The Supramolecular Architecture of the Bacterial Photosynthetic Apparatus Studied by Atomic Force Microscopy (AFM)

  • Simon Scheuring
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 26)

The atomic force microscope (AFM) has developed into a powerful tool in structural biology allowing topographical information of membrane proteins at submolecular resolution to be acquired. Recently, AFM has been demonstrated to be the unique tool to image the photosynthetic apparatus in native membranes from different photosynthetic bacteria species. This chapter provides rationales how to image at high resolution a native membrane using the AFM, and summarizes the recent results concerning the structure and the supramolecular assembly of the photosynthetic complexes. On the single molecule level, membrane proteins directly studied in the native membrane were never subject to extraction, purifi cation, reconstitution, or crystallization. Hence structural data in a native state and information concerning structural heterogeneity of the individual photosynthetic complexes are contributed. On the level of multi-protein assemblies, experimental images of the supramolecular architecture of the photosynthetic apparatus, its adaptation to environmental factors, and its particularities among species are reported.


Photosynthetic Apparatus Rhodobacter Sphaeroides Atomic Force Microscopy Analysis Native Membrane Protein Side Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahams JP, Leslie AGW, Lutter R and Walker JE (1994) Struc- ture at 2.8 Ångstrom resolution of F1-ATPase from bovine heart mitochondria. Nature 370: 621-628CrossRefPubMedGoogle Scholar
  2. Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1987) Structure of the reaction center from Rhodobacter sphaeroi- des R-26: The protein subunits. Proc Natl Acad Sci USA 84: 6162-6166CrossRefPubMedGoogle Scholar
  3. Ando T, Kodera N, Takai E, Maruyama D, Saito K and Toda A (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci USA 98: 12468-12472CrossRefPubMedGoogle Scholar
  4. Bahatyrova S, Frese RN, Siebert CA, Olsen JD, van der Werf KO, van Grondelle R, Niederman RA, Bullough PA and Hunter CN (2004a) The native architecture of a photosynthetic membrane. Nature 430: 1058-1062CrossRefGoogle Scholar
  5. Bahatyrova S, Frese RN, van der Werf KO, Otto C, Hunter CN and Olsen JD (2004b) Flexibility and size heterogeneity of the LH1 light harvesting complex revealed by atomic force microscopy: Functional significance for bacterial photosynthesis. J Biol Chem 279: 21327-21333CrossRefGoogle Scholar
  6. Berry EA, Huang L-S, Saechao LK, Pon NG, Valkova-Valchanova M and Daldal F (2004) X-ray structure of Rhodobacter capsu- latus cytochrome bc 1: Comparison with its mitochondrial and chloroplast counterparts. Photosynth Res 81: 251-275CrossRefPubMedGoogle Scholar
  7. Binnig G, Gerber C, Stoll E, Albrecht TR and Quate CF (1987) Atomic resolution with atomic force microscopy. Europhys Lett 3: 1281-1286CrossRefGoogle Scholar
  8. Binnig G, Quate CF and Gerber C (1986) Atomic force micro- scope. Phys Rev Lett 56: 930-933CrossRefPubMedGoogle Scholar
  9. Butt H-J (1992) Measuring local surface charge densities in elec- trolyte solutions with a scanning force microscope. Biophys J 63: 578-582CrossRefPubMedGoogle Scholar
  10. Cheung CL, Hafner JH and Lieber CM (2000) Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. Proc Natl Acad Sci USA 97: 3809-3813CrossRefPubMedGoogle Scholar
  11. Deisenhofer J and Michel H (1989) Nobel Lecture: The photo- synthetic reaction centre from the purple bacterium Rhodop- seudomonas viridis. EMBO J 8: 2149-2170PubMedGoogle Scholar
  12. Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X- ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J Mol Biol 180: 385-398CrossRefPubMedGoogle Scholar
  13. Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 318: 618-624CrossRefGoogle Scholar
  14. Deisenhofer J, Epp O, Sinning I and Michel H (1995) Crystal- lographic refinement at 2.3Å resolution and refined model of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 246: 429-457CrossRefPubMedGoogle Scholar
  15. Engelhardt H, Engel A and Baumeister W (1986) Stoichiometric model of the photosynthetic unit of Ectothiorhodospira halo- chloris. Proc Natl Acad Sci USA 83: 8972-8976CrossRefPubMedGoogle Scholar
  16. Fotiadis D, Qian P, Philippsen A, Bullough PA, Engel A and Hunter CN (2004) Structural analysis of the reaction center light-harvesting complex I photosynthetic core complex of Rhodospirillum rubrum using atomic force microscopy. J Biol Chem 279: 2063-2068CrossRefPubMedGoogle Scholar
  17. Francia F, Wang J, Venturoli G, Melandri B, Barz W and Oester- held D (1999) The reaction center-LH1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex. Biochemistry 38: 6834-6845CrossRefPubMedGoogle Scholar
  18. Gonçalves RP, Bernadac A, Sturgis JN and Scheuring S (2005a) Architecture of the native photosynthetic apparatus of Phae- ospirillum molischianum. J Struct Biol 152: 221-228CrossRefGoogle Scholar
  19. Gonçalves RP, Busselez J, Lévy D, Seguin J and Scheuring S (2005b) Membrane insertion of Rhodopseudomonas acidophila light harvesting complex 2 (LH2) investigated by high resolution AFM. J Struct Biol 149: 79-86CrossRefGoogle Scholar
  20. Hoh JH, Lal R, John SA, Revel J-P and Arnsdorf MF (1991) Atomic force microscopy and dissection of gap junctions. Science 253: 1405-1408CrossRefPubMedGoogle Scholar
  21. Hu X and Schulten K (1998) Model for the light-harvesting complex I (B875) of Rhodobacter sphaeroides. Biophys J 75: 683-694CrossRefPubMedGoogle Scholar
  22. Hu X, Ritz T, Damjanovic A, Autenrieth F and Schulten K (2002) Photosynthetic apparatus of purple bacteria. Quart Rev Biophys 35: 1-62CrossRefGoogle Scholar
  23. Ikeda-Yamasaki I, Odahara T, Mitsuoka K, Fujiyoshi Y and Murata K (1998) Projection map of the reaction center-light harvesting 1 complex from Rhodopseudomonas viridis at 10 Å resolution. FEBS Lett 425: 505-508CrossRefPubMedGoogle Scholar
  24. Israelachvili J (1991) Intermolecular and Surface Forces. Academic Press, LondonGoogle Scholar
  25. Israelachvili J and Wennerstrom H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379: 219-225CrossRefPubMedGoogle Scholar
  26. Jacob JS and Miller KR (1983) Structure of a bacterial photosyn- thetic membrane. Arch Biochem Biophys 223: 282-290CrossRefPubMedGoogle Scholar
  27. Jacob JS and Miller KR (1984) Structure of a bacterial photo- synthetic membrane: Integrity of reaction centers following proteolysis and detergent solubilization. Biochem Biophys Res Com 120: 164-171CrossRefPubMedGoogle Scholar
  28. Jamieson SJ, Wang P, Qian P, Kirkland JY, Conroy MJ, Hunter CN and Bullough PA (2002) Projection structure of the photo- synthetic reaction centre-antenna complex of Rhodospirillum rubrum at 8.5 Å resolution. EMBO J 21: 3927-3935CrossRefPubMedGoogle Scholar
  29. Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure 4: 581-597CrossRefPubMedGoogle Scholar
  30. Kurisu G, Zhang H, Smith JL and Cramer WA (2003) Structure of the cytochrome b 6 f complex of oxygenic photosynthesis: Tuning the cavity. Science 302: 1009-1014CrossRefPubMedGoogle Scholar
  31. Lancaster CR, Bibikova M, Sabatino P, Oesterheld D and Michel H (2000) Structural basis of the drastically increased initial electron transfer rate in the reaction center from a Rhodopseu-domonas viridis mutant described at 2.00 Å resolution. J Biol Chem 275: 39364-39368CrossRefPubMedGoogle Scholar
  32. McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517-521CrossRefGoogle Scholar
  33. Meier T, Polzer P, Diederichs K, Welte W and Dimroth P (2005) Structure of the rotor ring of F-Type Na+-ATPase from Ilyo- bacter tartaricus. Science 308: 659-662CrossRefPubMedGoogle Scholar
  34. Miller KR (1982) Three-dimensional structure of a photosynthetic membrane. Nature 300: 53-55CrossRefGoogle Scholar
  35. Müller DJ, Amrein M and Engel A (1997) Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol 119: 172-188CrossRefPubMedGoogle Scholar
  36. Müller DJ, Fotiadis D, Scheuring S, Müller SA and Engel A (1999) Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscopy. Biophys J 76: 1101-1111CrossRefPubMedGoogle Scholar
  37. Papiz MZ, Prince SM, Hawthornthwaite-Lawless AM, McDer- mott G, Freer AA, Isaacs NW and Cogdell RJ (1996) A model for the photosynthetic apparatus of purple bacteria. Trends Plant Sci 1: 198-206CrossRefGoogle Scholar
  38. Qian P, Hunter CN and Bullough PA (2005) The 8.5 Å projection structure of the core RC-LH1-PufX dimer of Rhodobacter sphaeroides. J Mol Biol 349: 948-960CrossRefPubMedGoogle Scholar
  39. Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW and Cogdell RJ (2003) Crystal Structure of the RC-LH1 Core complex from Rhodopseudomonas palustris. Science 302: 1969-1972CrossRefPubMedGoogle Scholar
  40. Schabert FA and Engel A (1994) Reproducible acquisition of Escherichia coli porin surface topographs by atomic force microscopy. Biophys J 67: 2394-2403CrossRefPubMedGoogle Scholar
  41. Scheuring S and Sturgis JN (2005) Chromatic adaptation of photosynthetic membranes. Science 309: 484-487CrossRefPubMedGoogle Scholar
  42. Scheuring S, Reiss-Husson F, Engel A, Rigaud J-L and Ranck J-L (2001) High resolution topographs of the Rubrivivax gelatinosus light-harvesting complex 2. EMBO J 20: 3029-3035CrossRefPubMedGoogle Scholar
  43. Scheuring S, Seguin J, Marco S, Lévy D, Breyton C, Robert B and Rigaud J-L (2003a) AFM Characterization of tilt and intrinsic flexibility of Rhodobacter sphaeroides light harvesting complex 2 (LH2). J Mol Biol 325: 569-580CrossRefGoogle Scholar
  44. Scheuring S, Seguin J, Marco S, Lévy D, Robert B, and Rigaud JL (2003b) Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core-complex in native membranes by AFM. Proc Natl Acad Sci USA 100: 1690-1693CrossRefGoogle Scholar
  45. Scheuring S, Francia F, Busselez J, Melandri B, Rigaud J-L and Lévy D (2004a) Structural role of PufX in the dimerization of the photosynthetic core-complex of Rhodobacter sphaeroides. J Biol Chem 279: 3620-3626CrossRefGoogle Scholar
  46. Scheuring S, Rigaud J-L and Sturgis JN (2004b) Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum. EMBO J 23: 4127-4133CrossRefGoogle Scholar
  47. Scheuring S, Sturgis JN, Prima V, Bernadac A, Lévy D and Rigaud J-L (2004c) Watching the photosynthetic apparatus in native membranes. Proc Natl Acad Sci USA 101: 11293-11297CrossRefGoogle Scholar
  48. Scheuring S, Busselez J and Levy D (2005a) Structure of the di- meric PufX-containing core complex of Rhodobacter blasticus by in situ AFM. J Biol Chem 180: 1426-1431Google Scholar
  49. Scheuring S, Gonçalves RP, Prima V and Sturgis JN (2005b) The photosynthetic apparatus of Rhodopseudomonas palustris: Structures and organization. J Mol Biol 358: 83-96CrossRefGoogle Scholar
  50. Scheuring S, Levy D and Rigaud J-L (2005c) Watching the components of photosynthetic bacterial membranes and their ‘in situ’ organization by atomic force microscopy. Biochim Biophys Acta 1712: 109-127CrossRefGoogle Scholar
  51. Siebert CA, Qian P, Fotiadis D, Engel A, Hunter CN and Bullough PA (2004) Molecular architecture of photosynthetic membranes in Rhodobacter sphaeroides: The role of PufX. EMBO J 23: 690-700CrossRefPubMedGoogle Scholar
  52. Stamouli A, Kafi S, Klein DC, Oosterkamp TH, Frenken JW, Cogdell RJ and Aartsma TJ (2003) The ring structure and organization of light harvesting 2 complexes in a reconstituted lipid bilayer, resolved by atomic force microscopy. Biophys J 84: 2483-2491CrossRefPubMedGoogle Scholar
  53. Stark W, Kühlbrandt W, Wildhaber I, Wehrli E and Muhlethaler K (1984) The structure of the photoreceptor unit of Rhodo- pseudomonas viridis. EMBO J 3: 777-783PubMedGoogle Scholar
  54. Stroebel D, Choquet Y, Popot JL and Picot D (2003) An atypical haem in the cytochrome b 6 f complex. Nature 426: 413-418CrossRefPubMedGoogle Scholar
  55. Sundström V, Pullerits T and van Grondelle R (1999) Photosyn- thetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J Phys Chem B 103: 2327-2346CrossRefGoogle Scholar
  56. Viani MB, Pietrasanta LI, Thompson JB, Chand A, Gebeshuber IC, Kindt JH, Richter M, Hansma HG and Hansma PK (2000) Probing protein-protein interactions in real time. Nature Struct Biol 7: 644-647CrossRefPubMedGoogle Scholar
  57. Walz T, Jamieson SJ, Bowers CM, Bullough PA and Hunter CN (1998) Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 Å, LH1 and RC-LH1 at 25 Å. J Mol Biol 282: 833-845CrossRefPubMedGoogle Scholar
  58. Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, Zhang L, Yu L and Deisenhofer J (1997) Crystal structure of the cytochrome bc 1 complex from bovine heart mitochondria. Science 277: 60-66CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Simon Scheuring
    • 1
  1. 1.Institut Curie, UMR168-CNRSFrance

Personalised recommendations