Advertisement

Hyperbranched Silicon-Containing Polymers via Bimolecular Non-linear Polymerization

  • Petar R. Dvornic
  • Dale J. Meier
Part of the Advances in Silicon Science book series (ADSS, volume 2)

Bimolecular non-linear polymerization, BMNLP (see Reaction Scheme 16.1), represents ‘the other method’ for preparation of hyperbranched polymers by the step-growth reaction mechanism. In contrast to the monomolecular polymerizations of ABx monomers, discussed for the two most prominent groups of silicon-containing hyperbranched polymers in Chapters 12 and 13, this polymerization type involves, as its name implies, two reactive monomers Ax and By, where A and B denote two types of mutually reactive functional groups while x and y are integers which must both be equal to or larger than 2, while one of them (either x or y) must be equal to or larger than 3 (see Section 16.3). Thus, the most common BMNLP systems include A2 + B3, A2 + B4, and A3 + B4 monomer combinations. General representation of the simplest of these, the A2 + B3 system in which the minor component has completely reacted, is shown in Reaction Scheme 16.1

Keywords

Phosphine Oxide Hyperbranched Polymer Reactive Functional Group Isophorone Diisocyanate Latent Functionality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Unal S, Oguz C, Yilgor E, Gallivan M, Long TE, Yilgor I (2005) Polymer 46: 4533.Google Scholar
  2. 2.
    Oguz C, Unal S, Long TE, Gallivan MA (2007) Macromolecules 40: 6529.CrossRefGoogle Scholar
  3. 3.
    Oguz C, Gallivan MA, Cakir S, Yilgor E, Yilgor I (2008) Polymer 49: 1414.CrossRefGoogle Scholar
  4. 4.
    Oguz C, Cakir S, Yilgor E, Gallivan M, Yilgor I (2008) Polym Prepr 49(1): 48.Google Scholar
  5. 5.
    Kienle RH, Hovey AG (1929) J Am Chem Soc 51: 509.CrossRefGoogle Scholar
  6. 6.
    Kienle RH, van der Meulen PA, Petke FE (1939) J Am Chem Soc 61: 2258.CrossRefGoogle Scholar
  7. 7.
    Flory PJ (1941) J Am Chem Soc 63: 3083, 3091, 3096.CrossRefGoogle Scholar
  8. 8.
    Stockmayer WH (1943) J Chem Phys 11: 45.CrossRefGoogle Scholar
  9. 9.
    Stockmayer WH (1952) J Polym Sci 9: 45.CrossRefGoogle Scholar
  10. 10.
    Flory PJ (1952) J Am Chem Soc 74: 2718.CrossRefGoogle Scholar
  11. 11.
    Flory PJ (1953) Principles of Polymer Chemistry, Cornell University Press, Ithaca, N Y, Chapter 9.Google Scholar
  12. 12.
    Sunder A, Heinemann J, Frey H (2000) Chem Eur J 6: 2499.CrossRefGoogle Scholar
  13. 13.
    Voit B (2001) J Polym Sci, Part A: Polym Chem 38: 2505.CrossRefGoogle Scholar
  14. 14.
    Jikei M, Kakimoto M (2001) Prog Polym Sci 26: 1233.CrossRefGoogle Scholar
  15. 15.
    Russo S, Boulares A (1990) Macromol Symp 128: 13.Google Scholar
  16. 16.
    Russo S, Boulares A, da Rin A (1999) Macromol Symp 143: 309.Google Scholar
  17. 17.
    Monticelli O, Mariani A, Voit B, Komber H, Mendichi R, Pitto V, Tabuani D, Russo S (2001) High Perform Polym 13: S45.CrossRefGoogle Scholar
  18. 18.
    Jikei M, Chon S-H, Kakimoto M, Kawauchi S, Imase T, Watanabe J (1999) Macromolecules 32: 2061.CrossRefGoogle Scholar
  19. 19.
    Jikei M, Kakimoto M (2001) High Perform Polym 13: S33.CrossRefGoogle Scholar
  20. 20.
    Emrick T, Chang H-T, Frechet JMJ (1999) Macromolecules 32: 6380.CrossRefGoogle Scholar
  21. 21.
    Hecht S, Emrick T, Frechet JMJ (2000) Chem Commun 313–314.Google Scholar
  22. 22.
    Yan D, Gao C (2000) Macromolecules 33: 7693.CrossRefGoogle Scholar
  23. 23.
    Fang J, Kita H, Okamoto K (2000) Macromolecules 33: 4639.CrossRefGoogle Scholar
  24. 24.
    Kricheldorf HR, Vakhtangishvili L, Fritsch D (2002) J Polym Sci, Polym Chem 40: 2967.CrossRefGoogle Scholar
  25. 25.
    Kricheldorf HR, Fritsch D, Vakhtangishvili L, Schwarz G (2003) Macromolecules 36: 4337.CrossRefGoogle Scholar
  26. 26.
    Bruchmann B, Koniger R, Renz H (2002) Macromol Symp 187: 271.CrossRefGoogle Scholar
  27. 27.
    Bruchmann B, Schrepp W (2003) e-Polym 014.Google Scholar
  28. 28.
    Bruchmann B, Stumbe J-F (2004) Macromol Rapid Commun 25: 921.CrossRefGoogle Scholar
  29. 29.
    Czupik M, Fossum E (2003) J Polym Sci, Polym Chem 41: 3871.CrossRefGoogle Scholar
  30. 30.
    Chen H, Yin J (2003) Polym Bull 49: 313.CrossRefGoogle Scholar
  31. 31.
    Hao J, Jikei M, Kakimoto M (2003) Macromol Symp 199: 233.CrossRefGoogle Scholar
  32. 32.
    Lin Q, Unal S, Long TE (2003) Polym Mater Sci Eng 88: 544.Google Scholar
  33. 33.
    Lin Q, Long TE (2003) Macromolecules 36: 9809.CrossRefGoogle Scholar
  34. 34.
    Unal S, Yilgor I, Yilgor E, Sheth JP, Wilkes GL, Long TE (2004) Macromolecules 37: 7081.CrossRefGoogle Scholar
  35. 35.
    Unal S, Lin Q, Mourey TH, Long TE (2005) Macromolecules 38: 3246.CrossRefGoogle Scholar
  36. 36.
    In I, Kim SY (2004) Polym Mater Sci Eng 91: 779.Google Scholar
  37. 37.
    Perignon N, Mingotaud A-F, Marty J-D, Rico-Lattes I, Mingotaud C (2004) Chem Mater 16: 4856.CrossRefGoogle Scholar
  38. 38.
    The procedure was taken from the US Patent application 0161113 A1, 2002, which was later granted as Reference 40.Google Scholar
  39. 39.
    Dvornic PR, Hu J, Meier DJ, Nowak RM (2004) Polym Preprints 45(1): 585.Google Scholar
  40. 40.
    Dvornic PR, Hu J, Meier DJ, Nowak RM (2002) US Pat. 6,384,172 B1.Google Scholar
  41. 41.
    Dvornic PR, Hu J, Meier DJ, Nowak RM, Parham PL (2003) US Pat. 6,534,600 B2.Google Scholar
  42. 42.
    Dvornic PR, Hu J, Meier DJ, Nowak RM, Parham PL (2004) US Pat. 6,812,298 B2.Google Scholar
  43. 43.
    Dvornic PR, Hu J, Meier DJ, Nowak RM (2003) US Pat. 6,646,089 B2.Google Scholar
  44. 44.
    Macosko CW, Miller DR (1976) Macromolecules 9: 199.CrossRefGoogle Scholar
  45. 45.
    Gordon M (1962) Proc R Soc Lond, Ser A 268: 240.CrossRefGoogle Scholar
  46. 46.
    Case LC (1957) J Polym Sci 26: 333.CrossRefGoogle Scholar
  47. 47.
    Charlesby A (1954) Proc R Soc A 222: 542.CrossRefGoogle Scholar
  48. 48.
    Charlesby A (1955) Proc R Soc A 231: 521.CrossRefGoogle Scholar
  49. 49.
    Stauffer D, Coniglio A, Adams M (1982) Adv Polym Sci 44: 105.Google Scholar
  50. 50.
    Dušek K, Dušková-Smrčková M (2000) Prog Polym Sci 25: 1215.CrossRefGoogle Scholar
  51. 51.
    Stockmayer WH, Weil LL (1945) Advancing Fronts in Chemistry, Twiss SB, Ed., Reinhold, New York, Chapter 6.Google Scholar
  52. 52.
    Xu Q and Hu J (2005) Unpublished work, Michigan Molecular Institute.Google Scholar
  53. 53.
    Dvornic PR, Gerov VV (1994) Macromolecules 27: 1068.CrossRefGoogle Scholar
  54. 54.
    Dvornic PR, Gerov VV, Govedarica MN (1994) 27: 7575.Google Scholar
  55. 55.
    Kaganove SN, Satoh P, Dvornic PR (2006) US Pat. Appl 0147414 A1.Google Scholar
  56. 56.
    Dvornic PR, Zhang T, (2006) Unpublished results, Michigan Molecular Institute.Google Scholar
  57. 57.
    Rubinsztajn S, Stein J (1995) J Inorg Organomet Polym 5: 43.CrossRefGoogle Scholar
  58. 58.
    Dvornic PR, Lenz RW (1990) Silarylene-Siloxane Polymers in High Temperature Siloxane Elastomers, Hüthig & Wepf Verlag, Basel, Chapter 3, pp. 85–214.Google Scholar
  59. 59.
    Lucas GR, Martin RW (1952) J Am Chem Soc 74: 5225.CrossRefGoogle Scholar
  60. 60.
    Kantor SW (1953) J Am Chem Soc 75: 2712.CrossRefGoogle Scholar
  61. 61.
    Hu J, Dvornic PR, (2004) Unpublished results, Michigan Molecular Institute.Google Scholar
  62. 62.
    Dvornic PR (2006) J Polym Sci Part A Polym Chem 44: 2755.CrossRefGoogle Scholar
  63. 63.
    Scheide JE, Dvornic PR, (2007) Unpublished results, Michigan Molecular Institute.Google Scholar
  64. 64.
    Schamschurin A, Uhrig D, Fisher M, Clarke S, Matisons J (2008) Silicon Chem 3: 313.CrossRefGoogle Scholar
  65. 65.
    Dvornic PR, Hu J, Meier DJ, Nowak RM (2008) US Pat. 7, 446, 155B2.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  • Petar R. Dvornic
    • 1
  • Dale J. Meier
    • 1
  1. 1.Michigan Molecular InstituteMidlandUSA

Personalised recommendations