Skip to main content

Organometallic Silicon-Containing Dendrimers and Their Electrochemical Applications

  • Chapter
Silicon-Containing Dendritic Polymers

Part of the book series: Advances in Silicon Science ((ADSS,volume 2))

Dendrimers constitute a unique class of macromolecular architectures that differs from all other synthetic macromolecules in its perfectly branched topology, which is constructed from a multifunctional central core and expands to the periphery that becomes denser with increasing generation number (see Chapter 1) [1–5]. Since the pioneering works published in the late 1970s and the mid-1980s [6–8], the design and synthesis of these tree-like, well-defined molecules, which exhibit a unique combination of chemical and physical properties, is a field which has sustained dramatic growth and has generated enthusiastic studies at the frontiers of organic, inorganic, supramolecular and polymer chemistry, and more recently in the fields of nanoscience, biotechnology and medicine [1–5, 9, 10]. Whereas the initial interest in dendrimers was focused on the synthetic and structural characterization challenges that pose their fractal geometries, nanometer sizes and monodisperse nature, in the last decade the emphasis has been placed mainly on modification of the properties of dendritic molecules by their functionalization

Nowadays, one of the most active and promising research areas in dendrimer chemistry is in the integration of transition metals into dendritic structures to create metallodendrimers. Thus, the dendritic scaffold may be used for the spatial arrangement of a large number of transition metal-containing functionalities, either at the periphery or inside the dendritic skeleton (at the core or within the branches) and for the tailoring of properties through the interplay of metallic subunits. Since the first transition-metal containing dendrimers were reported in the early 1990s [11, 12], advances in the synthesis and chemistry of these molecules have not ceased to blossom. Besides the pleasant aesthetics and fundamental synthetic challenges of metallodendrimers, these molecules are also attractive because of their potential applications as functional materials in such diverse fields as catalysis, sensors, molecular electronic devices, light-harvesting antennas, nanoparticles and medical diagnostics [13–21]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Newkome GR, Moorefield CN, Vögtle F (2001) Dendrimers and dendrons–concepts, syntheses, applications. Wiley-VCH, Weinheim

    Google Scholar 

  2. Fréchet JMJ, Tomalia DA (eds) (2001) Dendrimers and other dendritic polymers. Wiley, Chichester

    Google Scholar 

  3. Newkome G (ed) Advances in dendritic macromolecules. JAI Press, Greenwich, CT (1994) vol 1 (1995) vol 2 (1996) vol 3 (1999) vol 4 (2002) vol 5

    Google Scholar 

  4. (a) Tomalia DA, Fréchet JMJ (2002) J Polym Sci Part A: Polym Chem 40:2719; (b) Vögtle F, Gesternmann S, Hesse R, Scwierz H, Windisch B (2000) Prog Polym Sci 25:987; (c) Tully DC, Fréchet JMJ (2001) Chem Commun 1229; (d) Fréchet JMJ (2003) J Polym Sci Part A: Polym Chem 41:3713

    Article  CAS  Google Scholar 

  5. Some recent reviews on dendrimers: (a) Tomalia D A (2005) Prog Polym Sci 30:294; (b) Liang C, Fréchet JMJ (2005) Prog Polym Sci 30:385; (c) Boas U, Christensen JB, Heegaard PMH (2006) J Mater Chem 16:3785 (d) Majoral JP (2007) N J Chem 31:1039; (e) Smith DK (2006) Chem Commun 34; (f) Dvornic PR (2006) J Polym Sci Part A: Polym Chem 44:2755

    Google Scholar 

  6. Buhleier E, Welmer W, Vögtle F (1978) Synthesis 78:155

    Article  Google Scholar 

  7. Newkome GR, Yao ZQ, Baker GR, Gupta K (1985) J Org Chem 50:2003

    Article  CAS  Google Scholar 

  8. Tomalia DA, Baker H, Dewald JR, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) Polym J 17:117

    Article  CAS  Google Scholar 

  9. For some recent reviews on biomedical applications of dendrimers, see (a) Lee CC, MacKay JA, Fréchet, JMJ, Szoka FC (2005) Nat Biotechnol 23:1517; (b) Svenson S, Tomalia DA (2005) Adv Drug Deliv Rev 57:2106; (c) Boas U, Heegaard PMH (2004) Chem Soc Rev 33:43; (d) Duncan R, Izzo L (2005) Adv Drug Deliv Rev 57:2215

    Google Scholar 

  10. Boas U, Christensen JB, Heegaard PMH (2006) Dendrimers in medicine and biotechnology–new molecular tools. RSC, Cambridge

    Google Scholar 

  11. (a) Denti G, Campagna S, Serroni S, Ciano N, Balzani V (1992) J Am Chem Soc 114:2944; (b) Newkome GR, Cardullo F, Constable EC, Moorefield CN, Cargill Thompsom AMW (1993) Journal of the Chemical Society-Chemical Communications 925–927

    Article  CAS  Google Scholar 

  12. (a) Liao Y-L, Moss JRJ (1993) Journal of the Chemical Society-Chemical Communications 1774–177; (b) Knapen JWJ, van der Made AV, Wilde de JC, van Leeuwen PWNM, Wijkens P, Grove DM, van Koten G (1994) Nature 372:659 (c) Moulines F, Djakovitch L, Boese R, Gloaguen B, Thiel W, Fillaut J-L, Delville M-H, Astruc D (1993) Angew Chem Int Ed Engl 32:1075; (c) Achar S, Puddephatt RJ (1994) Angew Chem Int Ed Engl 33:847

    Google Scholar 

  13. For general reviews on metallodendrimers see references 13–21: Hwang S-H, Schreiner CD, Moorefield C, Newkome GR (2007) New J Chem 31:1192

    Article  CAS  Google Scholar 

  14. Newkome GR, He E, Moorefield CN (1999) Chem Rev 99:1689

    Article  CAS  Google Scholar 

  15. Majoral JP, Caminade AM (1999) Chem Rev 99:845

    Article  CAS  Google Scholar 

  16. Berger A, Gebbink RJM, van Koten G (2006) Top Organomet Chem 20:1

    Article  CAS  Google Scholar 

  17. Mery D, Astruc D (2006) Coordin Chem Rev 250:1965

    Article  CAS  Google Scholar 

  18. van Manen H-J, van Veggel FCJM, Reinhoudt DN (2001) Top Curr Chem 217:121

    Article  Google Scholar 

  19. Serroni S, Campagna S, Puntoriero F, Pietro CD, McClenaghan ND, Loiseau F (2001) Chem Soc Rev 30:367

    Article  CAS  Google Scholar 

  20. Gorman C (1998) Adv Mater 10:295

    Article  CAS  Google Scholar 

  21. (a) Manners I (2004) Metallodendrimers. In: Synthetic metal-containing polymers. Wiley-VCH, Weinheim, p 237; (b) Hang S-H, Newkome GR (2007) Metallodendrimers and their potential utilitarian applications. In: Abd-El-Aziz ASA, Manners I (eds) Frontiers in transition metal-containing polymers, Chapter 10. Wiley-Interscience, Hoboken, NJ

    Google Scholar 

  22. For reviews on organometallic dendrimers see references 22–30: Cuadrado I, Morán M, Losada J, Casado CM, Pascual C, Alonso B, Lobete F (1996) In: Newkome G (ed) Advances in dendritic macromolecules, vol 3. JAI Press, Greenwich, CT, pp 151–195

    Chapter  Google Scholar 

  23. (a) Cuadrado I, Moran M, Casado CM, Alonso B, Losada J (1999) Coord Chem Rev 193:395; (b) Casado CM, Cuadrado I, Morán M, Alonso B, García B, Gonzalez B, Losada J (1999) Coord Chem Rev 185:53

    Article  Google Scholar 

  24. (a) Hearshaw MA, Moss JR (1999) Chem Commun 1; (b) Hearshaw MA, Moss JR (1999) In: Newkome G (ed) Advanced in dendritic macromolecules, vol 4. JAI Press, Stamford, CT, pp 1–60

    Google Scholar 

  25. (a) Astruc D, Blais J-C, Cloutet E, Djakovitch L, Rigaut S, Ruiz J, Sartor V, Valerio C (2000) Top Curr Chem 210:230

    Google Scholar 

  26. Chase P A, van Koten G (2004) J Organomet Chem 689:4016

    Article  CAS  Google Scholar 

  27. Rossell O, Seco M, Angurell I (2003) C R Chimie 6:805

    Google Scholar 

  28. Kreiter R, Kleij AW, Gebbink RJMK, van Koten G (2001) Top Curr Chem 217:163

    Article  CAS  Google Scholar 

  29. Alonso B, Alonso E, Astruc D, Blais J-C, Djakovitch L, Fillaut JL, Nlate N, Moulines F, Rigaut S, Ruiz J, Valerio C (2002) In: Newkome G (ed) Advances in dendritic macromolecules, vol 5. JAI Press, Greenwich, CT, pp 89–127

    Google Scholar 

  30. Kiyotaka O, Shigetoshi T (2003) Top Curr Chem 228:39

    Article  CAS  Google Scholar 

  31. For reviews on bioorganometallic chemistry see, for example: (a) Fish RH, Jaouen G (2003) Organometallics 22:2166; (b) Fouda MFR, Abd-Elhazer MM, Abdelsamaia RA, Labib AA (2007) Appl Organometal Chem 21:613

    Google Scholar 

  32. Balzani V, Campagna S, Denti G, Juris A, Serroni S, Venturi M (1998) Accounts Chem Res 31:26

    Article  CAS  Google Scholar 

  33. Kaifer AE, Gómez-Kaifer M (1999) Supramolecular electrochemistry. Wiley-VCH, Weinheim/ New York

    Google Scholar 

  34. Kaifer AE (2007) Eur J Inorg Chem 5015

    Google Scholar 

  35. Venturi M, Ceroni P (2003) C R Chimie 6:935

    CAS  Google Scholar 

  36. Hecht S, Fréchet JMJ (2001) Angew Chem Int Ed 40:74

    Article  CAS  Google Scholar 

  37. Nierengarten J-F (2003) C R Chimie 6:725

    CAS  Google Scholar 

  38. (a) Cameron CS, Gorman CB (2002) Adv Funct Mater 12:17; (b) Gorman CB, Smith JC (2001) Accounts Chem Res 34:60; (c) Gorman CB (2003) C R Chimie 6:911

    Article  CAS  Google Scholar 

  39. Flanagan JB, Margel S, Bard AJ, Anson FC (1978) J Am Chem Soc 100:4248

    Article  CAS  Google Scholar 

  40. (a) Morán M, Cuadrado I, Losada J (1987) Organometallics 6:2341; (b) Morán M, Cuadrado I, Losada J (1988) J Chem Soc Dalton Trans 833; (c) Morán M, Cuadrado I, Pascual C, Casado CM, Losada J (1992) Organometallics 11:1210; (d) Morán M, Pascual C, Cuadrado I, Losada J (1993) Organometallics 12:811

    Article  Google Scholar 

  41. Casado CM, Morán M, Losada J, Cuadrado I (1995) Inorg Chem 34:1668

    Article  CAS  Google Scholar 

  42. (a) Morán M, Casado CM, Cuadrado I, Losada J (1993) Organometallics 12:4327; (b) Casado CM, Cuadrado I, Morán M, Alonso B, Lobete F, Losada J (1995) Organometallics 14:2618

    Article  Google Scholar 

  43. Cuadrado I, Casado CM, Lobete F, Alonso B, González B, Losada J (1999) Organometallics 18:4960

    Article  CAS  Google Scholar 

  44. Alonso B, Cuadrado I, Morán M, Losada J (1994) J Chem Soc Chem Commun 2575

    Google Scholar 

  45. Alonso B, Morán M, Casado CM, Lobete F, Losada J, Cuadrado I (1995) Chem Mater 7:1440–1442

    Article  CAS  Google Scholar 

  46. Cuadrado I, Morán M, Casado CM, Alonso B, Lobete F, Garcia R, Ibisate M, Losada J (1996) Organometallics 15:5278

    Article  CAS  Google Scholar 

  47. Cuadrado I, Casado CM, Alonso B, Morán M, Losada J, Belsky V (1997) J Am Chem Soc 119:7613

    Article  CAS  Google Scholar 

  48. (a). Castro R, Cuadrado I, Alonso B, Casado C, Morán M, Kaifer AE (1997) J Am Chem Soc 119:5760; (b) González B, Casado CM, Alonso B, Cuadrado I, Morán M, Wang Y, Kaifer AE (1998) Chemical Communications 2569–2570

    Article  CAS  Google Scholar 

  49. (a). Takada T, Diaz DJ, Abruña HD, Cuadrado I, Casado C, Alonso B, Morán M, Losada J (1997) J Am Chem Soc 119:10763

    Article  CAS  Google Scholar 

  50. Casado CM, Cuadrado I, Morán M, Alonso B, Barranco M, Losada J (1999) Appl Organomet Chem 13:2345

    Article  Google Scholar 

  51. Casado CM, González B, Cuadrado I, Alonso B, Morán M, Losada J (2000) Angew Chem Int Ed 39:2135

    Article  CAS  Google Scholar 

  52. Alonso B, Casado CM, Cuadrado I, Morán M, Kaifer AE (2002) Chemical Communications 1778–1779

    Google Scholar 

  53. Alonso B, González B, Ramírez E, Zamora M, Casado CM, Cuadrado I (2001) J Organomet Chem 637–639:642

    Article  Google Scholar 

  54. Zamora M, Herrero S, Losada J, Cuadrado I, Casado CM, Alonso B (2007) Organometallics 26:2688

    Article  CAS  Google Scholar 

  55. Zamora M, Alonso B, Pastor C, Cuadrado I (2007) Organometallics 26:5153

    Article  CAS  Google Scholar 

  56. (a) Frey H, Schlenk C (2000) Top Curr Chem 210:70; (b) Frey H, Lach C, Lorenz K (1998) Adv Mater 10:279

    Google Scholar 

  57. Lang H, Lühmann B A (2001) Adv Mater 20:1523

    Article  Google Scholar 

  58. Son DY (2001) In: Rappoport Z, Apeloig Y (eds) The chemistry of organic silicon compounds, vol 3. Wiley, New York, pp 745–803

    Chapter  Google Scholar 

  59. Alonso B (1997) Ph.D. thesis, Universidad Autónoma de Madrid

    Google Scholar 

  60. Togni A, Hayashi T (eds) (1995) Ferrocenes. VCH, Weinheim

    Google Scholar 

  61. Long NJ (1998) Metallocenes: an introduction to sandwich complexes. Blackwell Science, London

    Google Scholar 

  62. Zanello P (2003) Inorganic electrochemistry. Theory, practice and application. Royal Society of Chemistry: Cambridge

    Google Scholar 

  63. For reviews on metallocene-containing polymers see, for example: (a) Peckham TJ, Gómez-Elipe P, Manners I (1998) Metallocene-based polymers. In: Togni A, Halterman R (eds) Metallocenes. Wiley-VCH: Weinheim, pp 723–773; (b) Nguyen P, Gómez-Elipe P, Manners I (1999) Chem Rev 99:1515; (c) Abd-El-Aziz A, Manners I (2005) J Inorg Organomet Polym Mater 15:157; (d) Hudson RDA (2001) J Organomet Chem 637–639:47

    Google Scholar 

  64. van der Made AW, Van Leeuwen PWNM (1992) Journal of the Chemical Society-Chemical Communications 1400–1401

    Google Scholar 

  65. 65 (a). Roovers J,Toporowski PM, Zhou LL (1992) Polym Prepr Am Chem Soc Div Polym Chem 33:182; (b) Zhou LL, Roovers J (1993) Macromolecules 26:963

    CAS  Google Scholar 

  66. Seyferth D, Son DY, Rheingold AL, Ostrander RL (1994) Organometallics 13:2682

    Article  CAS  Google Scholar 

  67. For interesting reviews on the substituent effects of the cyclopentadienyl ring in metallocene and related cyclopentadienyl compounds see: (a) Hays ML, Hanusa TP (1996) Adv Organomet Chem 40:117; (b) Okuda J (1992) Top Curr Chem 160:97

    Google Scholar 

  68. (a) Murray RW (ed) (1992) Molecular design of electrode surfaces. Wiley-Interscience: New York; (b) Abruña HD (1988) Electrode modification with polymeric reagents. In: Skotheim TA (ed) Electroresponsive molecular and polymeric systems, vol 1, Chapter 3. Marcel Dekker, New York

    Google Scholar 

  69. Lobete F, Cuadrado I, Casado CM, Alonso B, Morán M, Losada J (1996) J Organomet Chem 509:109

    Article  CAS  Google Scholar 

  70. Cuadrado I, Morán M, Moya A, Casado CM, Barranco M, Alonso B (1996) Inorg Chim Acta 251:5

    Article  CAS  Google Scholar 

  71. Seyferth D, Kugita T, Rheingold AL, Yap GPA (1995) Organometallics 14:5362

    Article  CAS  Google Scholar 

  72. (a). Kim C, Jung I (1998) Inorg Chem Commun 1:427; (b) Kim C, Jung I (1999) J Organomet Chem 588:9

    Article  CAS  Google Scholar 

  73. Brüning K, Lang H (1999) J Organomet Chem 592:147

    Article  Google Scholar 

  74. Benito M, Rossell O, Seco M, Muller G, Ordinas JI, Font-Bardiá M, Xolans X (2002) European Journal of Inorganic Chemistry Issue: 9:2477–2487

    Article  Google Scholar 

  75. (a) Benito M, Rossell O, Seco M, Segalés G (1999) Inorg Chim Acta 291:247; (b) Benito M, Rossell O, Seco M, Segalés G (1999) Organometallics 16:5191; (c) Benito M, Rossell O, Seco M, Segalés G (2001) J Organomet Chem 619:245;(d) Angurell I, Muller G, Rocamora M (2003) Dalton Transactions (2003) 6:1194–1200 (e) Angurell I, Lima JC, Rodríguez L-I, Rodríguez L, Rossell O, Seco M, New J Chem (2006) 30:1004; (f) L-I, Rodríguez L, Rossell O, Seco M, Muller (2007) J Organomet Chem 692:851

    Article  CAS  Google Scholar 

  76. Rámirez-Oliva E, Cuadrado I, Casado CM, Losada J, Alonso B (2006) 691:1131

    Google Scholar 

  77. 77 (a). Hawker CJ, Fréchet JMJ (1990) J Am Chem Soc 112:7638; (b) Hawker CJ, Fréchet JMJ (1990) J Chem Soc Chem Commun 15:1010–1013

    Article  CAS  Google Scholar 

  78. For an excellent recent review on the convergent construction of dendrimers see: Grayson SK, Fréchet JMJ (2001) Chem Rev 101:3819

    Google Scholar 

  79. Barlow S, O'Hare D (1997) Chem Rev 97:637

    Article  CAS  Google Scholar 

  80. Ceccon A, Santi S, Orian L, Bisello A (2004) Coord Chem Rev 683:724

    Google Scholar 

  81. Guillaneux D, Kagan HB (1995) J Org Chem 60:2502

    Article  CAS  Google Scholar 

  82. (a) Marciniec B (ed) (1992) Comprehensive handbook on hydrosilylation. Pergamon, Oxford; (b) Ojima I (1989) The hydrosilylation reaction. In: Patai S, Rappoport Z (eds) The chemistry of organic silicon compounds, part 2. Wiley, New York, pp 1479–1526

    Google Scholar 

  83. Alonso B, Cuadrado I, unpublished results

    Google Scholar 

  84. (a) Robin MB, Day P (1967) Adv Inorg Chem Radiochem 10:247; (b) Creutz C (1983) Prog Inorg Chem 30:1

    Article  CAS  Google Scholar 

  85. It has been recently shown that the combination of CH2Cl2 and [n-Bu4N][B(C6F5)4] as solvent and supporting electrolyte, respectively provides close-to optimal conditions for electrochemical oxidation studies of multiferrocenyl compounds by minimizing nucleophilic attack by the electrolyte anion and improving product solubilities. See for example: (a) Camire N, Mueller-Westerhoff UT, Geiger WE (2001) J Organomet Chem 637–639:823; (b) Barrière F, Kirss RU, Geiger WE (2005) Organometallics 24:48

    Google Scholar 

  86. Alonso B, García P, Losada J, Cuadrado I, Casado CM (2004) Biosens Bioelectron 19:1617

    Article  CAS  Google Scholar 

  87. Zamora M (2006) Ph.D. thesis, Universidad Autónoma de Madrid

    Google Scholar 

  88. It is well-known that electron-withdrawing substituents on the vinyl group decrease the rate of hydrosilylation processes compared to the more electron-donating groups. On the other hand, steric factors due to substituents in both silane or vinyl groups, may also affect the rate and completeness of hydrosilylation reactions. See, for example: (a) Stein J, Lewis LN, Smith KA, Lettko KX (1991) J Inorg Organomet Polym 1:325; (b) Liu HQ, Harrod JF (1990) Can J Chem 68:1100

    Google Scholar 

  89. For a recent work illustrating the effect of the substituents of the Si–H and C = C groups on hydrosilylation reactions see: Hilf S, Cyr PW, Rieder DA, Manners I, Ishida T, Chujo Y (2005) Macromol Rapid Commun 26:950

    Google Scholar 

  90. (a). Schlüter AD (1998) Top Curr Chem 197:165 139; (b) Schlüter AD, Rabe JP (2000) Angew Chem Int Ed 39:864

    Article  Google Scholar 

  91. Schlüter AD (2005) Top Curr Chem 245:151

    Google Scholar 

  92. Frauenrath H (2005) Prog Polym Sci 30:325

    Article  CAS  Google Scholar 

  93. Hawker CJ, Wooley KL (2005) Science 309:1200

    Article  CAS  Google Scholar 

  94. 94 (a). Suijkerbuijk BMJM, Shu L, Klein Gebbink RJM, Schlüter AD, van Koten G (2003) Organometallics 22:4175; (b) Kim Y, Mayer MF, Zimmermman SC (2003) Angew Chem Int Ed 42:1121; (c) Chow H-F, Leung C-F, Li WL, Wong K-W, Xi L (2003) Angew Chem Int Ed 42:4919; (d) Zhang Y, Xu Z, Li X, Chen Y (2005) J Polym Sci Part A Polym Chem 45:3303

    Article  CAS  Google Scholar 

  95. See for example: (a) Clarson SJ, Semlyen JA (eds) (1993) Siloxane polymers. Prentice Hall, Englewood Cliffs, NJ; (b) Noll W (1968) Chemistry and technology of silicones. Academic, New York; (c) Mark JE, Allcock HR, West (eds) (1992) Inorganic polymers. Prentice-Hall, Englewood Cliffs, NJ, p 141.

    Google Scholar 

  96. Zamora M, Alonso B, Cuadrado I, Manuscript in preparation

    Google Scholar 

  97. García B, Casado CM, Cuadrado I, Alonso B, Morán M, Losada J (1999) 18:2349

    Google Scholar 

  98. García B, Casado CM, Alonso B, Cuadrado I, unpublished results

    Google Scholar 

  99. (a) Zimmerman SC, Lawless LJ (2001) Top Curr Chem 217:96; (b) Zeng F, Zimmerman SC (1997) Chem Rev 97:1681

    Google Scholar 

  100. Ong W, Gómez-Kaifer M, Kaifer AE (2004) Chemical Communications 15:1677–1683

    Article  CAS  Google Scholar 

  101. See for example: (a) Beer PD, Bayly SR (2005) Top Curr Chem 255:125 and references therein; (b) Beer PD, Hayes EJ (2003) Coord Chem Rev 240:167; (c) Beer PD, Gale PA (2001) Angew Chem Int Ed Engl 40:486; (d) Beer PD (1998) Accounts Chem Res 31:71

    Google Scholar 

  102. Mc Quade DT, Pullen AE, Swager TM (2000) Chem Rev 100:2537

    Article  CAS  Google Scholar 

  103. Casado CM, Cuadrado I, Alonso B, Morán M, Losada J (1999) J Electroanal Chem 463:87

    Article  CAS  Google Scholar 

  104. Valerio C, Fillaut J-L, Ruiz J, Guittard J, Blais J-C, Astruc D (1997) J Am Chem Soc 119:2588

    Article  CAS  Google Scholar 

  105. (a) Wang J (2008) Chem Rev 108:814; (b) Wang J (2001) Electroanalysis 13:983

    Article  CAS  Google Scholar 

  106. Ryabov AD (2004) Adv Inorg Chem (2004) 55:201–269

    Article  CAS  Google Scholar 

  107. Losada J, Cuadrado I, Morán M, Casado CM, Alonso B, Barranco M (1997) Anal Chim Acta 338:191

    Article  CAS  Google Scholar 

  108. For some examples of electrocatalytic oxidation of ascorbic acid by ferrocene-based modified electrodes see, for example: (a) Raoof J-B, Ojani R, Kiani A (2001) J Electroanal Chem 515:45; (b) Wang Wu, Z Tang J, Teng R, Wang E (2001) Electroanalysis 13:1093; (c) Kazakeviien B, Valincius G, Niaura G, Talaikyt Z, Kaemkait M, Razumas V, Plauinaitis D, Teierskien A, Lisauskas V (2007) Langmuir 23:4965

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Cuadrado, I. (2009). Organometallic Silicon-Containing Dendrimers and Their Electrochemical Applications. In: Dvornic, P.R., Owen, M.J. (eds) Silicon-Containing Dendritic Polymers. Advances in Silicon Science, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8174-3_8

Download citation

Publish with us

Policies and ethics