Resistance at the Plant Cuticle

  • Caroline Müller

Keywords

Maize Alkaloid Benzyl Wettability Sorb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal AA (1998) Induced responses to herbivory and increased plant performance. Science 279:1201–1202PubMedCrossRefGoogle Scholar
  2. Agrawal AA, Conner JK, Johnson MT, Wallsgrove R (2002) Ecological genetics of induced plant defense against herbivores: additive genetic variation and costs of phenotypic plasticity. Evolution 56:2206–2213PubMedGoogle Scholar
  3. Anderson P (2002) Oviposition pheromones in herbivorous and carnivorous insects. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Berlin pp 235–263Google Scholar
  4. Arimura G, Kost C, Boland W (2005) Herbivore-induced, indirect plant defences. Biochim Biophys Acta-Molec Cell Biol Lipids 1734:91–111Google Scholar
  5. Atkin DSJ, Hamilton RJ (1982) The changes with age in the epicuticular wax of Sorghum bicolor. J Nat Prod (Lloydia) 45:697–703CrossRefGoogle Scholar
  6. Attygalle AB, Aneshansley DJ, Meinwald J, Eisner T (2000) Defense by foot adhesion in a chrysomelid beetle (Hemisphaerota cyanea): characterization of the adhesive oil. Zool-Anal Complex Sys 103:1–6Google Scholar
  7. Avato P, Bianchi G, Pogna N (1990) Chemosystematics of surface lipids from maize and some related species. Phytochemistry 29:1571–1576CrossRefGoogle Scholar
  8. Baker EA (1974) The influence of environment on leaf wax development in Brassica oleraceae var. gemmifera. New Phytol 73:955–966CrossRefGoogle Scholar
  9. Baker EA, Hunt GM (1986) Erosion of waxes from leaf surfaces by simulated rain. New Phytol 102:161–173CrossRefGoogle Scholar
  10. Baldini E, Facini O, Nerozzi F, Rossi F, Rotondi A (1997) Leaf characteristics and optical properties of different woody species. Trees-Struct Funct 12:73–81Google Scholar
  11. Bargel H, Barthlott W, Koch K, Schreiber L, Neinhuis C (2004) Plant cuticles: multifunctional interfaces between plant and environment. In: Hemsley AR, Poole I (eds) The evolution of plant physiology. Elsevier Academic Press, London, pp 171–194Google Scholar
  12. Bargel H, Koch K, Cerman Z, Neinhuis C (2006) Structure-function relationships of the plant cuticle and cuticular waxes – a smart material? Funct Plant Biol 33:893–910CrossRefGoogle Scholar
  13. Barnes JD, Cardoso-Vilhena J (1996) Interactions between electromagnetic radiation and the plant cuticle. In: Kerstiens G (ed) Plant cuticles: an integrated functional approach. BIOS Scientific, Oxford, pp 157–174Google Scholar
  14. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8CrossRefGoogle Scholar
  15. Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–260CrossRefGoogle Scholar
  16. Baum BR, Tulloch AP, Bailey LG (1980) A survey of epicuticular waxes among genera of Triticeae. 1. Ultrastructure of glumes and some leaves as observed with the scanning electron-microscope. Can J Bot 58:2467–2480CrossRefGoogle Scholar
  17. Baur P (1998) Mechanistic aspects of foliar penetration of agrochemicals and the effect of adjuvants. Rec Res Devel Agric Food Chem 2:809–837Google Scholar
  18. Bennett RN, Wallsgrove RM (1994) Secondary metabolites in plant defense-mechanisms. New Phytol 127:617–633CrossRefGoogle Scholar
  19. Bergey DR, Hoi GA, Ryan CA (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci USA93:12053–12058PubMedCrossRefGoogle Scholar
  20. Bergman DK, Dillwith JW, Zarrabi AA, Caddel JL, Berberet RC (1991) Epicuticular lipids of alfalfa relative to its susceptibility to spotted alfalfa aphids (Homoptera: Aphididae). Environ Entomol 20:781–785Google Scholar
  21. Betz O (2003) Structure of the tarsi in some Stenus species (Coleoptera, Staphylinidae): external morphology, ultrastructure, and tarsal secretion. J Morphol 255:24–43PubMedCrossRefGoogle Scholar
  22. Bianchi G, Avato P, Scarpa O, Murelli C, Audisio G, Rossini A (1989) Composition and structure of maize epicuticular wax esters. Phytochemistry 28:165–171CrossRefGoogle Scholar
  23. Blomquist GJ, Jackson LL (1973) Incorporation of labelled dietary n-alkanes into cuticular lipids of the grasshopper Melanopus sanguinipes. J Insect Physiol 19:1639–1647CrossRefGoogle Scholar
  24. Blua MJ, Yoshida HA, Toscano NC (1995) Oviposition preference of 2 Bemisia Species(Homoptera, Aleyrodidae). Environ Entomol 24:88–93Google Scholar
  25. Bodnaryk RP (1992) Leaf epicuticular wax, an antixenotic factor in Brassicaceae that affects the rate and pattern of feeding of flea beetles, Phyllotreta cruciferae (Goeze). Can J Plant Sci 72:1295–1303Google Scholar
  26. Bown AW, Hall DE, MacGregor KB (2002) Insect footsteps on leaves stimulate the accumulation of 4-aminobutyrate and can be visualized through increased chlorophyll fluorescence and superoxide production. Plant Physiol 129:1430–1434PubMedCrossRefGoogle Scholar
  27. Brennan EB, Weinbaum SA (2001) Stylet penetration and survival of three psyllid species on adult leaves and ‘waxy’ and ’de-waxed’ juvenile leaves of Eucalyptus globulus. Entomol Exp Appl 100:355–363CrossRefGoogle Scholar
  28. Brennan EB, Weinbaum SA, Rosenheim JA, Karban R (2001) Heteroblasty in Eucalyptus globulus (Myricales: Myricaceae) affects ovipositonal and settling preferences of Ctenarytaina eucalypti and C. spatulata (Homoptera: Psyllidae). Environ Entomol 30:1144–1149Google Scholar
  29. Buchholz A (2006) Characterization of the diffusion of non-electrolytes across plant cuticles: properties of the lipophilic pathway. J Exp Bo 57:2501–2513CrossRefGoogle Scholar
  30. Bullas-Appleton ES, Otis G, Gillard C, Schaafsma AW (2004) Potato leafhopper (Homoptera: Cicadellidae) varietal preferences in edible beans in relation to visual and olfactory cues. Environ Entomol 33:1381–1388Google Scholar
  31. Bystrom BG, Glater RB, Scott FM, Bowler FSC (1968) Leaf surface of Beta vulgaris-electron microscope study. Bot Gaz 129:133–138CrossRefGoogle Scholar
  32. Caldwell MM (1968) Solar ultraviolet radiation as an ecological factor for alpine plants. Ecol Monogr 38:243–268CrossRefGoogle Scholar
  33. Carter CD, Gianfagna TJ, Sacalis JN (1989) Sesquiterpenes in glandular trichomes of a wild tomato species and toxicity to the Colorado potato beetle. J Agric Food Chem 37:1425–1428CrossRefGoogle Scholar
  34. Cervantes DE, Eigenbrode SD, Ding HJ, Bosque-Perez NA (2002) Oviposition responses by Hessian fly, Mayetiola destructor, to wheats varying in surfaces waxes. J Chem Ecol 28:193–210PubMedCrossRefGoogle Scholar
  35. Chang GC, Neufeld J, Durr D, Duetting PS, Eigenbrode SD (2004a) Waxy bloom in peas influences the performance and behavior of Aphidius ervi, a parasitoid of the pea aphid. Entomol Exp Appl 110:257–265CrossRefGoogle Scholar
  36. Chang GC, Rutledge CE, Biggam RC, Eigenbrode SD (2004b) Arthropod diversity in peas with normal or reduced waxy bloom. J Insect Sci 4. Art. No. 18Google Scholar
  37. Chappell M, Robacker C (2006) Leaf wax extracts of four deciduous azalea genotypes affect azalea lace bug (Stephanitis pyrioides Scott) survival rates and behavior. J Am Soc Hort Sci 131:225–230Google Scholar
  38. Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345PubMedCrossRefGoogle Scholar
  39. Colazza S, Fucarino A, Peri E, Salerno G, Conti E, Bin F (2004) Insect oviposition induces volatile emission in herbaceous plants that attracts egg parasitoids. J Exp Biol 207:47–53PubMedCrossRefGoogle Scholar
  40. Cole RA, Riggal W (1992) Pleiotropic effects of genes in glossy Brassica oleracea resistant to Brevicoryne brassicae. In: Menken SBJ, Visser JH, Harrewijn P (eds) Proceedings of the 8th international symposium on insect-plant relationships. Kluwer Academic, Dordrecht,pp 313–315Google Scholar
  41. Derridj S, Boutin JP, Fiala V, Soldaat LL (1996a) Primary metabolites composition of the leek leaf surface: comparative study, impact on the host-plant selection by an ovipositing insect. Acta Bot Gall 143:125–130Google Scholar
  42. Derridj S, Wu BR, Stammitti L, Garrec JP, Derrien A (1996b) Chemicals on the leaf surface, information about the plant available to insects. Entomol Exp Appl 80:197–201CrossRefGoogle Scholar
  43. Desneux N, Fauvergue X, Dechaume-Moncharmont FX, Kerhoas L, Ballanger Y, Kaiser L (2005) Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. J Econ Entomol 98:9–17PubMedGoogle Scholar
  44. Dicke M, Takabayashi J, Posthumus MA, Schütte C, Krips OE (1998) Plant-phytoseiid interactions mediated by herbivore-induced plant volatiles: variation in production of cues and in responses of predatory mites. Rev Exp Appl Aca 22:311–333CrossRefGoogle Scholar
  45. Dutton A, Mattiacci L, Amadò R, Dorn S (2002) A novel function of the triterpene squalene in a tritrophic system. J Chem Ecol 28:103–116PubMedCrossRefGoogle Scholar
  46. Edwards PB (1982) Do waxes of juvenile Eucalyptus leaves provide protection from grazing insects? Aust J Ecol 7:347–352Google Scholar
  47. Ehleringer JR, Björkman O (1978) Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 36:151–162CrossRefGoogle Scholar
  48. Eigenbrode SD (2004) The effects of plant epicuticular waxy blooms on attachment and effectiveness of predatory insects. Arthr Struct Devel 33:91–102CrossRefGoogle Scholar
  49. Eigenbrode SD, Espelie KE (1995) Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol 40:171–194CrossRefGoogle Scholar
  50. Eigenbrode SD, Kabalo NN (1999) Effects of Brassica oleracea waxblooms on predation and attachment by Hippodamia convergens. Entomol Exp Appl 92:125–130CrossRefGoogle Scholar
  51. Eigenbrode SD, Kabalo NN, Stoner KA (1999) Predation, behavior, and attachment by Chrysoperla plorabunda larvae on Brassica oleracea with different surface waxblooms. Entomol Exp Appl 90:225–235CrossRefGoogle Scholar
  52. Eigenbrode SD, Pillai SK (1998) Neonate Plutella xylostella responses to surface wax components of a resitant cabbage (Brassica oleracea). J Chem Ecol 24:1611–1627CrossRefGoogle Scholar
  53. Eigenbrode SD, Shelton AM (1990) Behavior of neonate diamondback moth larvae (Lepidoptera, Plutellidae) on glossy-leafed resistant Brassica oleracea L. Environ Entomol 19:1566–1571Google Scholar
  54. Eigenbrode SD, Shelton AM (1992) Survival and behavior of Plutella xylostella larvae on cabbages with leaf waxes altered by treatment with S-ethyl dipropylthiocarbamate. Entomol Exp Appl 62:139–145CrossRefGoogle Scholar
  55. Eisner T, Aneshansley DJ (2000) Defense by foot adhesion in a beetle (Hemisphaerota cyanea). Proc Natl Acad Sci USA 97:6568–6573PubMedCrossRefGoogle Scholar
  56. Ensikat HJ, Neinhuis C, Barthlott W (2000) Direct access to plant epicuticular wax crystals by a new mechanical isolation method. Int J Plant Sci 161:143–148PubMedCrossRefGoogle Scholar
  57. Espelie KE, Bernays EA (1989) Diet-related differences in the cuticular lipids of Manduca sexta larvae. J Chem Ecol 15:2003–2017CrossRefGoogle Scholar
  58. Espelie KE, Bernays EA, Brown JJ (1991) Plant and insect cuticular lipids serve as behavioural cues for insects. Arch Insect Biochem Physiol 17:389–399CrossRefGoogle Scholar
  59. Espelie KE, Brown JJ (1990) Cuticular hydrocarbons of species which interact on four trophic levels: apple, Malus pumila Mill.; codling moth, Cydia pomonella L.; a hymenopteran parasitoid, Ascogaster quadridentata Wesmael; and a hyperparasite Perilampus fulvicornis Ashmead. Comp Biochem Physiol 95B:131–136Google Scholar
  60. Fatouros NE, Bukovinszkine’Kiss G, Kalkers LA, Gamborena RS, Dicke M, Hilker M (2005) Oviposition-induced plant cues: do they arrest Trichogramma wasps during host location? Entomol Exp Appl 115:207–215Google Scholar
  61. Federle W, Bruening T (2005) Ecology and biomechanics of slippery wax barriers and wax running in Macaranga ant mutualisms. In: Harrel A, Speck T, Rowe N (eds) Ecology and biomechanics: a mechanical approach to the ecology of animals and plants. CRC Press, Boca Raton, pp 163–185Google Scholar
  62. Federle W, Maschwitz U, Fiala B, Riederer M, Hölldobler B (1997) Slippery ant-plants and skilful climbers: selection and protection of specific ant partners by epicuticular wax blooms in Macaranga (Euphorbiaceae). Oecologia 112:217–224Google Scholar
  63. Federle W, Riehle M, Curtis ASG, Full RJ (2002) An integrative study of insect adhesion: mechanics and wet adhesion of pretarsal pads in ants. Integ and Comp Biol 42:1100–1106CrossRefGoogle Scholar
  64. Federle W, Rohrseitz K, Hölldobler B (2000) Attachment forces of ants measured with a centrifuge: better ‘wax-runners’ have a poorer attachment to a smooth surface. J Exp Biol 203:505–512PubMedGoogle Scholar
  65. Fiala V, Glad C, Martin M, Jolivet E, Derridj S (1990) Occurrence of soluble carbohydrates on the phylloplane of maize (Zea mays L.): variations in relation to leaf heterogeneity and position on the plant. New Phytol 115:609–615CrossRefGoogle Scholar
  66. Ficke A, Gadoury DM, Godfrey D, Dry IB (2004) Host barriers and responses to Uncinula necator in developing grape berries. Phytopathology 94:438–445CrossRefPubMedGoogle Scholar
  67. Fischer S, Samietz J, Wäckers FL, Dorn S (2004) Perception of chromatic cues during host location by the pupal parasitoid Pimpla turionellae (L.) (Hymenoptera: Ichneumonidae). Environ Entomol 33:81–87Google Scholar
  68. Foster SP, Harris MO (1992) Foliar chemicals of wheat and related grasses influencing oviposition by Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae). J Chem Ecol 18:1965–1980CrossRefGoogle Scholar
  69. Freeman B, Albrigo LG, Biggs RH (1979a) Cuticular waxes of developing leaves and fruit of Blueberry, Vaccinium ashei Reade Cv bluegem. J Am Soc Hort Sci 104:398–403Google Scholar
  70. Freeman B, Albrigo LG, Biggs RH (1979b) Ultrastructure and chemistry of cuticular waxes of developing Citrus leaves and fruits. J Am Soc Hort Sci 104:801–808Google Scholar
  71. Gatehouse JA (2002) Plant resistance towards insect herbivores: a dynamic interaction. New Phytol 156:145–169CrossRefGoogle Scholar
  72. Gaume L, Perret P, Gorb E, Gorb S, Labat JJ, Rowe N (2004) How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arthr Struct Devel 33:103–111CrossRefGoogle Scholar
  73. Gentry GL, Barbosa P (2006) Effects of leaf epicuticular wax on the movement, foraging behavior, and attack efficacy of Diaeretiella rapae. Entomol Exp Appl 121:115–122CrossRefGoogle Scholar
  74. Gonzales WL, Ramirez CC, Olea N, Niemeyer HM (2002) Host plant changes produced by the aphid Sipha flava: consequences for aphid feeding behaviour and growth. Entomol Exp Appl 103:107–113CrossRefGoogle Scholar
  75. Gorb SN (1998) The design of the fly adhesive pad: distal tenent setae are adapted to the delivery of an adhesive secretion. Proc Roy Soc Lond Ser B-Biol Sci 265:747–752CrossRefGoogle Scholar
  76. Gorb EV, Gorb SN (2002) Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomol Exp Appl 105:13–28CrossRefGoogle Scholar
  77. Gouret E, Rohr R, Chamel A (1993) Ultrastructure and chemical composition of some isolated plant cuticles in relation to their permeability to the herbicide, diuron. New Phytol124:423–431CrossRefGoogle Scholar
  78. Grant L, Daughtry CST, Vanderbilt VC (1993) Polarized and specular reflectance variation with leaf surface-features. Physiol Plant 88:1–9CrossRefGoogle Scholar
  79. Grevstad FS, Klepetka BW (1992) The influence of plant architecture on the foraging efficiencies of a suite of ladybird beetles feeding on aphids. Oecologia 92:399–404CrossRefGoogle Scholar
  80. Griffiths DW, Deighton N, Birch ANE, Patrian B, Baur R, Städler E (2001) Identification of glucosinolates on the leaf surface of plants from Cruciferae and other closely related species. Phytochemistry 57:693–700PubMedCrossRefGoogle Scholar
  81. Griffiths DW, Robertson GW, Shepherd T, Birch AN, Gordon SC, Woodford JAT (2000) A comparison of the composition of epicuticular wax from red raspberry (Rubus idaeus L.) and hawthorn (Crataegus monogyna Jacq.) flowers. Phytochemistry 55:111–116PubMedCrossRefGoogle Scholar
  82. Griffiths DW, Robertson GW, Shepherd T, Ramsay G (1999) Epicuticular waxes and volatiles from faba bean (Vicia faba) flowers. Phytochemistry 52:607–612CrossRefGoogle Scholar
  83. Gülz PG, Boor G (1992) Seasonal variations in epicuticular wax ultrastructures of Quercus robur leaves. Z Naturforsch C Biosci 47:807–814Google Scholar
  84. Gülz PG, Marner FJ (1986) Esters of benzyl alcolhol and 2-phenyl-ethanol-1 in epicuticular waxes from Jojoba leaves. Z Naturforsch C Biosci 41:673–676Google Scholar
  85. Gülz PG, Müller E, Schmitz K, Güth S (1992) Chemical composition and surface structures of epicuticular leaf waxes of Ginkgo biloba, Magnolia grandiflora and Liriodendron tulipifera. Z Naturforsch C Biosci 47:516–526Google Scholar
  86. Gülz PG, Scora RW, Müller E, Marner FJ (1987) Epicuticular leaf waxes of Citrus halimii stone. J Agric Food Chem 35:716–720CrossRefGoogle Scholar
  87. Hagley EAC, Bronskill JF, Ford EJ (1980) Effect of the physical nature of leaf and fruit surfaces on oviposition by the codling moth, Cydia pomonella (Lepidoptera, Tortricidae). Can Entomol 112:503–510CrossRefGoogle Scholar
  88. Hall DE, MacGregor KB, Nijsse J, Bown AW (2004) Footsteps from insect larvae damage leaf surfaces and initiate rapid responses. Eur J Plant Pathol 110:441–447CrossRefGoogle Scholar
  89. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504Google Scholar
  90. Henrique A, Portugal A, Trigo JR (2005) Similarity of cuticular lipids between a caterpillar and its host plant: a way to make prey undetectable for predatory ants? J Chem Ecol31:2551–2561Google Scholar
  91. Hilker M, Kobs C, Varama M, Schrank K (2002) Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. J Exp Biol 205:455–461PubMedGoogle Scholar
  92. Hilker M, Meiners T (2006) Eggs of herbivorous insects inducing early alert in plants. J Chem Ecol 32:1379–1397PubMedCrossRefGoogle Scholar
  93. Holloway PJ (1971) The chemical and physical characteristic of leaf surfaces. In: Preece TF, Dickinson CH (eds) Ecology of leaf surface microorganisms. Academic Press, London,pp 39–53Google Scholar
  94. Holloway PJ (1982) The chemical constitution of plant cutins. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London, pp 45–85Google Scholar
  95. Holloway PJ, Hunt GM, Baker EA, Macey MJK (1977) Chemical composition and ultrastructure of epicuticular wax in four mutants of Pisum sativum (L). Chem Phys Lipids 20:141–155CrossRefGoogle Scholar
  96. Hopkins RJ, Birch ANE, Griffiths DW, Baur R, Städler E, McKinlay RG (1997) Leaf surface compounds and oviposition preference of turnip root fly Delia floralis: the role of glucosinolate and nonglucosinolate compounds. J Chem Ecol 23:629–643CrossRefGoogle Scholar
  97. Hubbell SP, Howard JJ, Wiemer D. (1984) Chemical leaf repellency to an Attine ant – seasonal distribution among potential host plant-species. Ecology 65:1067–1076CrossRefGoogle Scholar
  98. Jeffree CE (1986) The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution. In: Juniper BE, Southwood TRE (eds) Insects and the plant surface. Edward Arnold, London, pp 23–64Google Scholar
  99. Jeffree CE (1996) Structure and ontogeny of plant cuticles. In: Kerstiens G (ed) Plant cuticles: an integrated functional approach. BIOS Scientific Publishers, Oxford, pp 33–82Google Scholar
  100. Jeffree CE (2006) The fine structure of the plant cuticle. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Blackwell Publishing, Oxford, pp 11–125CrossRefGoogle Scholar
  101. Jenks MA, Gaston CH, Goodwin MS, Keith JA, Teusink RS, Wood KV (2002) Seasonal variation in cuticular waxes on Hosta genotypes differing in leaf surface glaucousness. Hort Sci 37:673–677Google Scholar
  102. Jetter R, Klinger A, Schäffer S (2002) Very long-chain phenylpropyl and phenylbutyl esters from Taxus baccata needle cuticular waxes. Phytochemistry 61:579–587PubMedCrossRefGoogle Scholar
  103. Jetter R, Kunst L, Samuels L (2006) Composition of plant cuticular waxes. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Blackwell, London, pp 145–181CrossRefGoogle Scholar
  104. Jetter R, Riederer M (1996) Cuticular waxes from the leaves and fruit capsules of eight Papaveraceae species. Can J Bot 74:419–430Google Scholar
  105. Jetter R, Schäffer S (2001) Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiol 126:1725–1737PubMedCrossRefGoogle Scholar
  106. Jetter R, Schäffer S, Riederer M (2000) Leaf cuticular waxes are arranged in chemically and mechanically distinct layers: evidence from Prunus laurocerasus L. Plant Cell Environ23:619–628CrossRefGoogle Scholar
  107. Jolivet P (1988) Interrelationship between insects and plants. CRC Press, Boca RatonGoogle Scholar
  108. Justus KA, Dosdall LM, Mitchell BK (2000) Oviposition by Plutella xylostella (Lepidoptera: Plutellidae) and effects of phylloplane waxiness. J Econ Entomol 93:1152–1159PubMedCrossRefGoogle Scholar
  109. Kareiva P, Sahakian R (1990) Tritrophic effects of a simple architectural mutation in Pea plants. Nature 345:433–434CrossRefGoogle Scholar
  110. Kerner A (ed) (1879) Schutzmittel der Blüthen gegen unberufene Gäste. Verlag der Wagner’schen Universitäts-Buchhandlung, InnsbruckGoogle Scholar
  111. Kerstiens G, Schreiber L, Lendzian KJ (2006) Quantification of cuticular permeability in genetically modified plants. J Exp Bot 57:2547–2552PubMedCrossRefGoogle Scholar
  112. Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144PubMedCrossRefGoogle Scholar
  113. Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328PubMedCrossRefGoogle Scholar
  114. Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends Plant Sci 2:379–384CrossRefGoogle Scholar
  115. Krauss P, Markstädter C, Riederer M (1997) Attenuation of UV radiation by plant cuticles from woody species. Plant Cell Environ 20:1079–1085CrossRefGoogle Scholar
  116. Lambdon PW, Hassall M, Mithen R (1998) Feeding preferences of woodpigeons and flea-beetles for oilseed rape and turnip rape. Ann Appl Biol 133:313–328CrossRefGoogle Scholar
  117. Leveau JHJ (2004) Leaf surface sugars. In: Decker M (ed) Encyclopedia of plant and crop science. Dekker M, New York, pp 642–645Google Scholar
  118. Major DJ, McGinn SM, Gillespie TJ, Baret F (1993) A technique for determination of single leaf reflectance and transmittance in field studies. Remote Sens Environ 43:209–215CrossRefGoogle Scholar
  119. Mallavadhani UV, Mahapatra A, Raja SS, Manjula C (2003) Antifeedant activity of some pentacyclic triterpene acids and their fatty acid ester analogues. J Agric Food Chem 51:1952–1955PubMedCrossRefGoogle Scholar
  120. Mäntylä E, Klemola T, Haukioja E (2004) Attraction of willow warblers to sawfly-damaged mountain birches: novel function of inducible plant defences? Ecol Lett 7:915–918CrossRefGoogle Scholar
  121. Markstädter C, Federle W, Jetter R, Riederer M, Hölldobler B (2000) Chemical composition of the slippery epicuticular wax blooms on Macaranga (Euphorbiaceae) ant-plants. Chemoecology 10:33–40CrossRefGoogle Scholar
  122. Markstädter C, Queck I, Baumeister J, Riederer M, Schreiber U, Bilger W (2001) Epidermal transmittance of leaves of Vicia faba for UV radiation as determined by two different methods. Photosynth Res 67:17–25PubMedCrossRefGoogle Scholar
  123. Mattiacci L, Rocca BA, Scascighini N, D’Alessandro M, Hern A, Dorn S (2001) Systemically induced plant volatiles emitted at the time of ‘danger’. J Chem Ecol 27:2233–2252PubMedCrossRefGoogle Scholar
  124. Meiners T, Hilker M (1997) Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Oecologia 112:87–93CrossRefGoogle Scholar
  125. Müller C (1999) Chemische Ökologie des Phytophagenkomplexes an Tanacetum vulgare L. (Asteraceae). Logos, BerlinGoogle Scholar
  126. Müller C (2006) Plant-insect interactions on cuticular surfaces. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Blackwell, Oxford, pp 398–422CrossRefGoogle Scholar
  127. Müller C, Hilker M (2001) Host finding and oviposition behavior in a chrysomelid specialist – the importance of host plant surface waxes. J Chem Ecol 27:985–994PubMedCrossRefGoogle Scholar
  128. Müller C, Riederer M (2005) Review: plant surface properties in chemical ecology. J Chem Ecol 31:2621–2651PubMedCrossRefGoogle Scholar
  129. Müller C, Rosenberger C (2006) Different oviposition behaviour in Chrysomelid beetles: characterisation of the interface between oviposition secretion and the plant surface. Arthr Struct Devel 35:197–205CrossRefGoogle Scholar
  130. Mulroy TW (1979) Spectral properties of heavily glaucous and non-glaucous leaves of a succulent rosette-plant. Oecologia 38:349–357CrossRefGoogle Scholar
  131. Nawrath C (2006) Unravelling the complex network of cuticular structure and function. Curr Opin Plant Biol 9:281–287PubMedCrossRefGoogle Scholar
  132. Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677CrossRefGoogle Scholar
  133. Neinhuis C, Barthlott W (1998) Seasonal changes of leaf surface contamination in beech, oak, and ginkgo in relation to leaf micromorphology and wettability. New Phytol 138:91–98CrossRefGoogle Scholar
  134. Neinhuis C, Koch K, Barthlott W (2001) Movement and regeneration of epicuticular waxes through plant cuticles. Planta 213:427–434PubMedCrossRefGoogle Scholar
  135. Netting AG, von Wettstein P (1973) Physicochemical basis of leaf wettability in wheat. Planta 114:289–309CrossRefGoogle Scholar
  136. Neuenschwander P, Michelakis S, Holloway P, Berchtold W (1985) Factors affecting the susceptibility of fruits of different olive varieties to attack by Dacus oleae (Gmel.) (Dipt., Tephritidae). Z Angew Entomol 100:174–188Google Scholar
  137. Nwanze KF, Pring RJ, Sree PS, Butler DR, Reddy YVA, Soman P (1992) Resistance in sorghum to the shoot fly, Atherigona soccata: epicuticular wax and wetness of the central whorl leaf of young seedlings. Ann Appl Biol 120:373–382CrossRefGoogle Scholar
  138. Ohgushi T (2005) Indirect interaction webs: herbivore-induced effects through trait change in plants. Annu Rev Ecol Syst 36:81–105CrossRefGoogle Scholar
  139. Olson DM, Andow DA (2006) Walking pattern of Trichogramma nubilale Ertle & Davis (Hymenoptera; Trichogrammatidae) on various surfaces. Biol Control 39:329–335CrossRefGoogle Scholar
  140. Olsson LC, Veit M, Weissenbock G, Bornman JF (1998) Differential flavonoid response to enhanced UV-B radiation in Brassica napus. Phytochemistry 49:1021–1028CrossRefGoogle Scholar
  141. Pelletier Y, Dutheil J (2006) Behavioural responses of the colorado potato beetle to trichomes and leaf surface chemicals of Solanum tarijense. Entomol Exp Appl 120:125–130CrossRefGoogle Scholar
  142. Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, Pregitzer KS, Hendrey GR, Dickson RE, Zak DR, Oksanen E, Sober J, Harrington R, Karnosky DsF (2002) Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature 420:403–407PubMedCrossRefGoogle Scholar
  143. Peter AJ, Shanower TG (2001) Role of plant surface in resistance to insect herbivores. In: Ananthakrishnan TN (ed) Insects and plant defence dynamics. Science Publishers, Enfield, pp 107–132Google Scholar
  144. Pfündel EE, Agati G, Cerovic ZG (2006) Optical properties of plant surfaces. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Blackwell, London, pp 216–249CrossRefGoogle Scholar
  145. Popp C, Burghardt M, Friedmann A, Riederer M (2005) Characterization of hydrophilic and lipophilic pathways of Hedera helix L. cuticular membranes: permeation of water and uncharged organic compounds. J Exp Bot 56:2797–2806PubMedCrossRefGoogle Scholar
  146. Powell G, Maniar SP, Picket JA, Hardie J (1999) Aphid responses to non-host epicuticular lipids. Entomol Exp Appl 91:115–123CrossRefGoogle Scholar
  147. Prokopy RJ, Collier RH, Finch S (1983) Leaf color used by cabbage root flies to distinguish among host plants. Science 221:190–192PubMedCrossRefGoogle Scholar
  148. Prokopy RJ, Owens ED (1983) Visual detection of plants by herbivorous insects. Ann Rev Entomol 28:337–364CrossRefGoogle Scholar
  149. Reifenrath K, Riederer M, Müller C (2005) Leaf surface wax layers of Brassicaceae lack feeding stimulants for Phaedon cochleariae. Entomol Exp Appl 115:41–50CrossRefGoogle Scholar
  150. Riccio R, Trevisan M, Capri E (2006) Effect of surface waxes on the persistence of chlorpyrifos-methyl in apples, strawberries and grapefruits. Food Addit Contam 23:683–692PubMedCrossRefGoogle Scholar
  151. Riedel M, Eichner A, Jetter R (2003) Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta 218:87–97PubMedCrossRefGoogle Scholar
  152. Riederer M, Burghardt M, Mayer S, Obermeier H, Schönherr J (1995) Sorption of monodisperese alcohol ethoxylates and their effects on the mobility of 2,4-D in isolated plant cuticles. J Agric Food Chem 43:1067–1075CrossRefGoogle Scholar
  153. Riederer M, Daiss A, Gilbert N, Kohle H (2002) Semi-volatile organic compounds at the leaf/atmosphere interface: numerical simulation of dispersal and foliar uptake. J Exp Bot 53:1815–1823PubMedCrossRefGoogle Scholar
  154. Riederer M, Friedmann A (2006) Transport of lipophilic non-electrolytes across the cuticle. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Blackwell, Oxford, pp 250–279CrossRefGoogle Scholar
  155. Riederer M, Markstädter C (1996) Cuticular waxes: a critical assessment of current knowledge. In: Kerstiens G (ed) Plant cuticles – an integrated functional approach. BIOS Scientific, Oxford, pp 189–200Google Scholar
  156. Riederer M, Schönherr J (1988) Development of plant cuticles: fine structure and cutin composition of Clivia miniata Reg. leaves. Planta 174:127–138CrossRefGoogle Scholar
  157. Riederer M, Schönherr J (1990) Effects of surfactants on water permeability of isolated cuticles and on the composition of their cuticular waxes. Pest Sci 29:85–94CrossRefGoogle Scholar
  158. Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032PubMedCrossRefGoogle Scholar
  159. Robberecht R, Caldwell MM, Billings WD (1980) Leaf ultraviolet optical-properties along a latitudinal gradient in the arctic-alpine life zone. Ecology 61:612–619CrossRefGoogle Scholar
  160. Roda AL, Oldham NJ, Svatoš A, Baldwin IT (2003) Allometric analysis of the induced flavonols on the leaf surface of wild tobacco (Nicotiana attenuata). Phytochemistry 62:527–536PubMedCrossRefGoogle Scholar
  161. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants. Environ Sci Technol 27:2700–2711Google Scholar
  162. Roitman JN, Wong RY, Wollenweber E (1993) Methylene bisflavonoids from frond exudate of Pentagramma triangularis ssp. triangularis. Phytochemistry 34:297–301CrossRefGoogle Scholar
  163. Röse USR, Tumlinson JH (2004) Volatiles released from cotton plants in response to Helicoverpa zea feeding damage on cotton flower buds. Planta 218:824–832PubMedCrossRefGoogle Scholar
  164. Rostás M, Hilker M (2002) Feeding damage by larvae of the mustard leaf beetle deters conspecific females from oviposition and feeding. Entomol Exp Appl 103:267–277CrossRefGoogle Scholar
  165. Rutledge CE, Eigenbrode SD (2003) Epicuticular wax on pea plants decreases instantaneous search rate of Hippodamia convergens larvae and reduces attachment to leaf surfaces. Can Entomol 135:93–101Google Scholar
  166. Rutledge CE, Robinson AP, Eigenbrode SD (2003) Effects of a simple plant mutation on the arthropod community and the impacts of predators on a principle insect herbivore. Oecologia 135:39–50PubMedGoogle Scholar
  167. Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta-Prot Struct Molec Enzymol 1477:112–121Google Scholar
  168. Schoonhoven LM, van Loon JJA, Dicke M (2006) Insect-plant biology. Oxford University Press, Oxford, UKGoogle Scholar
  169. Schreiber L (2006) Review of sorption and diffusion of lipophilic molecules in cuticular waxes and the effects of accelerators on solute mobilities. J Exp Bot 57:2515–2523PubMedCrossRefGoogle Scholar
  170. Severson RF, Rrendale RF, Chortyk OT, Johnson AW, Jackson DM, Gwynn GR, Chaplin JF, Stephenson MG (1984) Quantitation of the major cuticular components from green leaf of different tobacco types. J Agric Food Chem 32:566–570CrossRefGoogle Scholar
  171. Shah MA (1982) The influence of plant-surfaces on the searching behavior of coccinellid larvae. Entomol Exp Appl 31:377–380Google Scholar
  172. Shepherd T, Robertson GW, Griffiths DW, Birch ANE (1999a) Epicuticular wax composition in relation to aphid infestation and resistance in red raspberry (Rubus idaeus L.). Phytochemistry 52:1239–1254CrossRefGoogle Scholar
  173. Shepherd T, Robertson GW, Griffiths DW, Birch ANE (1999b) Epicuticular wax ester and triacylglycerol composition in relation to aphid infestation and resistance in red raspberry (Rubus idaeus L.). Phytochemistry 52:1255–1267CrossRefGoogle Scholar
  174. Soldaat LL, Boutin JP, Derridj S (1996) Species-specific composition of free amino acids on the leaf surface of four Senecio species. J Chem Ecol 22:1–12CrossRefGoogle Scholar
  175. Städler E (1984) Contact chemoreception. In: Bell WJ, Cardé RT (eds) Chemical ecology of insects. Chapman & Hall, London, pp 3–35Google Scholar
  176. Städler E (1986) Oviposition and feeding stimuli in leaf surface waxes-an overview. In: Juniper BE, Southwood TRE (eds) Insects and the plant surface. Edward Arnold, London, pp 1–22Google Scholar
  177. Städler E (1992) Behavioral responses of insects to plant secondary compounds. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites. Academic Press, San Diego, pp 45–88Google Scholar
  178. Stanjek V, Herhaus C, Ritgen U, Boland W, Städler E (1997) Changes in the leaf surface chemistry of Apium graveolens (Apiaceae) stimulated by jasmonic acid and perceived by a specialist insect. Helv Chim Acta 80:1408–1420CrossRefGoogle Scholar
  179. Steinbauer MJ, Schiestl FP, Davies NW (2004) Monoterpenes and epicuticular waxes help female autumn gum moth differentiate between waxy and glossy Eucalyptus and leaves of different age. J Chem Ecol 30:1117–1142PubMedCrossRefGoogle Scholar
  180. Stoner KA (1990) Glossy leaf wax and plant resistance to insects in Brassica oleracea under natural infestation. Environ Entomol 19:730–739Google Scholar
  181. Stork NE (1980) Role of waxblooms in preventing attachment to brassicas by the mustard beetle, Phaedon cochleariae. Entomol Exp Appl 28:100–107CrossRefGoogle Scholar
  182. Talley SM, Coley PD, Kursar TA (2002) Antifungal leaf-surface metabolites correlate with fungal abundance in sagebrush populations. J Chem Ecol 28:2141–2168PubMedCrossRefGoogle Scholar
  183. Tamayo MC, Rufat M, Bravo JM, San Segundo B (2000) Accumulation of a maize proteinase inhibitor in response to wounding and insect feeding, and characterization of its activity toward digestive proteinases of Spodoptera littoralis larvae. Planta 211:62–71PubMedCrossRefGoogle Scholar
  184. Taylor FE, Davies LG, Cobb AH (1981) An analysis of the epicuticular wax of Chenopodium album leaves in relation to environmental change, leaf wettability and the penetration of the herbicide bentazone. Ann Appl Biol 98:471–478CrossRefGoogle Scholar
  185. Traw MB, Dawson TE (2002) Differential induction of trichomes by three herbivores of black mustard. Oecologia 131:526–532CrossRefGoogle Scholar
  186. Uematsu H, Sakanoshita A (1989) Possible role of cabbage leaf wax bloom in suppressing Diamondback moth Plutella xylostella (Lepidoptera: Yponomeutidae) oviposition. Appl Entomol Zool 24:253–257Google Scholar
  187. Valkama E, Koricheva J, Ossipov V, Ossipova S, Haukioja E, Pihlaja K (2005) Delayed induced responses of birch glandular trichomes and leaf surface lipophilic compounds to mechanical defoliation and simulated winter browsing. Oecologia 146:385–393PubMedCrossRefGoogle Scholar
  188. van Dam NM, Hadwich K, Baldwin IT (2001) Induced responses in Nicotiana attenuata affect behavior and growth of the specialist herbivore Manduca sexta. Oecologia 122:371–379Google Scholar
  189. van Loon JJA, Blaakmeer A, Griepink FC, van Beek TA, Schoonhoven LM (1992) Leaf surface compound from Brassica oleracea (Cruciferae) induces oviposition by Pieris brassicae (Lepidoptera, Pieridae). Chemoecology 3:39–44CrossRefGoogle Scholar
  190. Vogelmann TC (1993) Plant-tissue optics. Annu Rev Plant Physiol Plant Molec Biol 44:231–251CrossRefGoogle Scholar
  191. Vötsch W, Nicholson G, Müller R, Stierhof YD, Gorb S, Schwarz U (2002) Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem Molec Biol 32:1605–1613CrossRefGoogle Scholar
  192. Vrieling K, Derridj S (2003) Pyrrolizidine alkaloids in and on the leaf surface of Senecio jacobaea L. Phytochemistry 64:1223–1228PubMedCrossRefGoogle Scholar
  193. Walton TJ (1990) Waxes, cutin and suberin. In: Harwood JL, Boyer J (eds) Lipids, membranes and aspects of photobiology. Academic Press, London, pp 105–158Google Scholar
  194. Welke B, Ettlinger K, Riederer M (1998) Sorption of volatile organic chemicals in plant surfaces. Environ Sci Technol 32:1099–1104CrossRefGoogle Scholar
  195. Whitehouse P, Holloway PJ, Caseley JC (1982) The epicuticular wax of wild oats in relation to foliar entry of the herbicides diclofop-methyl and difenzoquat. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London, pp 315–330Google Scholar
  196. Wollenweber E (1989) Exudate flavonoids in flowering plants and ferns. Naturwissenschaften 76:458–463CrossRefGoogle Scholar
  197. Wollenweber E, Christ M, Dunstan RH, Roitman JN, Stevens JF (2005a) Exudate flavonoids in some Gnaphalieae and Inuleae (Asteraceae). Z Naturforsch C Biosci 60:671–678Google Scholar
  198. Wollenweber E, Dorr M, Bohm BA, Roitman JN (2004) Exudate flavonoids of eight species of Ceanothus (Rhamnaceae). Z Naturforsch C Biosci 59:459–462Google Scholar
  199. Wollenweber E, Dorsam M, Dorr M, Roitman JN, Valant-Vetschera KM (2005b) Chemodiversity of surface flavonoids in Solanaceae. Z Naturforsch C Biosci 60:661–670Google Scholar
  200. Woodhead S (1983) Surface chemistry of Sorghum bicolor and its importance in feeding by Locusta migratoria. Physiol Entomol 8:345–352CrossRefGoogle Scholar
  201. Woolley JT (1971) Reflectance and transmittance of light by leaves. Plant Physiol 47:656–662PubMedCrossRefGoogle Scholar
  202. Yang G, Isenhour DJ, Espelie KE (1991) Activity of maize leaf cuticular lipids in resistance to leaf-feeding by the fall armyworm. Florida Entomol 74:229–236CrossRefGoogle Scholar
  203. Yencho GC, Renwick JAA, Steffens JC, Tingey WM (1994) Leaf surface extracts of Solanum berthaultii Hawkes deter Colorado beetle feeding. J Chem Ecol 20:991–1007CrossRefGoogle Scholar
  204. Zabkiewicz JA (2000) Adjuvants and herbicidal efficacy – present status and future prospects. Weed Res 40:139–149CrossRefGoogle Scholar
  205. Zalucki MP, Clarke AR, Malcolm SB (2002) Ecology and behavior of first instar larval Lepidoptera. Annu Rev Entomol 47:361–393PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Caroline Müller
    • 1
  1. 1.Department of Chemical EcologyUniversity of BielefeldD-33615 BielefeldGermany

Personalised recommendations