Advertisement

Thermal Vibrational Convection in a Porous Medium Saturated by a Pure or Binary Fluid

  • Yazdan Pedramrazi
  • Marie-Catherine Charrier-Mojtabi
  • Abdelkader Mojtabi
Part of the Theory and Applications of Transport in Porous Media book series (TATP, volume 22)

Keywords

Porous Medium Rayleigh Number Hopf Bifurcation Porous Layer Linear Stability Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander J.I.D. (1994) Residual gravity jitter effects on fluid processes. Microgravity Sci. Tech. vol. 7, pp. 131–136.Google Scholar
  2. Aniss A., Souhar M. and Belhaq M. (2000) Asymptotic study of the convective parametric instability in Hele–Shaw cell. Phys. Fluids vol. 12, pp. 262–268.CrossRefMathSciNetMATHGoogle Scholar
  3. Bardan G. and Mojtabi A. (2000) On the Horton–Rogers–Lapwood convective instability with vertical vibration. Phys. Fluids vol. 12, pp. 1–9.CrossRefMathSciNetGoogle Scholar
  4. Bardan G., Mojtabi A. and Souhar (2000) Numerical investigation of vibrational high frequency field upon double diffusive convection in microgravity. Q. Micrograv., vol. 1, No. 2, pp. 1–9.Google Scholar
  5. Bardan G., Pedramrazi Y., Mojtabi A. (2004) Phys. Fluids vol. 16, pp. 1–4.CrossRefMathSciNetGoogle Scholar
  6. Charrier-Mojtabi M.C., Maliwan K., Pedramrazi Y., Bardan G. and Mojtabi A. (2003) Contrôle des écoulements thermoconvectifs par vibration. Journal de Mécanique et Industrie, vol. 4, No. 5, pp. 545–554.CrossRefGoogle Scholar
  7. Charrier-Mojtabi M.C., Pedramrazi Y., Maliwan K. and Mojtabi A. (2004) Influence of vibration on Soret-driven convection in porous media. Num. Heat Transfer Part A vol. 46, pp. 1–13.Google Scholar
  8. Charrier-Mojtabi M.C., Pedramrazi Y. and Mojtabi A. (2006) The influence of mechanical vibration on convective motion in a confined porous cavity with emphasis on harmonic and sub-harmonic responses. Proceedings (CD Rom) of the 13th international heat transfer conference. IHTC13, Sydney, Australia.Google Scholar
  9. Cunningham W.J. (1958) Introduction to nonlinear analysis. McGraw-Hill, New York.MATHGoogle Scholar
  10. De Groot S.R. and Mazur P. (1984) Non equilibrium thermodynamics. Dover, New York.Google Scholar
  11. Faraday M. (1831) Phil. Trans. R. Soc. Lond. vol. 121, pp. 299.CrossRefGoogle Scholar
  12. Gershuni G.Z., Zhukhovitskiy E.M. and Iurkov S. (1970) On convective stability in the presence of periodically varying parameter. J. Appl. Math. Mech 34: pp. 470–480.Google Scholar
  13. Gershuni G.Z. and Lyubimov D.U. (1998). Thermal vibrational convection Willey, New york.Google Scholar
  14. Gershuni G.Z., Kolesnikov A.K., Legros J.C. and Myznikova B.I. (1997) On the vibrational convective instability of a horizontal binary mixture layer with Soret effect. J. Fluid Mech. vol. 330, pp. 251–269.MATHCrossRefGoogle Scholar
  15. Gershuni G.Z., Kolesnikov A.K., Legros J.C. and Myznikova B.I. (1999) On the convective instability of a horizontal binary mixture layer with Soret effect under transversal high frequency vibration. Int. J. Heat Mass Transfer vol. 42, pp. 547–553.MATHCrossRefGoogle Scholar
  16. Govender S. (2004) Stability of convection in a gravity modulated porous layer heated from below. Trans. Porous Media, vol. 7, pp. 113–123.CrossRefGoogle Scholar
  17. Govender S. (2005a) Stability analysis of a porous layer heated from below and subjected to low frequency vibration. Trans. Porous Media vol. 59, pp. 239–247.CrossRefGoogle Scholar
  18. Govender S. (2005b) Weak non linear analysis of convection in a gravity modulated porous layer. Trans. Porous Media vol. 60, pp. 33–42.CrossRefGoogle Scholar
  19. Govender S. (2006a) An analogy between a gravity modulated porous layer heated from below and the inverted pendulum with an oscillating pivot point, accepted for publication in Transport in Porous Media 2006.Google Scholar
  20. Govender S. (2006b) Stability of gravity driven convection in a cylindrical porous layer subjected to vibration. Trans. Porous Media vol. 63, pp. 489–502.CrossRefMathSciNetGoogle Scholar
  21. Gresho P.M. and Sani R.L. (1970) The effects of gravity modulation on the stability of heated fluid layer. J. Fluid Mech. vol. 40, pp. 783–806.MATHCrossRefGoogle Scholar
  22. Jordan D.W. and Smith P. (1987) Transport phenomena in porous media. Oxford University Press, New York.Google Scholar
  23. Jounet A. and Bardan G. (2001) Onset of thermohaline convection in a rectangular porous cavity in the presence of vertical vibration. Phys. Fluids vol. 13, pp. 1–13.CrossRefGoogle Scholar
  24. Malashetty M.S. and Padmavathi V. (1997) Effect of gravity modulation on the onset of convection in a fluid and porous layer. Int. J. Eng. Sci. vol. 35, pp. 829–840.MATHCrossRefMathSciNetGoogle Scholar
  25. Mc Lachlan N.W. (1964) Theory and application of Mathieu functions. Dover, New York.Google Scholar
  26. Palm E., Weber J.E. and Kvernvold O. (1972) On steady convection in a porous medium. J. Fluid Mech. Vol. 54, pp. 153–161.MATHCrossRefGoogle Scholar
  27. Pedramrazi Y. (2004) Ph.D thesis, Fluid Mechanical Institute, IMFT and University Paul Sabatier, Toulouse III.Google Scholar
  28. Pedramrazi Y., Maliwan K. and Mojtabi A. (2002) Two different approaches for studying the stability of the Horton–Rogers–Lapwood problem under the effect of vertical vibration. Proceedings of the first international conference in applications of porous media. Jerba , Tunisia, pp. 489–497.Google Scholar
  29. Pedramrazi Y., Maliwan K., Charrier-Mojtabi M.C. and Mojtabi A. (2005) Influence of vibration on the onset of thermoconvection in porous medium. Handbook of porous media. Marcel Dekker, New York, pp. 321–370.Google Scholar
  30. Simonenko I.B. and Zenkovskaya S.M. (1966) On the effect of high frequency vibration on the origin of convection. Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza vol. 5, pp. 51.Google Scholar
  31. Smorodin B.L., Myznikova B.I. and Keller I.O. (2002) On the Soret-driven thermosolutal convection in vibrational field of arbitrary frequency, in: Thermal Non-equilibrium Phenomena in Fluid Mixtures, Lectures, Lecture Notes in Physics, 584, pp. 372–388.CrossRefGoogle Scholar
  32. Sovran O., Charrier Mojtabi M.C., Azaiez M. and Mojtabi A. (2002) Onset of Soret driven convection in porous medium under vertical vibration. Proccedings of the 12th international heat transfer conference. IHTC12, Grenoble pp. 839–844.Google Scholar
  33. Zenkovskaya S.M. (1992) Action of high-frequency vibration on filtration convection. J. Appl. Mech. Tech. Phys. vol. 32, pp. 83–86.Google Scholar
  34. Zenkovskaya S.M. and Rogovenko T.N. (1999) Filtration convection in a high-frequency vibration field. J. Appl. Mech. Tech. Phys. vol. 40, pp. 379–385.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Yazdan Pedramrazi
    • 1
  • Marie-Catherine Charrier-Mojtabi
    • 2
  • Abdelkader Mojtabi
    • 2
  1. 1.Reservoir Engineering Research Institute (RERI)Palo AltoUSA
  2. 2.Université Paul SabatierToulouse cedexFrance

Personalised recommendations