Skip to main content

Leaf Trichome Formation and Plant Resistance to Herbivory

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal AA (1999) Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 80:1713–1723

    Google Scholar 

  • Agrawal AA (2000) Specificity of induced resistance in wild radish: causes and consequences for two specialist and two generalist caterpillars. Oikos 89:493–500

    Google Scholar 

  • Agrawal AA (2004) Resistance and susceptibility of milkweed: competition, root herbivory, and plant genetic variation. Ecology 85:2118–2133

    Google Scholar 

  • Agrawal AA, Conner JK, Stinchcombe JR (2004) Evolution of plant resistance and tolerance to frost damage. Ecol Lett 7:1199–1208

    Google Scholar 

  • Ågren J, Schemske DW (1993) The cost of defense against herbivores: an experimental study of trichome production in Brassica rapa. Am Nat 141:338–350

    Google Scholar 

  • Ågren J, Schemske DW (1994) Evolution of trichome number in a naturalized population of Brassica rapa. Am Nat 143:1–13

    Google Scholar 

  • Arroyo-García R, Martínez-Zapater JM, Fernández Prieto JA, Álvarez-Arbesú R (2001) AFLP evaluation of genetic similarity among laurel populations (Laurus L.). Euphytica 122:155–164

    Google Scholar 

  • Barnes BV, Han FQ (1993) Phenotypic variation of Chinese aspens and their relationships to similar taxa in Europe and North America. Can J Botany 71:799–815

    Google Scholar 

  • Baur R, Binder S, Benz G (1991) Non glandular leaf trichomes as short-term inducible defence of the grey alder, Alnus incana (L.), against the chrysomelid beetle, Agelastica alni L. Oecologia 87:219–226

    Google Scholar 

  • Benz BW, Martin CE (2006) Foliar trichomes, boundary layers, and gas exchange in the species of epiphytic Tillandsia (Bromeliaceae). J Plant Physiol 163:648–656

    PubMed  CAS  Google Scholar 

  • Björkman C, Ahrne K (2005) Influence of leaf trichome density on the efficiency of two polyphagous insect predators. Entomol Exp Appl 115:179–186

    Google Scholar 

  • Björkman C, Anderson DB (1990) Trade-off among antiherbivore defences in a South American blackberry (Rubus bogotensis). Oecologia 85:247–249

    Google Scholar 

  • Bostock RM (1999) Signal conflicts and synergies in induced resistance to multiple attackers. Physiol Mol Plant Pathol 55:99–109

    Google Scholar 

  • Choinski JS, Wise RR (1999) Leaf growth and development in relation to gas exchange in Quercus marilandica Muenchh. J Plant Physiol 154:302–309

    CAS  Google Scholar 

  • Cipollini D, Purrington CB, Bergelson J (2003) Costs of induced responses in plants. Basic Appl Ecol 4:79–85

    Google Scholar 

  • Clauss MJ, Dietel S, Schubert G, Michell-Olds T (2006) Glucosinolate and trichome defenses in a natural Arabidopsis lyrata population. J Chem Ecol 32:2351–2373

    PubMed  CAS  Google Scholar 

  • Dalin P, Björkman C (2003) Adult beetle grazing induces willow trichome defense against subsequent larval feeding. Oecologia 134:112–118

    PubMed  Google Scholar 

  • Dalin P, Björkman C, Eklund K (2004) Leaf beetle grazing does not induce willow trichome defence in the coppicing willow Salix viminalis. Agric For Entomol 6:105–109

    Google Scholar 

  • Duffey SS (1986) Plant glandular trichomes: their partial role in defence against insects. In: Juniper B, Southwood SR (eds) Insects and the plant surface, Arnold, London, pp 151–172

    Google Scholar 

  • Ehrlinger J (1984) Ecology and physiology of leaf pubescence in North American desert plants. In: Rodriguez E, Healey PL, Mehta I (eds) Biology and chemistry of plant trichomes. Plenum Press, New York, pp 113–132

    Google Scholar 

  • Farrar RR, Kennedy G (1991) Inhibition of Telenomus sphingis an egg parasitoid of Manduca spp by trichome 2 tridecanone-based host plant resistance in tomato. Entomol Exp Appl 60:157–166

    CAS  Google Scholar 

  • Feeny PP (1976) Plant apparency and chemical defense. In: Wallace JM, Mansell RL (eds) Biochemical interaction between plants and insects. Plenum Press, New York, pp 1–40

    Google Scholar 

  • Fordyce JA, Agrawal AA (2001) The role of plant trichomes and caterpillar group size on growth and defence of the pipevine swallowtail Battus philenor. J Anim Ecol 70:997–1005

    Google Scholar 

  • Gaffney T, Frierich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessman H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    PubMed  CAS  Google Scholar 

  • Gange AC (1995) Aphid performance in an alder (Alnus) hybrid zone. Ecology 76:2074–2083

    Google Scholar 

  • Handley R, Ekbom B, Ågren J (2005) Variation in trichome density and resistance against a specialist insect herbivore in natural populations of Arabidopsis thaliana. Ecol Entomol 30:284–292

    Google Scholar 

  • Hare JD (1992) Effects of plant variation on herbivore-natural enemy interactions. In: Fritz RS, Simms EL (eds) Plant resistance to herbivores and pathogens: ecology, evolution and genetics. University of Chicago Press, Chicago, pp 278–298

    Google Scholar 

  • Hare JD, Elle E (2002) Variable impact of diverse insect herbivores on dimorphic Datura wrightii. Ecology 83:2711–2720

    Google Scholar 

  • Hartley SE, Lawton JH (1987) Effects of different types of damage on the chemistry of birch foliage. Oecologia 74:432–437

    Google Scholar 

  • Hauser M-T, Harr B, Schlötterer C (2001) Trichome distribution in Arabidopsis thaliana and its close relative Arabidopsis lyrata: molecular analysis of the candidate gene GLABROUS1. Mol Biol Evol 18:1754–1763

    PubMed  CAS  Google Scholar 

  • Heinz KM, Zalom FG (1996) Performance of the predator Delphastus pusillus on Bemisia resistant and susceptible tomato lines. Entomol Exp Appl 81:345–352

    Google Scholar 

  • Höglund S, Larsson S (2005) Abiotic induction of susceptibility in insect-resistant willow. Entomol Exp Appl 115:89–96

    Google Scholar 

  • Hülskamp M, Schnittger A (1998) Spatial regulation of trichome formation Arabidopsis thaliana. Semin Cell Dev Biol 9:213–220

    PubMed  Google Scholar 

  • Jeffree CE (1986) The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, function and evolution. In: Juniper B, Southwood SR (eds) Insects and the plant surface. Arnold, London, pp 23–64

    Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. The University of Chicago Press, Chicago, p 319

    Google Scholar 

  • Kärkkäinen K, Ågren J (2002) Genetic basis of trichome production in Arabidopsis lyrata. Hereditas 136:219–226

    PubMed  Google Scholar 

  • Kärkkäinen K, Løe G, Ågren J (2004) Population structure in Arabidopsis lyrata: evidence for divergent selection on trichome production. Evolution 58:2831–2836

    PubMed  Google Scholar 

  • Kauffman WC, Kennedy GG (1989) Relationship between trichome density in tomato and parasitism of Heliothis spp. (Lepidoptera, Noctuidae) eggs by Trichogramma spp (Hymenoptera, Trichogrammatidae). Environ Entomol 18:698–704

    Google Scholar 

  • Kennedy GG (2003) Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Ann Rev Entomol 48:51–72

    CAS  Google Scholar 

  • Kivimäki M, Kärkkäinen K, Gaudeul M, Løe G, Ågren J (2007) Gene, phenotype and function: GLABROUS1 and resistance to herbivory in natural populations of Arabidopsis lyrata. Mol Ecol 16:453–462

    PubMed  Google Scholar 

  • Koornneef M (1981) The complex syndrome of ttg mutants. Arabid Inf Serv 18:45–51

    Google Scholar 

  • Krips OE, Kleijn PW, Willems PEL, Gols GJZ, Dicke M (1999) Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 23:119–131

    Google Scholar 

  • Larkin JC, Young N, Prigge M, Marks MD (1996) The control of trichome spacing and number in Arabidopsis. Development 122:997–1005

    PubMed  CAS  Google Scholar 

  • Levin DA (1973) The role of trichomes in plant defence. Q Rev Biol 48:3–15

    Google Scholar 

  • Løe G, Toräng P, Gaudeul M, Ågren J (2007) Trichome production and spatiotemporal variation in herbivory in the perennial herb Arabidopsis lyrata. Oikos 116:134–142

    Google Scholar 

  • Lovinger A, Liewehr D, Lamp WO (2000) Glandular trichomes on alfalfa impede searching behavior of the potato leafhopper parasitoid. Biol Control 18:187–192

    Google Scholar 

  • Lucas E, Brodeur J (1999) Oviposition site selection by the predatory midge Aphidoletes aphidimyza (Diptera: Cecidomyiidae). Environ Entomol 28:622–627

    Google Scholar 

  • Marks MD (1997) Molecular genetic analysis of trichome development in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 48:137–163

    PubMed  CAS  Google Scholar 

  • Mauricio R (1998) Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am Nat 151:20–28

    Google Scholar 

  • Mauricio R, Rausher MD (1997) Experimental manipulations of putative selective agents provides evidence for the role of natural enemies in the evolution of plant defense. Evolution 51:1435–1444

    Google Scholar 

  • Morrison LW (2002) The geographic distribution of pubescence in the sea daisy, Borrichia aborescens, on Bahamian Islands. Glob Ecol Biogeogr 11:247–252

    Google Scholar 

  • Mulatu B, Applebaum SW, Coll M (2006) Effect of tomato leaf traits on the potato tuber moth and its predominant larval parasitoid: a mechanism for enemy-free space. Biol Control37:231–236

    Google Scholar 

  • Mutikainen P, Walls M (1995) Growth, reproduction and defence in nettles: responses to herbivory modified by competition and fertilization. Oecologia 104:487–495

    Google Scholar 

  • Nagata T, Todoriki S, Hayashi T, Shibata Y, Mori M, Kanegae H, Kikuchi S (1999) Gamma-radiation induces leaf trichome formation in Arabidopsis. Plant Physiol 120:113–119

    PubMed  CAS  Google Scholar 

  • Nihoul P (1993) Do light-intensity, temperature and photoperiod affect the entrapment of mites on glandular hairs of cultivated tomatoes. Exp Appl Acarol 17:709–718

    Google Scholar 

  • Obrycki JJ, Tauber MJ (1984) Natural enemy activity on glandular pubescent potato plants in the greenhouse: an unreliable predictor of effects in the field. Environ Entomol 13:679–683

    Google Scholar 

  • Ohashi Y, Oka A (2002) Entopically additive expression of GLABRA2 alters the frequency and spacing of trichome initiation. Plant J 29:359–369

    PubMed  CAS  Google Scholar 

  • Olson DM, Andow DA (2006) Walking patterns of Trichogramma nubilale Ertle & Davis (Hymenoptera; Trichogrammatidae) on various surfaces. Biol Control 39:329–335

    Google Scholar 

  • Olson DL, Nechols JR (1995) Effects of squash leaf trichome exudates and honey on adult feeding, survival, and fecundity of the squash bug (Heteroptera, Coreidae) egg parasitoid Gryon pennsylvanicum (Hymenoptera, Scelionidae). Environ Entomol 24:454–458

    Google Scholar 

  • Oppenheimer DG, Herman PL, Sivakumaran S, Eschm J, Marks MD (1991) A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 67:483–493

    PubMed  CAS  Google Scholar 

  • Payne CT, Zhang F, Lloyd AM (2000) GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156:1349–1362

    PubMed  CAS  Google Scholar 

  • Pollard AJ (1986) Variation in Cnidoscolus texanus in relation to herbivory. Oecologia 70:411–413

    Google Scholar 

  • Pollard AJ, Briggs D (1984) Genecological studies of Urtica dioica L. III. Stinging hairs and plant-herbivore interactions. New Phytol 97:507–522

    Google Scholar 

  • Pullin AS, Gilbert JE (1989) The stinging nettle, Urtica dioica, increases trichome density after herbivore and mechanical damage. Oikos 54:275–280

    Google Scholar 

  • Raupp MJ (1985) Effects of leaf toughness on mandibular wear of the leaf beetle, Plagiodera versicolora. Ecol Entomol 10:73–79

    Google Scholar 

  • Rautio P, Markkola A, Martel J, Tuomi J, Härmä E, Kuikka K, Siitonen A, Riesco IL, Roitto M (2002) Developmental plasticity in birch leaves: defoliation causes shift from glandular to nonglandular trichomes. Oikos 98:437–446

    Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–719

    PubMed  CAS  Google Scholar 

  • Roda A, Nyrop J, English-Loeb G (2003) Pubescence mediates the abundance of non-prey food and the density of the predatory mite Typhlodromus pyri. Exp Appl Acarol 29:193–211

    PubMed  CAS  Google Scholar 

  • Romeis J, Shanower TG, Zebitz CPW (1998) Physical and chemical plant characters inhibiting the searching behaviour of Trichogramma chilonis. Entomol Exp Appl 87:275–284

    Google Scholar 

  • Romeis J, Shanower TG, Zebitz CPW (1999) Trichogramma egg parasitism of Helicovarpa armigera on pigonpea and sorghum in southern India. Entomol Exp Appl 90:69–81

    Google Scholar 

  • Rosenheim JA, Limburg DD, Colfer RG (1999) Impact of generalist predators on a biological control agent, Chrysoperla carnea: direct observations. Ecol Appl 9:409–417

    Google Scholar 

  • Rowell-Rahier M, Pasteels JM (1982) The significance of salicin for a Salix-feeder, Phratora (Phyllodecta) vitellinae. In: Visser JH, Mink AK (eds) Proceedings from the 5th international symposium on insect-plant relationships. Pudoc, Wageningen, pp 73–79

    Google Scholar 

  • Roy BA, Stanton ML, Eppley SM (1999) Effects of environmental stress on leaf hair density and consequences for selection. J Evol Biol 12:1089–1103

    Google Scholar 

  • Ryals J, Uknes S, Ward E (1994) Systemic acquired resistance. Plant Physiol 104:1109–1112

    PubMed  CAS  Google Scholar 

  • Schiefelbein J (2003) Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Curr Opin Plant Biol 6:74–78

    PubMed  CAS  Google Scholar 

  • Serna L, Martin C (2006) Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci 11:1360–1385

    Google Scholar 

  • Sharma HC, Waines JG (1994) Inheritance of leaf pubescence in diploid wheat. J Hered 85:286–288

    Google Scholar 

  • Shen B, Sinkevicius KW, Selinger DA, Tarczynski MC (2006) The homeobox gene GLABRA2 affects seed oil content in Arabidopsis. Plant Mol Biol 60:377–387

    PubMed  CAS  Google Scholar 

  • Simmons AT, Gurr GM (2005) Trichomes of Lycopersicon species and their hybrids: effects on pests and natural enemies. Agric For Entomol 48:51–72

    Google Scholar 

  • Skaltsa H, Verykokidou E, Harvala C, Krabourniotis G, Manetas Y (1994) UV-protective potential and flavonoid content of leaf hairs of Quercus ilex. Phytochemistry 37:987–990

    CAS  Google Scholar 

  • Southwood SR (1986) Plant surfaces and insects – an overview. In: Juniper B, Southwood SR (eds) Insects and the plant surface. Arnold, London, pp 1–22

    Google Scholar 

  • Stavrinides MC, Skirvin DJ (2003) The effect of chrysanthemum leaf trichome density and prey spatial distribution on predation of Tetranychus urticae (Acari: Tetranychidae) by Phytoseiulus persimilis (Acari: Phytoseiidae). Bull Entomol Res 93:343–350

    PubMed  Google Scholar 

  • St Hilaire R, Graves WR (1999) Foliar traits of sugar and black maples near 43 degrees N latitude in the eastern and central United States. J Am Soc Hort Sci 124:605–611

    Google Scholar 

  • Stotz HU, Koch T, Biedermann A, Weniger K, Boland W, Mitchell-Olds T (2002) Evidence for regulation of resistance in Arabidopsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways. Planta 214:648–652

    PubMed  CAS  Google Scholar 

  • Styrsky JD, Kaplan I, Eubanks MD (2006) Plant trichomes indirectly enhance tritrophic interactions involving a generalist predator, the red imported fire ant. Biol Control 36:375–384

    Google Scholar 

  • Sutterlin S, van Lenteren JC (1997) Influence of hairiness of Gerbera jamesonii leave on the searching efficiency of the parasitoid Encarsia formosa. Biol Control 9:157–165

    Google Scholar 

  • Sutterlin S, van Lenteren JC (2000) Pre- and post-landing response of the parasitoid Encarsia formosa to whitefly hosts on Gerbera jamesonii. Entomol Exp Appl 96:299–307

    Google Scholar 

  • Symonds VV, Godoy AV, Alconada T, Botto JF, Juenger TE, Casal JJ, Lloyd AM (2005) Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density. Genetics 169:1649–1658

    PubMed  CAS  Google Scholar 

  • Szymanski DB, Lloyd AM, Marks MD (2000) Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends Plant Sci 5:214–219

    PubMed  CAS  Google Scholar 

  • Traw BM (2002) Is induction response negatively correlated with constitutive resistance in black mustard? Evolution 56:2116–2205

    Google Scholar 

  • Traw BM, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375

    PubMed  CAS  Google Scholar 

  • Traw BM, Dawson TE (2002a) Reduced performance of two specialist herbivores (Lepidoptera: Pieridae, Coleoptera: Chrysomelidae) on new leaves of damaged black mustard plants. Environ Entomol 31:714–722

    Google Scholar 

  • Traw BM, Dawson TE (2002b) Differential induction of trichomes by three herbivores of black mustard. Oecologia 131:526–532

    Google Scholar 

  • Valkama E, Koricheva J, Ossipov V, Ossipova S, Haukioja E, Pihlaja K (2005) Delayed induced responses of birch glandular trichomes and leaf surface lipophilic compounds to mechanical defoliation and simulated winter browsing. Oecologia 146:385–393

    PubMed  Google Scholar 

  • Valverde PL. Fornoni J, Nunez-Farfan J (2001) Defensive role of leaf trichomes in resistance to herbivorous insects in Datura stramonium. J Evol Biol 14:424–432

    Google Scholar 

  • Walker AR, Davidson PA, Bolognesi-Winfield AJ, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TEST GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1349

    PubMed  CAS  Google Scholar 

  • van Dam NM, Hare JD (1998) Differences in distribution and performance of two sap-sucking herbivores on glandular and non-glandular Datura wrightii. Ecol Entomol 23:22–32

    Google Scholar 

  • van Dam NM, Hare JD, Elle E (1999) Inheritance and distribution of trichome phenotypes in Datura wrightii. J Hered 90:220–227

    Google Scholar 

  • van Poecke RMP, Dicke M (2002) Induced parasitoid attraction by Arabidopsis thaliana: involvement of the octadecanoid and the salicylic acid pathway. J Exp Biol 53:1793–1799

    Google Scholar 

  • Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY (2004) Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16:2323–2334

    PubMed  CAS  Google Scholar 

  • Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35

    Google Scholar 

  • Westerberg A, Saura A (1992) The effect of serpentine and the population structure of Silene dioica. Evolution 46:1537–1548

    Google Scholar 

  • Zhang F, Gonzales A, Zhao MZ, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859–4869

    PubMed  CAS  Google Scholar 

  • Zvereva EL, Kozlov MV, Niemelä P (1998) Effects of leaf pubescence in Salix borealis on host-plant choice and feeding behaviour of the leaf beetle, Melasoma lapponica. Entomol Exp Appl 89:297–303

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dalin, P., Ågren, J., Björkman, C., Huttunen, P., Kärkkäinen, K. (2008). Leaf Trichome Formation and Plant Resistance to Herbivory. In: Schaller, A. (eds) Induced Plant Resistance to Herbivory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8182-8_4

Download citation

Publish with us

Policies and ethics