Advertisement

Complex Daubechies Wavelets: Filters Design and Applications

  • J.-M. Lina

Abstract

The first part of this work describes the full set of Daubechies Wavelets with a particular emphasis on symmetric (and complex) orthonormal bases. Some properties of the associated complex scaling functions are presented in a second part. The third and last part describes a multiscale image enhancement algorithm using the phase of the complex multiresolution representation of the 2 dimension signals.

Keywords

Wavelet Coefficient Besov Space Scaling Function Filter Design Multiresolution Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Daubechies, Ten lectures on Wavelets, SIAM, CBMS Series, 1992.Google Scholar
  2. 2.
    C. Chui, An Introduction to Wavelets, Academic Press, New York, 1992.MATHGoogle Scholar
  3. 3.
    A. Cohen, Ondelettes, analyses multirésolutions etfiltres miroir en quadrature, Ann. Inst. H. Poicaré, An. non linéaire, 7, p. 439, 1990.Google Scholar
  4. 4._J. Stromberg, “A modified Franklin system and higher order spline systems on ℝn as unconditional bases for Hardy spaces,” Conf. in honor of A. Zygmund, Vol. II, Wadsworth math, series, p. 475, (1982).Google Scholar
  5. 5.
    G. Battle, “A block spin construction of ondelettes. Part I: Lemarie functions,” Comm. Math. Phys., 110, p. 601 (1987); P. G. Lemarié, “Une nouvelle base d’ondelettes de L 2 (ℝn)” J. de Math. Pures et Appl., 67, p. 227, (1988).MathSciNetCrossRefGoogle Scholar
  6. 6.
    G. Fix and G. Strang, Fourier Analysis of the finite element method in Ritz-Galerkin theory, Stud. Appl. Math., 48, p. 265, 1969.MathSciNetMATHGoogle Scholar
  7. 7.
    I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Comm. Pure Appl. Math., vol. 41, p. 909–996, 1988.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    D. Marr and E. Hildreth, “Theory of edge detection,” Proc. Royal So. London, vol.207, p. 187–217, 1980.CrossRefGoogle Scholar
  9. 9.
    A. F. Laine, S. Schuler, J. Fan and W. Huda, “Mammographic Feature Enhancement by Multiscale Analysis,” IEEE Transactions on Medical Imaging vol. 13, pp. 725–740, 1994; J. Lu, D. M. Healy Jr. and J. B. Weaver, “Contrast Enhancement of Medical Images Using Multiscale Edge Representation,” SPIE vol. 2242 Wavelet Applications, pp. 711-719, 1994; L. GagnonCrossRefGoogle Scholar
  10. 10.
    M. Lina and B. Goulard, “Sharpening Enhancement of Digitalized Mammograms with Complex Symmetric Daubechies Wavelets,” 17th IEEE and EMBS Conf., Montreal, Sept. 1995.Google Scholar
  11. 11.
    A. V. Oppenheim and J. S. Li, “The importance of phase in signals,” Proc. IEEE, vol.69, p. 529–541, 1981.CrossRefGoogle Scholar
  12. 12.
    M. Hayes, “The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform,” IEEE Trans. ASSP, vol.30, p. 140–154, 1982.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    A. Levi and H. Stark, “Signal restoration from phase by projections onto convex sets,” J. Opt. soc. Am., vol.73, p. 810–822, 1983.MathSciNetCrossRefGoogle Scholar
  14. 14.
    J.-M. Lina and P. Drouilly, “The Importance of the Phase of the Symmetric Daubechies Wavelets Representation of Signals,” Proc. IWISP’96, Mertzios et al. ed., Elsevier, p. 61, 1996; P. Drouilly, M. Sc Thesis, Physics Dept and CRM, Univ. of Montreal, 1996.Google Scholar
  15. 15.
    R. De Vore and B. J. Lucier, “Fast wavelet techniques for near-optimal image processing,” Proc. 1992 IEEE Military Commun. Conf., IEEE Communications Soc, NY 1992.Google Scholar
  16. 16.
    D. Donoho and I. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage,” to be published in J. Amer. Statist. Assoc, 1995 (and reference therein).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • J.-M. Lina
    • 1
    • 2
  1. 1.Atlantic Nuclear Services Ltd.FrederictonCanada
  2. 2.Centre de Recherches MathématiquesUniv. de MontréalMontréalCanada

Personalised recommendations