Skip to main content

Traumatic Resin Ducts and Polyphenolic Parenchyma Cells in Conifers

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfaro RI (1995) An induced defense reaction in white spruce to attack by the white-pine weevil, Pissodes strobe. Can J For Res 25:1725–1730

    Article  Google Scholar 

  • Alfaro RI, VanAkker L, Jaquish B, King J (2004) Weevil resistance of progeny derived from putatively resistant and susceptible interior spruce parents. For Ecol Man 202:369–377

    Article  Google Scholar 

  • Alfieri FJ, Evert RF (1973) Structure and seasonal development of secondary phloem in Pinaceae. Bot Gaz 134:17–25

    Article  Google Scholar 

  • Bannan MW (1936) Vertical resin ducts in the secondary wood of the abietineae. New Phytol. 35:11–46

    Article  Google Scholar 

  • Bois E, Lieutier F (1997) Phenolic response of Scots pine clones to inoculation with Leptographium wingfieldii, a fungus associated with Tomicus piniperda. Plant Physiol Biochem 35:819–825

    CAS  Google Scholar 

  • Bonello P, Gordon TR, Storer AJ (2001) Systemic induced resistance in Monterey pine. For Pathol 31:99–106

    Google Scholar 

  • Bonello P, Blodgett JT (2003) Pinus nigraSphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines. Physiol Mol Plant Pathol 63:249–261

    Article  Google Scholar 

  • Bordasch RP, Berryman AA (1977) Host resistance to the fir engraver beetle, Scolytus ventralis (Coleoptera: Scolytidae). 2. Repellency of Abies grandis resins and some monoterpenes. Can Entomol 109:95–100

    CAS  Google Scholar 

  • Brignolas F, Lacroix B, Lieutier F, Sauvard D, Drouet A, Claudot AC, Yart A, Berryman AA, Christiansen E (1995a) Induced responses in phenolic metabolism in two Norway spruce clones after wounding and inoculation with Ophiostoma polonicum, a bark beetle-associated fungus. Plant Physiol 109:821–827

    CAS  Google Scholar 

  • Brignolas F, Lieutier F, Sauvard D, Yart A, Drouet A, Claudot AC (1995b) Changes in soluble-phenol content of Norway-spruce (Picea abies) phloem in response to wounding and inoculation with Ophiostoma polonicum. Eur J For Pathol 25:253–265

    Article  Google Scholar 

  • Brignolas F, Lieutier F, Sauvard D, Christiansen E, Berryman AA (1998) Phenolic predictors for Norway spruce resistance to the bark beetle lps typographus (Coleoptera: Scolytidae) and an associated fungus, Ceratocystis polonica. Can J For Res 28:720–728

    Article  CAS  Google Scholar 

  • Cates RG, Alexander H (1982) Host resistance and susceptibility. In: Mitton JB, Sturgeon KB (eds) Bark beetles in North American conifers. A system for the study of evolutionary biology. University of Texas Press, Austin, pp 212–263

    Google Scholar 

  • Charon J, Launay J, Carde J-P (1987) Spatial organization and volume density of leucoplasts in pine secretory cells. Protoplasma 138:45–53

    Article  Google Scholar 

  • Christiansen E, Franceschi VR, Nagy NE, Krekling T, Berryman AA, Krokene P, Solheim H (1999a) Traumatic resin duct formation in Norway spruce after wounding or infection with a bark beetle-associated blue-stain fungus, Ceratocystis polonica. In: Lieutier F, Mattson WJ, Wagner MR (eds) Physiology and genetics of tree-phytophage interactions. Les Colloques de I’INRA, INRA Editions, Versailles, pp 79–89

    Google Scholar 

  • Christiansen E, Krokene P, Berryman AA, Franceschi VR, Krekling T, Lieutier F, Lönneborg A, Solheim H (1999b) Mechanical injury and fungal infection induce acquired resistance in Norway spruce. Tree Physiol 19:399–403

    Google Scholar 

  • Cook SP, Hain FP (1988) Toxicity of host monoterpenes to Dendroctonus frontalis and Ips calligraphus (Coleoptera: Scolytidae). J Entomol Sci 23:287–292

    CAS  Google Scholar 

  • Day RC, Grossniklaus U, Macknight RC (2005) Be more specific! Laser-assisted microdissection of plant cells. Trends Plant Sci 10:397–406

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid meatabolism. Plant Cell7:1085–1097

    Article  PubMed  CAS  Google Scholar 

  • Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang ZP, Goldstein SR, Weiss RA, Liotta LA (1996) Laser capture microdissection. Science 274:998–1001

    Article  PubMed  CAS  Google Scholar 

  • Erbilgin N, Kroken, P, Christiansen E, Zeneli G, Gershenzon J (2006) Exogenous application of methyl jasmonate elicits defenses in Norway spruce (Picea abies) and reduces host colonization by the bark beetle Ips typographus. Oecologia 148:426–436

    Article  PubMed  Google Scholar 

  • Evensen PC, Solheim H, Høiland K, Stenersen J (2000) Induced resistance of Norway spruce, variation of phenolic compounds and their effects on fungal pathogens. For Pathol 30:97–108

    Google Scholar 

  • Fahn A (1990) Plant anatomy. Pergamon Press, Oxford

    Google Scholar 

  • Fahn A (1979) Resin ducts of the coniferae. In: Secretory tissues in plants. Academic Press,London

    Google Scholar 

  • Farjon A (2001) World checklist and bibliography of conifers, 2nd edn. Royal Botanical Gardens, Kew, Richmond

    Google Scholar 

  • Feeny P (1976) Plant apparency and chemical defense. In: Wallace JW, Mansell RT (eds)Biochemichal interaction between plants and insects. Plenum Press, New York, pp 1–40

    Google Scholar 

  • Franceschi VR, Krekling T, Berryman AA, Christiansen E (1998) Specialized phloem parenchyma cells in Norway spruce (Pinaceae) bark are an important site of defense reactions. Am J Bot 85:601–615

    Article  Google Scholar 

  • Franceschi VR, Krokene P, Krekling T, Christiansen E (2000) Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or bark beetle attack in Norway spruce (Pinaceae). Am J Bot 87:314–326

    Article  PubMed  Google Scholar 

  • Franceschi VR, Krekling T, Christiansen E (2002) Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense related responses in phloem and xylem. Am J Bot89:578–586

    Article  CAS  Google Scholar 

  • Franceschi VR, Krokene P, Christiansen E, Krekling T (2005) Anatomical and chemical defences of conifer bark against bark beetles and other pests (Tansley Review). New Phytol 167:353–376

    Article  PubMed  CAS  Google Scholar 

  • Gershenzon J, Croteau RB (1991). Terpenoids. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Vol I, the chemical participants. Academic Press, San Diego, pp 165–219

    Google Scholar 

  • Gijzen M, Lewinsohn E, Savage TJ, Croteau RB (1993) Conifer monoterpenes – biochemistry and bark beetle chemical ecology. ACS Symp. Ser. 525:8–22

    Article  CAS  Google Scholar 

  • Heady RD, Banks JG, Evans PD (2002) Wood anatomy of wollemi pine (Wollemia nobilis, Araucariaceae). IAWA Journal 23:339–357

    Google Scholar 

  • Hudgins JW, Christiansen E, Franceschi VR (2003a) Methyl jasmonate induced changes mimicking anatomical defenses in diverse members of the Pinaceae. Tree Physiol 23:361–371

    CAS  Google Scholar 

  • Hudgins JW, Krekling T, Franceschi VR (2003b) Distribution of calcium oxalate crystals in the secondary phloem of conifers: a constitutive defense mechanism? New Phytol 159:677–690

    Google Scholar 

  • Hudgins JW, Christiansen E, Franceschi VR (2004) Induction of anatomically based defense responses in stems of diverse conifers by methyl jasmonate: a phylogenetic perspective. Tree Physiol 24:251–264

    PubMed  CAS  Google Scholar 

  • Hudgins JW, Franceschi VR (2004) Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. Plant Physiol 13:2134–2149

    Article  Google Scholar 

  • Johnson MA, Croteau R (1987) Biochemistry of conifer resistance to bark beetles and their fungal symbionts. In: Fuller G, Nes WD (eds) Ecology and metabolism of plant lipids. American Chemical Society, Washington DC, pp 76–92

    Google Scholar 

  • Kartuch B, Karuch R, Weilgong P (1991) Site-specific differences in calcium oxalate content of the secondary phloem of spruce (Picea abies Karst). Flora 185:377–384

    Google Scholar 

  • Klepzig KD, Kruger EL, Smalley EB, Raffa KF (1995) Effects of biotic and abiotic stress on induced accumulation of terpenes and phenolics in red pines inoculated with bark beetle-vectored fungus. J Chem Ecol 21:601–626

    Article  CAS  Google Scholar 

  • Krekling T, Franceschi VR, Berryman AA, Christiansen E (2000) The structure and development of polyphenolic parenchyma cells in Norway spruce (Picea abies) bark. Flora 195:354–369

    Google Scholar 

  • Krekling T, Franceschi VR, Krokene P, Solheim H (2004) Differential anatomical responses of Norway spruce tissues to sterile and fungus-infected wounding. Trees 18:1–9

    Google Scholar 

  • Krokene P, Christiansen E, Solheim H, Berryman AA, Franceschi VR (1999) Induced resistance to pathogenic fungi in Norway spruce. Plant Physiol 121:565–570

    Article  PubMed  CAS  Google Scholar 

  • Krokene P, Nagy NE, Solheim H (2008) Methyl jasmonate and oxalic acid treatment of Norway spruce: anatomically based defence responses and increased resistance against fungal infection. Tree Physiol 28:29–35

    PubMed  CAS  Google Scholar 

  • Krokene P, Solheim H, Langström B (2000) Fungal infection and mechanical wounding induce disease resistance in Scots pine. Eur J Plant Pathol 106:537–541

    Article  Google Scholar 

  • Krokene P, Solheim H, Christiansen E (2003) Inducible anatomical defense responses in Norway spruce stems and their possible role in induced resistance. Tree Physiol 23:191–197

    PubMed  Google Scholar 

  • Kwon M, Davin LB, Lewis NG (2001) In situ hybridization and immunolocalization of lignan reductases in woody tissue: implications for heartwood formation and other forms for vascular tissue preservation. Phytochemistry 57:899–914

    Article  PubMed  CAS  Google Scholar 

  • Kytö M, Niemelä P, Annila E (1996) Vitality and bark beetle resistance of fertilized Norway spruce. For Ecol Manag 84:149–157

    Article  Google Scholar 

  • Lewinsohn E, Gijzen M, Croteau R (1991) Defense-mechanisms of conifers – differences in constitutive and wound-induced monoterpene biosynthesis among species. Plant Physiol96:44–49

    PubMed  CAS  Google Scholar 

  • Li SH, Schneider B, Gershenzon J (2007). Microchemical analysis of laser-microdissected stone cells of Norway spruce by cryogenic nuclear magnetic resonance spectroscopy. Planta 225:771–779

    Article  PubMed  CAS  Google Scholar 

  • Lieutier F, Yart A, Jay-Allemand C, Delorme L (1991) Preliminary investigations on phenolics as a response of Scots pine phloem to attacks by bark beetles and associated fungi. Eur J For Pathol 21:354–364

    Article  Google Scholar 

  • Lieutier F, Sauvard D, Brignolas F, Picron V, Yart A, Bastien C, Jay-Allemand C (1996) Changes in phenolic metabolites of Scots-pine phloem induced by Ophiostoma brunneo-ciliatum, a bark-beetle-associated fungus. Eur J For Pathol 26:145–158

    Article  Google Scholar 

  • Lieutier F, Brignolas F, Sauvard D, Yart A, Galet C, Brunet M, van de Sype H (2003) Intra- and inter-provenance variability in phloem phenols of Picea abies and relationship to a bark beetle-associated fungus. Tree Physiol 23:247–256

    PubMed  CAS  Google Scholar 

  • Lindberg M, Lundgren L, Gref R, Johansson M (1992) Stilbenes and resin acids in relation to the penetration of Heterobasidion annosum through the bark of Picea abies. Eur J For Pathol 22:95–106

    Article  Google Scholar 

  • Lombardero MJ, Ayres MP, Lorio PL, Ruel JJ (2000) Environmental effects on constitutive and inducible resin defences of Pinus taeda. Ecol Lett 3:329–339

    Article  Google Scholar 

  • Martin D, Tholl D, Gershenzon J, Bohlmann J (2002) Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol 129:1003–1018

    Article  PubMed  CAS  Google Scholar 

  • Miller B, Madilao LL, Ralph S, Bohlmann J (2005) Insect-induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. Plant Physiol 137:369–382

    Article  PubMed  CAS  Google Scholar 

  • Murmanis L, Evert RF (1967) Parenchyma cells of secondary phloem in Pinus strobus. Planta 73:301–318

    Article  Google Scholar 

  • Nagy NE, Fossdal CG, Krokene P, Krekling T, Lönneborg A, Solheim H (2004) Induced responses to pathogen infection in Norway spruce phloem: changes in polyphenolic parenchyma cells, chalcone synthase transcript levels and peroxidase activity. Tree Physiol24:505–515

    PubMed  CAS  Google Scholar 

  • Nagy NE, Franceschi VR, Solheim H, Krekling T, Christiansen E (2000) Wound-induced traumatic resin duct development in stems of Norway spruce (Pinaceae): anatomy and cytochemical traits. Am J Bot 87:302–313

    Article  PubMed  Google Scholar 

  • Nagy NE, Krokene P, Solheim H (2006) Anatomical-based defense responses of Scots pine (Pinus sylvestris) stems to two fungal pathogens. Tree Physiol 26:159–167

    PubMed  Google Scholar 

  • Ohtsu K, Takahashi H, Schnable PS, Nakazono M (2007) Cell type-specific gene expression profiling in plants by using a combination of laser microdissection and high-throughput technologies. Plant Cell Physiol 48:3–7

    Article  PubMed  CAS  Google Scholar 

  • Paine TD, Blanche CA, Nebeker TE, Stephen FM (1987) Composition of loblolly pine resin defenses: comparison of monoterpenes from induced lesion and sapwood resin. Can J For Res 17:1202–1206

    CAS  Google Scholar 

  • Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Ann Rev Entomol 42:179–206

    Article  CAS  Google Scholar 

  • Parham RA, Kaustinen HM (1976) Differential staining of tannin in sections of epoxy-embedded plant cells. Stain Technol 51:237–240

    PubMed  CAS  Google Scholar 

  • Penhallow DP (1907) A manual of the North American gymnosperms: exclusive of the Cycadales but together with certain exotic species. Athenaeum Press, Boston, MA. pp 404

    Google Scholar 

  • Phillips MA, Croteau RB (1999) Resin-based defense in conifers. Trends Plant Sci 4:184–190

    Article  PubMed  Google Scholar 

  • Raffa KF, Berryman AA (1982) Accumulation of monoterpenes and associated volatiles following inoculation of grand fir with a fungus transmitted by the fir engraver Scolytus ventralis (Coleoptera: Scolytidae). Can Entomol 114:797–810

    Article  CAS  Google Scholar 

  • Raffa KF, Berryman AA (1983). Physiological aspects of lodgepole pine wound responses to a fungal symbiont of the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae). Can Entomol 115:723–734

    Google Scholar 

  • Raffa KF, Berryman AA, Simasko J, Teal W, Wong BL (1985) Effects of grand fir monoterpenes on the fir engraver, Scolytus ventralis (Coleoptera: Scolytidae), and its symbiotic fungus. Environ Entomol 14:552–556

    CAS  Google Scholar 

  • Ralph SG, Hudgins JW, Jancsik S, Franceschi VR, Bohlmann J (2007) Aminocyclopropane carboxylic acid synthase is a regulated step in ethylene-dependent induced conifer defense. Full-length cDNA cloning of a multigene family, differential constitutive, and wound- and insect-induced expression, and cellular and subcellular localization in spruce and Douglas fir. Plant Physiol 143:410–424

    Article  PubMed  CAS  Google Scholar 

  • Reglinski T, Stavely FJL, Taylor JT (1998) Induction of phenylalanine ammonia lyase activity and control of Sphaeropsis sapinea infection in Pinus radiata by 5-chlorosalicylic acid. Eur J For Pathol 28:153–158

    Article  Google Scholar 

  • Reid RW, Whitney HS, Watson JA (1967) Reactions of lodgepole pine to attack by Dendroctonus ponderosae Hopkins and blue stain fungus. Can J Bot 45:1115–1126

    Google Scholar 

  • Richard S, Lapointe G, Rutledge G, Séguin A (2000) Induction of chalcone synthase expression in white spruce by wounding and jasmonate. Plant Cell Physiol 41:982–987

    Article  PubMed  CAS  Google Scholar 

  • Ruel JJ, Ayres MP, Lorio PL (1998) Loblolly pine responds to mechanical wounding with increased resin flow. Can J For Res 28:596–602

    Article  Google Scholar 

  • Russell CE, Berryman AA (1976) Host resistance to the fir engraver beetle. 1. Monoterpene composition of Abies grandis pitch blisters and fungus-infected wounds. Can J Bot 54:14–18

    Google Scholar 

  • Schmidt A, Zeneli G, Hietala AM, Fossdal CG, Krokene P, Christiansen E, Gershenzon J (2005) Induced chemical defenses in conifers: biochemical and molecular approaches to studying their function. In: Romeo J (ed) Chemical ecology and phytochemistry of forests and forest ecosytems. Elsevier, Amsterdam, pp 1–28

    Google Scholar 

  • Shain L (1967) Resistance of sapwood in stems of loblolly pine to infection by Fomes annosus. Phytopathology 57:1034–1045

    Google Scholar 

  • Shrimpton DM, Whitney HS (1968) Inhibition of growth of blue stain fungi by wood extractives. Can J Bot 46:757–761

    Article  CAS  Google Scholar 

  • Tomlin ES, Alfaro RI, Borden JH, He FL (1998) Histological response of resistant and susceptible white spruce to simulated white pine weevil damage. Tree Physiol 18: 21–28

    PubMed  Google Scholar 

  • Tomlin ES, Antonejevic E, Alfaro RI, Borden JH (2000) Changes in volatile terpene and diterpene resin acid composition of resistant and susceptible white spruce leaders exposed to simulated white pine weevil damage. Tree Physiol 20:1087–1095

    PubMed  CAS  Google Scholar 

  • Vanderwel D, Oehlschlager AC (1987) Biosynthesis of pheromones and endocrine regulation of pheromone production in Coleoptera. In: Prestwich GD, Blomquist GJ (eds) Pheromone biochemistry. Academic Press, New York, pp 175–215

    Google Scholar 

  • Vité JP (1961) The influence of water supply on oleoresin exudation pressure and resistance to bark beetle attack in Pinus ponderosa. Contributions from the Boyce Thompson Institute 21:37–66

    Google Scholar 

  • Viiri H, Annila E, Kitunen V, Niemela P (2001) Induced responses in stilbenes and terpenes in fertilized Norway spruce after inoculation with blue-stain fungus, Ceratocystis polonica. Trees 15:112–122

    Article  CAS  Google Scholar 

  • Wainhouse D, Cross DJ, Howell RS (1990) The role of lignin as a defense against the spruce bark beetle Dendroctonus micans – effect on larvae and adults. Oecologia 85:257–265

    Article  Google Scholar 

  • Wainhouse D, Rose DR, Peace AJ (1997) The influence of preformed defences on the dynamic wound response in spruce bark. Funct Ecol 11:564–572

    Article  Google Scholar 

  • Werker E, Fahn A (1969) Resin ducts of Pinus halepensis Mill.—their structure, development and pattern of arrangement. Bot J Linn Soc 62:379–411

    Google Scholar 

  • Wu H, Hu ZH (1997) Comparative anatomy of resin ducts of the Pinaceae. Trees Struct Funct 11:135–143

    Google Scholar 

  • Zeneli G, Krokene P, Christiansen E, Krekling T, Gershenzon J (2006) Methyl jasmonate treatment of large Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Tree Physiol 26:977–988

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Krokene, P., Nagy, N.E., Krekling, T. (2008). Traumatic Resin Ducts and Polyphenolic Parenchyma Cells in Conifers. In: Schaller, A. (eds) Induced Plant Resistance to Herbivory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8182-8_7

Download citation

Publish with us

Policies and ethics