Skip to main content

Abstract

We present Shannon sampling theory for functions defined on \(T \times \mathbb{R} \) × ℝ, where T denotes the circle group, prove a new estimate for the aliasing error, and apply the result to parallel-beam diffraction tomography. The class of admissible sampling lattices is characterized and general sampling conditions are derived which lead to the identification of new efficient sampling schemes. Corresponding results for x-ray tomography are obtained in the high-frequency limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and I. A. Stegun. “Handbook of Mathematical Functions,” U.S. Dept. of Commerce (1972).

    Google Scholar 

  2. P. L. Butzer, W. Splettstößer and R. L. Stens, The sampling theorem and linear prediction in signal analysis, Jahresber. Deutsch. Math.-Verein. 90:1 (1988).

    Google Scholar 

  3. A. M. Cormack, Sampling the Radon transform with beams of finite width, Phys. Med. Biol. 23:1141 (1978).

    Article  Google Scholar 

  4. L. Desbat, Efficient sampling on coarse grids in tomography, Inverse Problems 9:251 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. J. Devaney, A filtered backpropagation algorithm for diffraction tomography, Ultrasonic Imaging 4:336 (1982).

    Google Scholar 

  6. A. J. Devaney, Reconstructive tomography with diffracting wavefields, Inverse Problems 2:161 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Faridani. “Abtastbedingungen und Auflösung in der Beugungstomographie.” Ph.D. Dissertation, University of Münster, Germany (1988).

    Google Scholar 

  8. A. Faridani, An application of a multidimensional sampling theorem to computed tomography, in: “Integral Geometry and Tomography,” E. Grinberg and E.T Quinto, eds., Contemp. Math., vol. 113, Amer. Math. Soc., Providence, R.I., (1990), pp.65-80.

    Google Scholar 

  9. A. Faridani, Reconstructing from efficiently sampled data in parallel-beam tomography, in: “Inverse Problems and Imaging” G.F. Roach, ed., Pitmans Research Notes in Mathematics Series, vol. 245, (1991), pp. 68-102.

    Google Scholar 

  10. A. Faridani, A generalized sampling theorem for locally compact abelian groups, Math. Comp. 63:307 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Faridani, Results, old and new, in computed tomography, in: “Inverse Problems in Wave Propagation,” G. Chavent et al., ed., Springer, New York (1997), pp. 167–193.

    Chapter  Google Scholar 

  12. J. F. Greenleaf, Computerized tomography with ultrasound, Proc. IEEE 71:330 (1983).

    Article  Google Scholar 

  13. A. C. Kak and M. Slaney. “Principles of Computerized Tomographic Imaging,” IEEE Press, New York (1988).

    MATH  Google Scholar 

  14. M. Kaveh, M. Soumekh and J. F. Greenleaf, Signal processing for diffraction tomography, IEEE Trans. Sonics and Ultrasonics 31:230 (1984).

    Article  Google Scholar 

  15. H. Kruse, Resolution of reconstruction methods in computerized tomography, SIAM J. Sci. Stat. Comput. 10:447 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  16. K. J. Langenberg, Applied inverse problems for acoustic, electromagnetic and elastic wave scattering, in: “Basic Methods of Tomography and Inverse Problems,” P. C. Sabatier, ed., Adam Hilger, Bristol (1987), pp. 125–467.

    Google Scholar 

  17. A. G. Lindgren and P. A. Rattey, The inverse discrete Radon transform with applications to tomographic imaging using projection data, Advances in Electronics and Electron Physics 56:359 (1981).

    Article  Google Scholar 

  18. Z. Q. Lu, Multidimensional structure diffraction tomography for varying object orientation through generalized scattered waves, Inverse Problems 1:339 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  19. R. K. Mueller, M. Kaveh and G. Wade, Reconstructive tomography and applications to ultrasonics, Proc. IEEE 67:567 (1979).

    Article  Google Scholar 

  20. F. Natterer. “The Mathematics of Computerized Tomography,” Wiley, New York (1986).

    MATH  Google Scholar 

  21. F. Natterer, Sampling in fan-beam tomography, SIAM J. Appl. Math. 53:358 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  22. S. X. Pan and A. C. Kak, A computational study of reconstruction algorithms for diffraction tomography: interpolation versus filtered backpropagation, IEEE Trans. Acoust. Speech Signal Processing 31:1262 (1983).

    Article  Google Scholar 

  23. D. P. Petersen and D. Middleton, Sampling and reconstruction of wave-number-limited functions in N-dimensional euclidean space, Inf. Control 5:279 (1962).

    Article  MathSciNet  Google Scholar 

  24. A. G. Ramm and A. I. Katsevich. “The Radon Transform and Local Tomography,” CRC Press, Boca Raton (1996).

    MATH  Google Scholar 

  25. P. A. Rattey and A. G. Lindgren, Sampling the 2-D Radon transform, IEEE Trans. Acoust. Speech Signal Processing 29:994 (1981).

    Article  MathSciNet  Google Scholar 

  26. A. Schatzberg and A. J. Devaney, Super-resolution in diffraction tomography, Inverse Problems 8:149 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Soumekh and J.-H. Choi, Reconstruction in diffraction imaging, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 36:93 (1989).

    Article  Google Scholar 

  28. E. Wolf, Three-dimensional structure determination of semi-transparent objects from holographic data, Opt. Commun. 1:153 (1969).

    Article  Google Scholar 

  29. A. I. Zayed. “Advances in Shannon’s Sampling Theory,” CRC Press, Boca Raton (1993).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Faridani, A. (1998). Sampling in Parallel-Beam Tomography. In: Ramm, A.G. (eds) Inverse Problems, Tomography, and Image Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-7975-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-7975-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1900-7

  • Online ISBN: 978-1-4020-7975-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics