Skip to main content

Defense by Pyrrolizidine Alkaloids: Developed by Plants and Recruited by Insects

  • Chapter
Book cover Induced Plant Resistance to Herbivory

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anke S, Niemuller D, Moll S, Hansch R, Ober D (2004) Polyphyletic origin of pyrrolizidinealkaloids within the Asteraceae. Evidence from differential tissue expression of homospermidine synthase. Plant Physiol 136:4037–4047

    Article  PubMed  CAS  Google Scholar 

  • Aplin RT, Benn MH, Rothschild M (1968) Poisonos alkaloids in the body tissues of the cinnabar moth (Callimorpha jacobaeae L.). Nature 219:747–748

    Article  CAS  Google Scholar 

  • Bernays EA, Chapman RF, Hartmann T (2002a) A highly sensitive taste receptor cell for pyrrolizidine alkaloids in the lateral galeal sensillum of a polyphagous caterpillar, Estigmene acrea. J Comp Physiol A 188:715–723

    Article  CAS  Google Scholar 

  • Bernays EA, Chapman RF, Hartmann T (2002b) A taste receptor neurone dedicated to the perception of pyrrolizidine alkaloids in the medial galeal sensillum of two polyphagous arctiid caterpillars. Physiol Entomol 27:1–10

    Article  Google Scholar 

  • Bernays EA, Edgar JA, Rothschild M (1977) Pyrrolizidine alkaloids sequestered and stored by the aposematic grasshopper, Zonocerus variegatus. J Zool, 182:85–87

    Google Scholar 

  • Bernays EA, Rodrigues D, Chapman RF, Singer MS, Hartmann T (2003) Loss of gustatory responses to pyrrolizidine alkaloids after their extensive ingestion in the polyphagous caterpillar Estigmene acrea. J Exp Biol 206:487–4496

    Article  Google Scholar 

  • Beuerle T, Theuring C, Klewer N, Schulz S, Hartmann T (2007) Absolute configuration of the creatonotines and callimorphines, two classes of arctiid-specific pyrrolizidine alkaloids. Insect Biochem Mol Biol 37:80–89

    Article  PubMed  CAS  Google Scholar 

  • Bezzerides A, Yong TH, Bezzerides J, Husseini J, Ladau J, Eisner M, Eisner T (2004) Plant-derived pyrrolizidine alkaloid protects eggs of a moth (Utetheisa ornatrix) against a parasitoid wasp (Trichogramma ostriniae). Proc Natl Acad Sci USA 101:9029–9032

    Article  PubMed  CAS  Google Scholar 

  • Boppré M (1984) Redefining ‘pharamcophagy’. J Chem Ecol 10:1151–1154

    Article  Google Scholar 

  • Boppré M (1986) Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73:17–26

    Article  Google Scholar 

  • Boppré M (1990) Lepidoptera and pyrrolizidine alkaloids: exemplification of complexity in chemical ecology. J Chem Ecol 16:165–185

    Article  Google Scholar 

  • Böttcher F, Adolph RD, Hartmann T (1993) Homospermidine synthase, the first pathway-specific enzyme in pyrrolizidine alkaloid biosynthesis. Phytochemistry 32:679–689

    Article  Google Scholar 

  • Böttcher F, Ober D, Hartmann T (1994) Biosynthesis of pyrrolizidine alkaloids: putrescine and spermidine are essential substrates of enzymatic homospermidine formation. Can J Chem 72:80–85

    Google Scholar 

  • Brattsten LB (1992) Metabolic defenses against plant allelochemicals. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary metabolites, vol 2. Academic Press, San Diego, pp 175–242

    Google Scholar 

  • Brown KSJ (1984) Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator. Nature 309:707–709

    Article  CAS  Google Scholar 

  • Brown KSJ (1987) Chemistry at the solanaceae/ithomiinae interface. Ann Missouri Bot Gard 74: 359–397

    Article  Google Scholar 

  • Caraglia M, Marra M, Giuberti G, D’Alessandro AM, Budillon A, del Prete S, Lentini A, Beninati S, Abbruzzese A (2001) The role of eukaryotic initiation factor 5A in the control of cell proliferation and apoptosis. Amino Acids 20:91–104

    Article  PubMed  CAS  Google Scholar 

  • Cheeke PR (ed) (1998) Natural toxicants in feeds, forages, and poisonous plants. Interstate, Danville

    Google Scholar 

  • Conner WE, Roach B, Benedict E, Meinwald J, Eisner T (1990) Courtship pheromone production and body size as correlates of larval diet in males of the arctiid moth Utetheisa ornatrix. J Chem Ecol 16:543–552

    Article  CAS  Google Scholar 

  • Conner WE, Weller, SJ (2004) A quest for alkaloids: the curious relationship between tiger moths and plants containing pyrrolizidine alkaloids. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology. University Press, Cambridge, pp 248–282

    Google Scholar 

  • Dobler S, Haberer W, Witte L, Hartmann T (2000) Selective sequestration of pyrrolizidine alkaloids from diverse host plants by Longitarsus flea beetles. J Chem Ecol 26:1281–1298

    Article  CAS  Google Scholar 

  • Dussourd DE, Ubik K, Harvis C, Resch J, Meinwald J, Eisner T (1988) Biparental defensive endowment of eggs with acquired plant alkaloid in the moth Utetheisa ornatrix. Proc Natl Acad Sci USA 85:5992–5996

    Article  PubMed  CAS  Google Scholar 

  • Edgar JA (1982) Pyrrolizidine alkaloids sequestered by Salomon Island Danainae butterflies. The feeding preferences of the Danainae and Ithomiinae. J Zool 196:385–399

    Article  CAS  Google Scholar 

  • Edgar JA, Culvenor CCJ, Cockrum PA, Smith LW (1980) Callimorphine: identification and symthesis of the cinnabar moth ‘metabolite’. Tetrahedron Lett 21:1383–1384

    Article  CAS  Google Scholar 

  • Ehmke A, Von Borstel K, Hartmann T (1988) Alkaloid $N$-oxides as transport and vacuolar storage compounds of pyrrolizidine alkaloids in Senecio vulgaris L. Planta 176:83–90

    Article  CAS  Google Scholar 

  • Ehmke A, Witte L, Biller A, Hartmann T (1990) Sequestration, $N$-oxidation and transformation of plant pyrrolizidine alkaloids by the arctiid moth Tyria jacobaeae L. $Z$. Naturforsch C 45: 1185–1192

    CAS  Google Scholar 

  • Eisner T, Eisner M (1991) Unpalatability of the pyrrolizidine alkaloid-containing moth Utetheisa ornatrix and its larva to wolf spiders. Psyche Cambridge 98:111–118

    Google Scholar 

  • Eisner T, Eisner M, Rossini C, Iyengar VK, Roach BL, Benedikt E, Meinwald J (2000) Chemical defense against predation in an insect egg. Proc Natl Acad Sci USA 97:1634–1639

    Article  PubMed  CAS  Google Scholar 

  • Eisner T, Rossini C, Gonzalez A, Iyengar VK, Siegler MVS, Smedley SR (2002) Paternal investment in egg defence. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Oxford, pp 91–116

    Google Scholar 

  • Frei H, Lüthy J, Bräuchli J, Zweifel U, Wurgler FE, Schlatter C (1992) Structure/activity relationships of the genotoxic potencies of sixteen pyrrolizidine alkaloids assayed for the induction of somatic mutation and recombination in wing cells of Drosophila melanogaster. Chem Biol Interact 83:1–22

    Article  PubMed  CAS  Google Scholar 

  • Frölich C, Hartmann T, Ober D (2006) Tissue distribution and biosynthesis of 1,2-saturated pyrrolizidine alkaloids in Phalaenopsis hybrids (Orchidaceae). Phytochemistry 67:1493–1502

    Article  PubMed  CAS  Google Scholar 

  • Frölich C, Ober D, Hartmann T (2007) Tissue distribution, core biosynthesis and diversification of pyrrolizidine alkaloids of the lycopsamine type in three Boraginaceae species. Phytochemistry 68:1026–1037

    Article  PubMed  CAS  Google Scholar 

  • Fu PP, Xia Q, Lin G, Chou MW (2004) Pyrrolizidine alkaloids – genotoxicity, metabolism enzymes, metabolic activation, and mechanisms. Drug Metab Rev 36:1–55

    Article  PubMed  CAS  Google Scholar 

  • Glendinning JI (2002) How do herbivorous insects cope with noxious secondary plant compounds in their diet? Entomol Exp Appl 104:15–25

    Article  CAS  Google Scholar 

  • Glendinning JI, Slansky F (1995) Consumption of a toxic food by caterpillars increases with dietary exposure: support for a role of induced detoxification enzymes. J Comp Physiol A 176:337–345

    Article  CAS  Google Scholar 

  • Gonzalez A, Rossini C, Eisner M, Eisner T (1999) Sexually transmitted chemical defense in a moth (Utetheisa ornatrix). Proc Natl Acad Sci USA 96:5570–5574

    Article  PubMed  CAS  Google Scholar 

  • Haberer W, Dobler S (1999) Quantitative analysis of pyrrolizidine alkaloids sequestered from diverse host plants in Longitarsus flea beetles (Coleoptera, Chrysomelidae). Chemoecology 9:169–179

    Article  CAS  Google Scholar 

  • Hare JF, Eisner T (1993) Pyrrolizidine alkaloid deters ant predators of Utetheisa ornatrix eggs: effects of alkaloid concentration, oxidation state, and prior exposure of ants to alkaloid-laden prey. Oecologia 96:9–18

    Article  Google Scholar 

  • Hartmann T (1999) Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495

    Article  CAS  Google Scholar 

  • Hartmann T, Biller A, Witte L, Ernst L, Boppre M (1990) Transformation of plant pyrrolizidine alkaloids into novel insect alkaloids by arctiid moths (Lepidoptera). Biochem Syst Ecol 18:549–554

    Article  CAS  Google Scholar 

  • Hartmann T, Dierich B (1998) Chemical diversity and variation of pyrrolizidine alkaloids of the senecionine type: biological need or coincidence? Planta 206:443–451

    Article  CAS  Google Scholar 

  • Hartmann T, Ehmke A, Eilert U, von Borstel, K, Theuring C (1989) Sites of synthesis, translocation and accumulation of pyrrolizidine alkaloid $N$-oxides in Senecio vulgaris L. Planta 177:98–107

    Article  CAS  Google Scholar 

  • Hartmann T, Ober D (2000) Biosynthesis and metabolism of pyrrolizidine alkaloids on plants and specialized insect herbivores. Top Curr Chem 209:207–243

    CAS  Google Scholar 

  • Hartmann T, Theuring C, Bernays EA (2003) Are insect-synthesized retronecine esters (creatonotines) the precursors of the male courtship pheromone in the arctiid moth Estigmene acrea? J Chem Ecol 29:2603–2608

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T, Theuring C, Beuerle T, Bernays EA, Singer MS (2005a) Acquisition, transformation and maintenance of plant pyrrolizidine alkaloids by the polyphagous arctiid Grammia geneura. Insect Biochem Mol Biol 35:1083–99

    Article  CAS  Google Scholar 

  • Hartmann T, Theuring C, Beuerle T, Klewer N, Schulz S, Singer, MS, Bernays EA (2005b) Specific recognition, detoxification and metabolism of pyrrolizidine alkaloids by the polyphagous arctiid Estigmene acrea. Insect Biochem Mol Biol 35:391–411

    Article  CAS  Google Scholar 

  • Hartmann T, Theuring C, Schmidt J, Rahier M, Pasteels JM (1999) Biochemical strategy of sequestration of pyrrolizidine alkaloids by adults and larvae of chrysomelid leaf beetles. J Insect Physiol 45:1085–1095

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T, Theuring C, Witte L, Pasteels JM (2001) Sequestration, metabolism and partial synthesis of tertiary pyrrolizidine alkaloids by the neotropical leaf-beetle Platyphora boucardi. Insect Biochem Mol Biol 31:1041–1056

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T, Toppel G (1987) Senecionine N-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root cultures of Senecio vulgaris. Phytochemistry 26:1639–1644

    Article  CAS  Google Scholar 

  • Hartmann T, Witte L (1995) Pyrrolizidine alkaloids: chemical, biological and chemoecological aspects. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 9. Pergamon Press, Oxford, pp 155–233

    Google Scholar 

  • Hartmann T, Witte L, Ehmke A, Theuring C, Rowell-Rahier M, Pasteels JM (1997) Selective sequestration and metabolism of plant derived pyrrolizidine alkaloids by chrysomelid leaf beetles. Phytochemistry 45:489–497

    Article  CAS  Google Scholar 

  • Hartmann T, Zimmer M (1986) Organ-specific distribution and accumulation of pyrrolizidine alkaloids during the life history of two annual Senecio species. J Plant Physiol 122:67–80

    CAS  Google Scholar 

  • Huan JY, Miranda CL, Buhler DR, Cheeke PR (1998a) The roles of CYP3A and CYP2B isoforms in hepatic bioactivation and detoxification of the pyrrolizidine alkaloid senecionine in sheep and hamsters. Toxicol Appl Pharmacol 151:229–235

    Article  CAS  Google Scholar 

  • Huan JY, Miranda CL, Buhler DR, Cheeke PR (1998b) Species differences in the hepatic microsomal enzyme metabolism of the pyrrolizidine alkaloids. Toxicol Lett 99:127–137

    Article  CAS  Google Scholar 

  • Iyengar VK, Rossini C, Eisner T (2001) Precopulatory assessment of male quality in an arctiid moth (Utetheisa ornatrix): hydroxydanaidal is the only criterion of choice. Behav Ecol Sociobiol 49:283–288

    Article  Google Scholar 

  • Jenett-Siems K, Ott SC, Schimming T, Siems K, Muller F, Hilker M, Witte L, Hartmann T, Austin DF, Eich E (2005) Ipangulines and minalobines, chemotaxonomic markers of the infrageneric Ipomoea taxon subgenus Quamoclit, section Mina. Phytochemistry 66:223–231

    Article  PubMed  CAS  Google Scholar 

  • Jenett-Siems K, Schimming T, Kaloga M, Eich E, Siems K, Gupta MP, Witte L, Hartmann T (1998) Pyrrolizidine alkaloids of Ipomoea hederifolia and related species. Phytochemistry 47:1551–1560

    Article  CAS  Google Scholar 

  • Klitzke CF, Trigo JR (2000) New records of pyrrolizidine alkaloid-feeding insects. Hemiptera and Coleoptera on Senecio brasiliensis. Biochem Syst Ecol 28:313–318

    Article  PubMed  CAS  Google Scholar 

  • Lindigkeit R, Biller A, Buch M, Schiebel HM, Boppré M, Hartmann T (1997) The two faces of pyrrolizidine alkaloids: the role of the tertiary amine and its N-oxide in chemical defense of insects with acquired plant alkaloids. Eur J Biochem 245:626–636

    Article  PubMed  CAS  Google Scholar 

  • Macel M, Bruinsma M, Dijkstra SM, Ooijendijk T, Niemeyer HM, Klinkhamer PGL (2005) Differences in effects of pyrrolizidine alkaloids on five generalist insect herbivore species. J Chem Ecol 31:1493–1508

    Article  PubMed  CAS  Google Scholar 

  • Macel M, Vrieling K, Klinkhamer PG (2004) Variation in pyrrolizidine alkaloid patterns of Senecio jacobaea. Phytochemistry 65:865–873

    Article  PubMed  CAS  Google Scholar 

  • Marín Loaiza JC, Céspedes CL, Beuerle T, Theuring C, Hartmann T (2007) Ceroplastes albolineatus, the first scale insect shown to sequester pyrrolizidine alkaloids from its host-plant Pittocaulon praecox. Chemoecology 17:109–115

    Article  CAS  Google Scholar 

  • Mattocks AR (ed) (1986) Chemistry and toxicology of pyrrolizidine alkaloids. Academic Press, London

    Google Scholar 

  • Moll S, Anke S, Kahmann U, Hänsch R, Hartmann T, Ober D (2002) Cell specific expression of homospermidine synthase, the entry enzyme of the pyrrolizidine alkaloids in Senecio vernalis in comparison to its ancestor deoxyhypusine synthase. Plant Physiol 130:47–57

    Article  PubMed  CAS  Google Scholar 

  • Narberhaus I, Zintgraf V, Dobler S (2005) Pyrrolizidine alkaloids on three trophic levels – evidence for toxic and deterrent effects on phytophages and predators. Chemoecology 15:121–125

    Article  CAS  Google Scholar 

  • Naumann C, Hartmann T, Ober D (2002) Evolutionary recruitment of a flavin-dependent monooxygenase for the detoxification of host plant-acquired pyrrolizidine alkaloids in the alkaloid-defended arctiid moth Tyria jacobaeae. Proc Natl Acad Sci USA 99:6085–6090

    Article  PubMed  CAS  Google Scholar 

  • Ober D (2005) Seeing double – gene duplication and diversification in plant secondary metabolism. Trends Plant Sci 10:444–449

    Article  PubMed  CAS  Google Scholar 

  • Ober D, Harms R, Witte L, Hartmann T (2003) Molecular evolution by change of function: alkaloid-specific homospermidine synthase retained all properties of deoxyhypusine synthase except binding the eIF5A precursor protein. J Biol Chem 278:12805–12815

    Article  PubMed  CAS  Google Scholar 

  • Ober D, Hartmann T (1999) Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase. Proc Natl Acad Sci USA 96:14777–14782

    Article  PubMed  CAS  Google Scholar 

  • Ober D, Hartmann T (2000) Phylogenetic origin of a secondary pathway: the case of pyrrolizidine alkaloids. Plant Mol Biol 44:445–450

    Article  PubMed  CAS  Google Scholar 

  • Pasteels JM, Rowell-Rahier M, Randoux T, Braekman JC, Daloze D (1988) Pyrrolizidine alkaloids of probable host-plant origin in the pronotal and elytral secretion of the leaf beetle Oreina cacaliae. Entomol Exp Appl 49:55–88

    Article  CAS  Google Scholar 

  • Pasteels JM, Termonia A, Windsor D, Witte L, Theuring C, Hartmann T (2001) Pyrrolizidine alkaloids and pentacyclic triterpene saponins in the defensive secretions of Platyphora leaf beetles. Chemoecology 11:113–120

    Article  CAS  Google Scholar 

  • Pelser PB, de Vos H, Theuring C, Beuerle T, Vrieling K, Hartmann T (2005) Frequent gain and loss of pyrrolizidine alkaloids in the evolution of Senecio section Jacobaea (Asteraceae). Phytochemistry 66:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Prakash AS, Pereira TN, Reilly PEB, Seawright AA (1999) Pyrrolizidine alkaloids in human diet. Mutat Res 443:53–67

    PubMed  CAS  Google Scholar 

  • Reimann A, Nurhayati N, Backenköhler A, Ober D (2004) Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16:2772–2784

    Article  PubMed  CAS  Google Scholar 

  • Robins DJ (1989) Biosynthesis of pyrrolizidine alkaloids. Chem Soc Rev 18:375–408

    Article  CAS  Google Scholar 

  • Schneider D (1987) The strange fate of pyrrolizidine alkaloids. In: Chapman RF, Bernays EA, Stoffolano JG (eds) Perspectives in chemoreception and behavior. Springer, New York, pp 123–142

    Google Scholar 

  • Schulz S, Francke W, Boppré M, Eisner T, Meinwald J (1993) Insect pheromone biosynthesis: stereochemical pathway of hydroxydanaidal production from alkaloidal precursors in Creatonotos transiens (Lepidoptera, Arctiidae). Proc Natl Acad Sci USA 90:6834–6838

    Article  PubMed  CAS  Google Scholar 

  • Scott JG, Liu N, Wen Z (1998) Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 121:147–155

    Article  PubMed  CAS  Google Scholar 

  • Singer MS, Carrière Y, Theuring C, Hartmann T (2004a) Disentangeling food quality from resistance against parasitoids: diet choice by a generalist caterpillar. Am Nat 164:424–429

    Article  Google Scholar 

  • Singer MS, Rodrigues D, Stireman JOI, Carrière Y (2004b) Roles of food quality and enemy-free space in host use by a generalist insect herbivore. Ecology 85:2747–2753

    Article  Google Scholar 

  • Spenser ID (1985) Stereochemical aspects of the biosynthetic routes leading to the pyrrolizidine and quinolizidine alkaloids. Pure Appl Chem 57:453–470

    Article  CAS  Google Scholar 

  • Stegelmeier BL, Edgar JA, Colegate SM, Gardner DR, Schoch TK, Coulombe RA, Molyneux RJ (1999) Pyrrolizidine alkaloid plants, metabolism and toxicity. J Nat Tox 8:95–116

    CAS  Google Scholar 

  • Trigo JR, Brown KS, Henriques SA, Barata LES (1996) Qualitative patterns of pyrrolizidine alkaloids in ithomiinae butterflies. Biochem Syst Ecol 24:181–188

    Article  CAS  Google Scholar 

  • van Dam NM, Verporte R, van der Mejden E (1994) Extreme differences in pyrrolizidine alkaloid levels between leaves of Cynoglossum officinale. Phytochemistry 37:1013–1016

    Article  Google Scholar 

  • van Dam NM, Vuister LWM, Bergshoff C, de Vos H, van der Meijden E (1995a) The ‘raison d’être’ of pyrrolizidine alkaloids in Cynoglossum officinale: deterrent effects against generalist herbivores. J Chem Ecol 21:507–523

    Article  Google Scholar 

  • van Dam NM, Witte L, Theuring C, Hartmann T (1995b) Distribution, biosynthesis and turnover of pyrrolizidine alkaloids in Cynoglossum officinale. Phytochemistry 39:287–292

    Article  Google Scholar 

  • von Borstel K, Witte L, Hartmann T (1989) Pyrrolizidine alkaloid patterns in populations of Senecio vulgaris, Senecio vernalis and their hybrids. Phytochemistry 28:1635–1638

    Article  Google Scholar 

  • Vrieling K, de Boer NJ (1999) Host-plant choice and larval growth in the cinnabar moth: do pyrrolizidine alkaloids play a role. Entomol Exp Appl 91:251–257

    Article  CAS  Google Scholar 

  • Vrieling K, de Vos H, van Wijk CAM (1993) Genetic analysis of the concentrations of pyrrolizidine alkaloids in Senecio jacobaea. Phytochemistry 32:1141–1144

    Article  CAS  Google Scholar 

  • Vrieling K, Derridj S (2003) Pyrrolizidine alkaloids in and on the leaf surface of Senecio jacobaea L. Phytochemistry 64:1223–1228

    Article  PubMed  CAS  Google Scholar 

  • Williams DE, Reed RL, Kedzierski B, Dannan GA, Guengerich FP, Buhler DR (1989a) Bioactivation and detoxication of the pyrrolizidine alkaloid senecionine by cytochrome P-450 enzymes in rat liver. Drug Metab Dispos 17:387–392

    CAS  Google Scholar 

  • Williams DE, Reed RL, Kedzierski B, Ziegler DM, Buhler DR (1989b) The role of flavin-containing monooxygenase in the N-oxidation of the pyrrolizidine alkaloid senecionine. Drug Metab Dispos 17:380–386

    CAS  Google Scholar 

  • Wink M, Mohamed GIA (2003) Evolution of chemical defense traits in the Leguminosae: mapping of distribution patterns of secondary metabolites on a molecular phylogeny inferred from nucleotide sequences of the rbcL gene. Biochem Syst Ecol 31:897–917

    Article  CAS  Google Scholar 

  • Witte L, Ehmke A, Hartmann T (1990) Interspecific flow of pyrrolizidine alkaloids; from plants via aphids to ladybirds. Naturwissenschaften 77:540–543

    Article  CAS  Google Scholar 

  • Witte L, Ernst L, Adam H, Hartmann T (1992) Chemotypes of two pyrrolizidine alkaloid-containing Senecio spp. Phytochemistry 31:559–566

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hartmann, T., Ober, D. (2008). Defense by Pyrrolizidine Alkaloids: Developed by Plants and Recruited by Insects. In: Schaller, A. (eds) Induced Plant Resistance to Herbivory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8182-8_10

Download citation

Publish with us

Policies and ethics