Advertisement

Femtosecond Time-Resolved Infrared Spectroscopy

  • Marie Louise Groot
  • Rienk Van Grondelle
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 26)

In this chapter we describe how femtosecond time-resolved infrared spectroscopy is useful for the study of the dynamics of pigment-protein complexes, and what the technical requirements are to perform such experiments. We further discuss a few examples of experiments performed on photosynthetic complexes in more detail.

Keywords

Probe Pulse Difference Frequency Generator Primary Electron Donor Bacterial Reaction Center D1D2 Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barth A and Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35: 369-430CrossRefPubMedGoogle Scholar
  2. Bredenbeck J, Helbing J, Kumita JR, Woolley GA and Hamm P (2005) α-Helix formation in a photoswitchable peptide tracked from picoseconds to microseconds by time-resolved IR spectroscopy. Proc Natl Acad Sci USA 102: 2379-2384CrossRefPubMedGoogle Scholar
  3. Breton J, Hienerwadel R and Nabedryk E (1997) Hydrogen bonding to the primary electron donor in reaction centers from Rb. sphaeroides: FTIR characterization of a series of mutants at residue M160. In: Carmona P (ed) Spectroscopy of Biological Molecules: Modern Trends, pp 101-106. Kluwer Academic Publishers, DordrechtGoogle Scholar
  4. Cerullo G, Nisoli M and De Silvestri S (1997) Generation of 11 fs pulses tunable across the visible by optical parametric amplification. Appl Phys Lett 71: 3616-3618CrossRefGoogle Scholar
  5. Cerullo G, Nisoli M, Stagira S and De Silvestri S (1998) Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible. Opt Lett 23: 1283-1285CrossRefPubMedGoogle Scholar
  6. de Weerd FL, van Stokkum IHM, van Amerongen H, Dekker JP and van Grondelle R (2002) Pathways for energy transfer in the core light-harvesting complexes CP43 and CP47 of Photosystem II. Biophys J 82: 1586-1597CrossRefPubMedGoogle Scholar
  7. Demirdoven N, Cheatum CM, Chung HS, Khalil M, Knoester J and Tokmakoff A (2004) Two-dimensional infrared spectroscopy of antiparallel beta-sheet secondary structure. J Am Chem Soc 126: 7981-7990CrossRefPubMedGoogle Scholar
  8. Diller R, Iannone M, Cowen BR, Maiti S, Bogomolni RA and Hochstrasser RM (1992) Picosecond dynamics of bacteriorhodopsin, probed by time-resolved infrared-spectroscopy. Biochemistry 31: 5567-5572CrossRefPubMedGoogle Scholar
  9. Dreyer J, Moran AM and Mukamel S (2003) Coherent threepulse spectroscopy of coupled vibrations in a rigid dipeptide: Density functional theory simulations. J Phys Chem B 107: 5967-5985CrossRefGoogle Scholar
  10. Eaves JD, Loparo JJ, Fecko CJ, Roberts ST, Tokmakoff A and Geissler PL (2005) Hydrogen bonds in liquid water are broken only fleetingly. Proc Natl Acad Sci USA 102: 13019-13022CrossRefPubMedGoogle Scholar
  11. Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831-1838CrossRefPubMedGoogle Scholar
  12. Groma GI, Colonna A, Lambry JC, Petrich JW, Varo G, Joffre M, Vos MH and Martin JL (2004) Resonant optical rectification in bacteriorhodopsin. Proc Natl Acad Sci USA 101: 7971-7975CrossRefPubMedGoogle Scholar
  13. Groot ML, Vos MH, Schlichting I, van Mourik F, Joffre M, Lambry JC and Martin JL (2002) Coherent infrared emission from myoglobin crystals: An electric field measurement. Proc Natl Acad Sci USA 99: 1323-1328CrossRefPubMedGoogle Scholar
  14. Groot ML, van Wilderen L, Larsen DS, van der Horst MA, van Stokkum IHM, Hellingwerf KJ and van Grondelle R (2003) Initial steps of signal generation in photoactive yellow protein revealed with femtosecond mid-infrared spectroscopy. Biochemistry 42: 10054-10059CrossRefPubMedGoogle Scholar
  15. Groot ML, Breton J, van Wilderen L, Dekker JP and van Grondelle R (2004) Femtosecond visible/visible and visible/mid-IR pump-probe study of the Photosystem II core antenna complex CP47. J Phys Chem B 108: 8001-8006CrossRefGoogle Scholar
  16. Groot ML, Pawlowicz NP, van Wilderen L, Breton J, van Stokkum IHM and van Grondelle R (2005) Initial electron donor and acceptor in isolated Photosystem II reaction centers identified with femtosecond mid-IR spectroscopy. Proc Natl Acad Sci USA 102: 13087-13092CrossRefPubMedGoogle Scholar
  17. Hahn S, Kim SS, Lee C and Cho M (2005) Characteristic twodimensional IR spectroscopic features of antiparallel and parallel beta-sheet polypeptides: Simulation studies. J Chem Phys 123: 084905 (10 pages).Google Scholar
  18. Hamacher E, Kruip J, Rögner M and Mäntele W (1996) Characterization of the primary electron donor of Photosystem I, P700, by electrochemistry and Fourier-transform infrared (FTIR) difference spectroscopy. Spectrochim Acta A 52: 107-121CrossRefGoogle Scholar
  19. Hamm P (1995) Coherent effects in femtosecond infrared-spectroscopy. Chem Phys 200: 415-429CrossRefGoogle Scholar
  20. Hamm P, Zurek M, Mäntele W, Meyer M, Scheer H and Zinth W (1995) Femtosecond infrared-spectroscopy of reaction centers from Rhodobacter sphaeroides between 1000 and 1800 cm−1. Proc Natl Acad Sci USA 92: 1826-1830CrossRefPubMedGoogle Scholar
  21. Hamm P, Lim MH and Hochstrasser RM (1998) Structure of the amide I band of peptides measured by femtosecond nonlinearinfrared spectroscopy. J Phys Chem B 102: 6123-6138CrossRefGoogle Scholar
  22. Hamm P, Kaindl RA and Stenger J (2000) Noise suppression in femtosecond mid-infrared light sources. Opt Lett 25: 1798-1800CrossRefPubMedGoogle Scholar
  23. Herbst J, Heyne K and Diller R (2002) Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Science 297: 822-825CrossRefPubMedGoogle Scholar
  24. Hill JR, Tokmakoff A, Peterson KA, Sauter B, Zimdars D, Dlott DD and Fayer MD (1994) Vibrational dynamics of carbonmonoxide at the active-site of myoglobin — Picosecond infrared free-electron laser pump-probe experiments. J Phys Chem 98: 11213-11219CrossRefGoogle Scholar
  25. Hill JR, Dlott DD, Rella CW, Smith TI, Schwettman HA, Peterson KA, Kwok A, Rector KD and Fayer MD (1996) Ultrafast infrared spectroscopy in biomolecules: Active site dynamics of heme proteins. Biospectroscopy 2: 277-299CrossRefGoogle Scholar
  26. Joffre M, Hulin D, Migus A, Antonetti A, Laguillaume CBA, Peyghambarian N, Lindberg M and Koch SW (1988) Coherent effects in pump probe spectroscopy of excitons. Opt Lett 13: 276-278CrossRefPubMedGoogle Scholar
  27. Kim YS and Hochstrasser RM (2005) Chemical exchange 2D IR of hydrogen-bond making and breaking. Proc Natl Acad Sci USA 102: 11185-11190CrossRefPubMedGoogle Scholar
  28. Kotting C and Gerwert K (2005) Proteins in action monitored by time-resolved FTIR spectroscopy. Chem Phys Chem 6: 881-888PubMedGoogle Scholar
  29. Lim M, Jackson TA and Anfinrud PA (1995a) Binding of CO to myoglobin from a heme pocket docking site to form nearly linear Fe-C-O. Science 269: 962-966CrossRefGoogle Scholar
  30. Lim MH, Jackson TA and Anfinrud PA (1995b) Midinfrared vibrational spectrum of CO after photodissociation from heme evidence for a ligand docking site in the heme pocket of hemoglobin and myoglobin. J Chem Phys 102: 4355-4366CrossRefGoogle Scholar
  31. Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Ångström resolution structure of Photosystem II. Nature 438: 1040-1044CrossRefPubMedGoogle Scholar
  32. Maiti S, Cowen BR, Diller R, Iannone M, Moser CC, Dutton PL and Hochstrasser RM (1993) Picosecond infrared studies of the dynamics of the photosynthetic reaction center. Proc Natl Acad Sci USA 90: 5247-5251CrossRefPubMedGoogle Scholar
  33. Maiti S, Walker GC, Cowen BR, Pippenger R, Moser CC, Dutton PL and Hochstrasser RM (1994) Femtosecond coherent transient infrared-spectroscopy of reaction centers from Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91: 10360-10364CrossRefPubMedGoogle Scholar
  34. Mäntele W (1996) Infrared and Fourier-Transform Infrared Spectroscopy. In: Amesz J and Hoff AJ (eds) Biophysical Techniques in Photosynthesis (Advances in Photosynthesis, Vol 3), pp 137-157. Kluwer Academic Publishers, DordrechtGoogle Scholar
  35. Nabedryk E, Andrianambinintsoa S, Berger G, Leonhard M, Mäntele W and Breton J (1990) Characterization of bonding interactions of the intermediary electron-acceptor in the reaction center of Photosystem-II by FTIR spectroscopy. Biochim Biophys Acta 1016: 49-54CrossRefGoogle Scholar
  36. Nabedryk E, Allen JP, Taguchi AKW, Williams JC, Woodbury NW and Breton J (1993) Fourier-transform infrared study of the primary electron-donor in chromatophores of Rhodobacter sphaeroides with reaction centers genetically-modified at residue M160 and residue L131. Biochemistry 32: 13879-13885CrossRefPubMedGoogle Scholar
  37. Nabedryk E, Breton J, Williams JC, Allen JP, Kuhn M and Lubitz W (1998) FTIR characterization of the primary electron donor in double mutants combining the heterodimer HL(M202) with the LH(L131), HF(L168), FH(M197), or LH(M160) mutations. Spectrochim Acta A 54: 1219-1230CrossRefGoogle Scholar
  38. Nabedryk E, Schulz C, Müh F, Lubitz W and Breton J (2000) Heterodimeric versus homodimeric structure of the primary electron donor in Rhodobacter sphaeroides reaction centers genetically modified at position M202. Photochem Photobiol 71: 582-588CrossRefPubMedGoogle Scholar
  39. Noguchi T, Tomo T and Kato C (2001) Triplet formation on a monomeric chlorophyll in the Photosystem II reaction center as studied by time-resolved infrared spectroscopy. Biochemistry 40: 2176-2185CrossRefPubMedGoogle Scholar
  40. Novoderezhkin VI, Palacios MA, van Amerongen H and van Grondelle R (2004) Energy-transfer dynamics in the LHCII complex of higher plants: Modified redfield approach. J Phys Chem B 108: 10363-10375CrossRefGoogle Scholar
  41. Rubtsov IV, Kumar K and Hochstrasser RM (2005) Dual-frequency 2D IR photon echo of a hydrogen bond. Chem Phys Lett 402: 439-443CrossRefGoogle Scholar
  42. Scheurer C and Mukamel S (2002) Infrared analogs of heteronuclear nuclear magnetic resonance coherence transfer experiments in peptides. J Chem Phys 116: 6803-6816CrossRefGoogle Scholar
  43. Shirakawa A, Sakane I and Kobayashi T (1998) Pulse-frontmatched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared. Opt Lett 23: 1292-1294CrossRefPubMedGoogle Scholar
  44. Van Stokkum IHM, Larsen DS and Van Grondelle R (2004) Global and target analysis of time-resolved spectra. Biochim Biophys Acta 1657: 82-104CrossRefPubMedGoogle Scholar
  45. Ventalon C, Fraser JM, Vos MH, Alexandrou A, Martin JL and Joffre M (2004) Coherent vibrational climbing in carboxyhemoglobin. Proc Natl Acad Sci USA 101: 13216-13220CrossRefPubMedGoogle Scholar
  46. Venyaminov SY and Kalnin NN (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions 2. Amide absorption-bands of polypeptides and fibrous proteins in alpha-coil, beta-coil, and random coil conformations. Biopolymers 30: 1259-1271CrossRefPubMedGoogle Scholar
  47. Walker GC, Maiti S, Cowen BR, Moser CC, Dutton PL and Hochstrasser RM (1994) Time Resolution of electronic-transitions of photosynthetic reaction centers in the infrared. J Phys Chem 98: 5778-5783CrossRefGoogle Scholar
  48. Wilhelm T, Piel J and Riedle E (1997) Sub-20-fs pulses tunable across the visible from a blue-pumped single-pass noncollinear parametric converter. Opt Lett 22: 1494-1496CrossRefPubMedGoogle Scholar
  49. Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Ångström resolution. Nature 409: 739-743CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Marie Louise Groot
    • 1
  • Rienk Van Grondelle
    • 1
  1. 1.Department of Physics and AstronomyVrije UniversiteitNetherlands

Personalised recommendations