle Scholar
  2. Andrizhiyevskaya EG, Frolov D, van Grondelle R, and Dekker JP (2004b) On the role of the CP47 core antenna in the energy transfer and trapping dynamics of Photosystem II. Phys Chem Chem Phys 6: 4810-4819CrossRefGoogle Scholar
  3. Beechem JM (1989) A second generation global analysis program for the recovery of complex inhomogeneous fluorescence decay kinetics. Chem Phys Lipids 50: 237-251CrossRefPubMedGoogle Scholar
  4. Bradley DJ and New GHC (1974) Ultrashort pulse measurements. Proc IEEE 62: 313-345CrossRefGoogle Scholar
  5. Bühler CA, Graf U, Hochstrasser RA and Anliker M (1998) Multidimensional fluorescence spectroscopy using a streak camera based pulse fluorimeter. Rev Sci Instrum 69: 1512-1518CrossRefGoogle Scholar
  6. Campillo AJ and Shapiro SL (1983) Picosecond streak camera fluorometry — a review. IEEE J Quantum Electron QE-19: 585-603Google Scholar
  7. Donovan B, Walker LA, Kaplan D, Bouvier M, Yocum CF and Sension RJ (1997) Structure and function in the isolated reaction center complex of Photosystem II. I. Ultrafast fluorescence measurements of PS ΙI. J Phys Chem B 101: 5232-5238CrossRefGoogle Scholar
  8. Fleming GR, Morris JM and Robinson GW (1977) Picosecond fluorescence spectroscopy with a streak camera. Austr J Chem 30: 2338-2352Google Scholar
  9. Freiberg A and Saari P (1983) Picosecond spectrochronography. IEEE J Quantum Electron QE-19: 622-630Google Scholar
  10. Gilmore AM, Itoh S and Govindjee (2000) Global spectral-kinetic analysis of room temperature chlorophyll a fluorescence from light-harvesting antenna mutants of barley. Phil Trans R Soc Lond B 355: 1371-1384CrossRefGoogle Scholar
  11. Gilmore AM, Matsubara S, Ball MC, Barker DH and Itoh S (2003a) Excitation energy flow at 77 K in the photosynthetic apparatus of overwintering evergreens. Plant Cell Environ 26: 1021-1034CrossRefGoogle Scholar
  12. Gilmore AM, Larkum AWD, Sallh A, Itoh S, Shibata Y, Bena C, Yamasaki H, Papina M and Woesik R (2003b) Simultaneous time resolution of the emission spectra of fluorescent proteins and zooxanthellar chlorophyll in reef-building coral. Photochem Photobiol 77: 515-523CrossRefGoogle Scholar
  13. Greene BJ and Farrow RC (1983) The subpicosecond Kerr effect in CS2. Chem Phys Lett 98: 273-276CrossRefGoogle Scholar
  14. Gobets B (2002) The life and times of Photosystem I. Excitation energy transfer and trapping unravelled. Thesis, Vrije Universiteit AmsterdamGoogle Scholar
  15. Gobets B, Kennis JTM, Ihalainen JA, Brazzoli M, Croce R, van Stokkum IHM, Bassi R, Dekker JP, van Amerongen H, Fleming GR and van Grondelle R (2001a) Excitation energy transfer in dimeric Light Harvesting Complex I: A combined streak-camera/fluorescence upconversion study. J Phys Chem B 105: 10132-10139CrossRefGoogle Scholar
  16. Gobets B, van Stokkum IHM, Rögner M, Kruip J, Schlodder E, Karapetyan N, Dekker JP and van Grondelle R (2001b) Timeresolved fluorescence emission measurements of Photosystem I particles of various cyanobacteria: A unified compartmental model. Biophys J 81: 407-424CrossRefGoogle Scholar
  17. Gobets B, van Stokkum IHM, van Mourik F, Dekker JP and van Grondelle R (2003) Excitation wavelength dependence of the fluorescence kinetics in Photosystem I particles from Synechocystis PCC 6803 and Synechococcus elongatus. Biophys J 85: 3883-3898CrossRefPubMedGoogle Scholar
  18. Groot ML, Pawlowicz NP, van Wilderen LJGW, Breton J, van Stokkum IHM, and van Grondelle R (2005) Initial electron donor and acceptor in isolated Photosystem II reaction centers identified with femtosecond mid-IR spectroscopy. Proc Natl Acad Sci USA 102: 13087-13092CrossRefPubMedGoogle Scholar
  19. Haacke S, Vinzani S, Schenkl S and Chergui M (2001) Spectral and kinetic fluorescence properties of native and nonisomerizing retinal in bacteriorhodospin. Chem Phys Chem 2: 310-315Google Scholar
  20. Hebling J (1996) Derivation of the pulse front tilt caused by angular dispersion, Opt Quantum Electron 28: 1759-1763CrossRefGoogle Scholar
  21. Holzwarth AR (1996) Data analysis of time-resolved measurements. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis (Advances in Photosynthesis and Respiration, Vol. 3), pp 75-92. Kluwer Academic Press, Dordrecht.Google Scholar
  22. Horng ML, Gardecki JA, Papazyan A and Maroncelli M (1995) Subpicosecond measurements of polar solvation dynamics: Coumarin 153 revisited. J Phys Chem 99: 17311-17337CrossRefGoogle Scholar
  23. Ihalainen JA, Jensen PE, Haldrup A, van Stokkum IHM, van Grondelle R, Schneller HV and Dekker JP (2002) Pigment organization and energy transfer dynamics in isolated Photosystem I (PS Ι) complexes from Arabidopsis thaliana depleted of the PS Ι-G, PS Ι-K, PS Ι-L or PS Ι-N subunit. Biophys J 83: 2190-2201CrossRefPubMedGoogle Scholar
  24. Ihalainen JA, Croce R, Morosinotto T, van Stokkum IHM, Bassi R, Dekker JP, van Grondelle R (2005a) Excitation decay pathways of Lhca proteins - A time-resolved fluorescence study. J Phys Chem B 109: 21150-21158CrossRefGoogle Scholar
  25. Ihalainen JA, D’Haene S, Yeremenko N, van Roon H, Arteni AA, Boekema EJ, van Grondelle R, Matthijs HCP, and Dekker JP (2005b) Aggregates of the chlorophyll-binding protein IsiA (CP43´) dissipate energy in cyanobacteria. Biochemistry 44: 10846-10853CrossRefGoogle Scholar
  26. Ihalainen JA, Klimmek F, Ganeteg U, van Stokkum IHM, van Grondelle R, Jansson S, and Dekker JP (2005c) Excitation energy trapping in Photosystem I complexes depleted in Lhca1 and Lhca4. FEBS Lett 579: 4787-4791CrossRefGoogle Scholar
  27. Ihalainen JA, van Stokkum IHM, Gibasiewicz K, Germano M, van Grondelle R and Dekker JP (2005d) Kinetics of excitation trapping in intact Photosystem I of Chlamydomonas reinhardtii and Arabidopsis thaliana. Biochim Biophys Acta 1706: 267-275CrossRefGoogle Scholar
  28. Ito T, Hiramatsu M, Hosoda M and Tsuchiya Y (1991) Picosecond time-resolved absorption spectrometer using a streak camera. Rev Sci Instrum 62: 1415-1419CrossRefGoogle Scholar
  29. Jaanimagi PA, DaSilva L, Gregory GG, Hestdalen C, Kiikka CD, Kotmel R, and Richardson MC (1986) Optical fiducials for Xray streak cameras at LLE. Rev Sci Instrum 57: 2189-2191CrossRefGoogle Scholar
  30. Jimenez R and Fleming GR (1996) Ultrafast spectroscopy of photosynthetic systems. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis (Advances in Photosynthesis and Respiration, Vol 3), pp 63-73. Kluwer Academic Press, DordrechtGoogle Scholar
  31. Kamiya N, Ishikawa M, Kasahara K, Kaneko M, Yanamoto N and Ohtani H (1997) Picosecond fluorescence spectroscopy of the purple membrane of halobacterium halobium in alkaline suspension. Chem Phys Lett 265: 595-599CrossRefGoogle Scholar
  32. Kennis JTM, Gobets B, van Stokkum IHM, Dekker JP, van Grondelle R and Fleming GR (2001) Light harvesting by chlorophylls and carotenoids in the Photosystem I core complex of Synechococcus elongates: A fluorescence upconversion study. J Phys Chem B 105: 4485-4494CrossRefGoogle Scholar
  33. Kleima FJ, Hofmann E, Gobets B, van Stokkum IHM , van Grondelle R, Diederichs K and van Amerongen H (2000) Förster excitation energy transfer in peridinin-chlorophyll-a-protein. Biophys J 78: 344-353.CrossRefPubMedGoogle Scholar
  34. Knippels GMH, van de Pol MJ, Pellemans HPM, Planken PCM, and van der Meer AFG (1998) Two-color facility based on a broadly tunable infrared free-electron laser and a subpico-second-synchronized 10-fs-Ti:Sapphire laser. Opt Lett 23: 1754-1756CrossRefPubMedGoogle Scholar
  35. Krishnan RV, Saitoh H, Terada H, Centonze VE and Herman B (2003) Development of a multiphoton fluorescence lifetime imaging microscopy system using a streak camera. Rev Sci Instrum 74: 2714-2721.CrossRefGoogle Scholar
  36. Lin S and Knox RS (1988) Time resolution of a short-wavelength chloroplast fluorescence component at low temperature. J Lumin 40/41: 209-210.CrossRefGoogle Scholar
  37. Lin S and Knox RS (1991) Studies of excitation-energy transfer within the green-alga Chlamydomonas-reinhardtii and its mutants at 77-K. Photosynth Res 27: 157-168.Google Scholar
  38. Martinez OE (1987) 3000 Times grating compressor with positive group-velocity dispersion: Application to fiber compensation in 1.3-1.6 μm region. IEEE J Quantum Electron QE-23: 59-64Google Scholar
  39. Monshouwer R, Abrahamsson M, van Mourik F and van Grondelle R (1997) Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems. J Phys Chem B 101: 7241-7248.CrossRefGoogle Scholar
  40. Ohtani H, Ishikawa M, Itoh H, Takiguchi Y, Urakami T and Tsuchiya Y (1990) Picosecond fluorescence spectroscopy of purple membrane in halobacterium halobium with a photon-counting streak camera. Chem Phys Lett 168: 493-498CrossRefGoogle Scholar
  41. Ohtani H, Kaneko M, Ishikawa M, Kamiya N and Yamamoto N (1999) Picosecond-millisecond dual-time base spectroscopy of fluorescent photointermediates formed in the purple membrane of halobacterium halobium. Chem Phys Lett 299: 571-575CrossRefGoogle Scholar
  42. Pal, SK, Peon J and Zewail AH (2002) Biological water at the protein surface: Dynamical solvation probed directly with femtosecond resolution. Proc Natl Acad Sci USA 99: 1763-1768CrossRefPubMedGoogle Scholar
  43. Palacios MA, de Weerd FL, Ihalainen JA, van Grondelle R, and van Amerongen H (2002) Superradiance and exciton (de)localization in light-harvesting complex II from green plants? J Phys Chem B 106: 5782-5787CrossRefGoogle Scholar
  44. Pellegrino F, Dagen A, Sekuler P and Alfano RR (1983) Temperature-dependence of the 735-nm fluorescence kinetics from spinach measured by picosecond laser-streak camera system. Photobiochem Photobiophys 6: 15-23Google Scholar
  45. Petushkov VN, van Stokkum IHM, Gobets B, van Mourik F, Lee J, van Grondelle R, and Visser AJWG (2003) Ultrafast fluorescence relaxation spectroscopy of 6,7-dimethyl-(8-ribityl)-lumazine and riboflavin, free and bound to antenna proteins from bioluminescent bacteria. J Phys Chem B 107: 10934-10939CrossRefGoogle Scholar
  46. Sauer K and Debreczeny M (1996) Fluorescence. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis (Advances in Photosynthesis and Respiration, Vol 3), pp 41-61. Kluwer Academic Press, DordrechtGoogle Scholar
  47. Schiller NH and Alfano RR (1980) Picosecond characteristics of a spectrograph measured by a streak camera/video readout system. Opt Commun 35: 451-454CrossRefGoogle Scholar
  48. Sowinska M, Heisel F, Miehe JA, Lahg M, Lichtenthaler HK and Tomasini F (1996) Remote sensing of plants by streak camera lifetime measurements of the chlorophyll a emission. J Plant Physiol 148: 638-644Google Scholar
  49. Tars M, Ellervee A, Wasielewski MR and Freiberg A (1998) Biomolecular electron transfer under high hydrostatic pressure. Spectrochim Acta A 54: 1177-1189CrossRefGoogle Scholar
  50. Uhring W, Zint CV, Summ P, and Cunin B (2003) Very high long-term stability synchroscan streak camera. Rev Sci Instrum 74: 2646-2653CrossRefGoogle Scholar
  51. van den Berg PAW, Mulrooney SB, Gobets B, van Stokkum IHM, van Hoek A, Williams CH Jr, and Visser AJWG (2001) Exploring the conformational equilibrium of thioredoxin re-ductase: Characterization of two catalytically important states by ultra-fast flavin fluorescence spectroscopy. Protein Science 10: 2037-2049CrossRefPubMedGoogle Scholar
  52. van Mourik F, Frese RN, van der Zwan G, Cogdell RJ, and van Grondelle R (2003) Direct observation of solvation dynamics and dielectric relaxation in the photosynthetic light-harvesting-2 complex of Rhodopseudomonas acidophila. J Phys Chem B 107: 2156-2161CrossRefGoogle Scholar
  53. van Mourik F, Groot M-L, van Grondelle R, Dekker JP and van Stokkum IHM (2004) Global and target analysis of fluorescence measurements on Photosystem II reaction centers upon red excitation. Phys Chem Chem Phys 6: 4820-4824CrossRefGoogle Scholar
  54. van Stokkum IHM (2005) Global and target analysis of time resolved spectra. Lecture notes Troisième Cycle de la Physique en Suisse Romande, March 14-24, 88 pp.Google Scholar
  55. van Stokkum IHM and Bal HE (2006) A problem solving environment for interactive modelling of multiway data. Concurrency Computat: Pract Exper 18: 263-269CrossRefGoogle Scholar
  56. van Stokkum IHM, Larsen DS, and van Grondelle R (2004) Global and target analysis of time resolved spectra. Biochim Biophys Acta 1657, 82-104, and 1658, 262 (Erratum)Google Scholar
  57. van Stokkum IHM, Gobets B, Gensch T, van Mourik F, Hellingwerf KJ, van Grondelle R and Kennis JTM (2006) (Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a synchroscan streak camera system. Photochem Photobiol 82: 380-388CrossRefPubMedGoogle Scholar
  58. Vengris M, van der Horst MA, Zgrablić G, van Stokkum IHM, Haacke S, Chergui M, Hellingwerf KJ, van Grondelle R and Larsen DS (2004) Contrasting the excited-state dynamics of the photoactive yellow protein chromophore: Protein vs. solvent effects. Biophys J 87: 1848-1857CrossRefPubMedGoogle Scholar
  59. Vilchiz VH, Kloepfer JA, Germaine AC, Lenchenkov VA and Bradforth SE (2001) Map for the relaxation dynamics of hot photoelectrons injected into liquid water via anion threshold photodetachment and above threshold solvent ionization. J Phys Chem A 105: 1711-1723CrossRefGoogle Scholar
  60. Watanabe M, Koishi M, Fujiwara M, Takeshita T and Cieslik W (1994) Development of a new fluorescence decay measurement system using two-dimensional single-photon counting. J Photochem Photobiol A: Chem 80: 429-432CrossRefGoogle Scholar
  61. Wiessner A and Staerk H (1993) Optical design considerations and performance of a spectro-streak apparatus for time-resolved fluorescence spectroscopy. Rev Sci Instrum 64: 3430-3439CrossRefGoogle Scholar
  62. Yatskou MM, Koehorst RBM, van Hoek A, Donker H, Schaafsma TJ, Gobets B, van Stokkum IHM and van Grondelle R (2001) Spectroscopic properties of a self-assembled zinc porphyrin tetramer. II. Time-resolved fluorescence spectroscopy. J Phys Chem A 105: 11432-11440CrossRefGoogle Scholar
  63. Zavoiski EK and Fanchenko SD (1965) Image converter highspeed photography with 10-9-10-14 sec time resolution. Appl Optics 4: 1155-1167CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Ivo H. M. Van Stokkum
    • 1
  • Bart Van Oort
    • 2
  • Frank Van Mourik
    • 3
  • Bas Gobets
    • 4
  • Herbert Van Amerongen
    • 2
  1. 1.Department of Physics and AstronomyVrije UniversiteitNetherlands
  2. 2.Laboratory of BiophysicsWageningen UniversityNetherlands
  3. 3.École Polytechnique Fédérale de Lau sanneInstitut de Sciences et Ingéniérie ChimiquesSwitzerland
  4. 4.Image Science InstituteUniversity Medical Center UtrechtNetherlands

Personalised recommendations