Skip to main content

Specialized channels in astrocytes

  • Chapter
  • 219 Accesses

Abstract

As discussed in Chapter 7, astrocytes express a large repertoire of ion channels that are reminiscent of those used by excitable cells to generate or propagate electrical signals. In addition, astrocytes also contain more specialized channels that appear to engage in ion and water homeostasis in brain. Most notably, these include anion channels and water-permeable aquaporins. These channels are much less well understood than their voltage-gated cousins. This chapter attempts to provide a concise summary of our current knowledge regarding the molecular, pharmacological and biophysical characteristics of these specialized channels as well as to discuss some of the potential roles for these channels in the biology of astrocytes. The reader is also referred to recent reviews on anion channels in astrocytes (Walz, 2002) and aquaporins in the central nervous system (Badaut et al., 2002;Venero et al., 2001).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ClC:

Voltage-gated chloride channel

CFTR:

Cystic fibrosis transmembrane regulator

dBcAMP:

Dibutyryl-cyclic-AMP

DIDS:

4,4′-diisothiocyanatostilbene-2–2′-disulfonic acid

DPC:

Diphenylamine-2-carboxylate

GABAA :

γ-aminobutyric acid type A receptor

GFAP:

Glial fibrillary acidic protein

MAPK:

Mitogen-activated protein kinase

MEK:

Mitogen-activated protein kinase kinase

9-AC:

9-anthracene carboxylic acid

NPPB:

5-Nitro-2-(3-phenylpropylamino)benzoic acid

PKA:

Protein kinase A

PKC:

Protein kinase C

SITS:

4-acetamido-4′-isocyanatostilbene-2–2′-disulfonic acid

TEA+ :

Tetraethylammonium ion

VDAC:

Voltage-dependent anion channel

VSOAC:

Volume-sensitive organic osmolyte-anion channel

References

  • Adler DA, Rugarli EI, Lingenfelter PA, Tsuchiya K, Poslinski D, Liggitt HD, Chapman VM, Elliott RW, Ballabio A, Disteche CM (1997) Evidence of evolutionary up-regulation of the single active X chromosome in mammals based on Clc4 expression levels in Mus spretus and Mus musculus. Proc Natl Acad Sci USA 94: 9244–9248.

    Article  PubMed  CAS  Google Scholar 

  • Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, Guggino WB, Nielsen S (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 265: F463–F476.

    Google Scholar 

  • Akabas, MH (2000) Cystic fibrosis transmembrane conductance regulator. Structure and function of an epithelial chloride channel. J Biol Chem. 275: 3729–3732.

    Article  PubMed  CAS  Google Scholar 

  • Badaut J, Hirt L, Granziera C, Bogousslaysky J, Magistretti PJ, Regli L (2001) Astrocytespecific expression of aquaporin-9 in mouse brain is increased after transient focal cerebral ischemia. J Cereb Blood Flow Metab 21: 477–482.

    Article  PubMed  CAS  Google Scholar 

  • Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 22: 367–378.

    Article  PubMed  CAS  Google Scholar 

  • Ballerini P, Di Iorio P, Ciccarelli R, Nargi E, D’Alimonte I, Traversa U, Rathbone MP, Caciagli F (2002) Glial cells express multiple ATP binding cassette proteins which are involved in ATP release. Neuroreport 13: 1789–1792.

    Article  PubMed  CAS  Google Scholar 

  • Bekar LK, Walz W (2002) Intracellular chloride modulates A-type potassium currents in astrocytes. Glia 39: 207–216.

    Article  PubMed  Google Scholar 

  • Bevan S, Chiu SY, Gray PTA, Ritchie JM (1985) The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes. Proc Roy Soc Lond B: Biol Sci B225: 299–313.

    Article  CAS  Google Scholar 

  • Bevensee MO, Apkon M, Boron WF (1997) Intracellular pH regulation in cultured astrocytes from rat hippocampus. I. Role of HCO3-. J Gen Physiol 110: 453–465.

    Article  PubMed  CAS  Google Scholar 

  • Brandt S, Jentsch TJ (1995) ClC-6 and ClC-7 are two novel broadly expressed members of the ClC chloride channel family. FEBS Letters 377: 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Brooks HL, Regan JW, Yool AJ (2000) Inhibition of aquaporin-1 water permeability by tetraethylammonium: involvement of the loop E pore region. Mol Pharmacol 57: 1021–1026.

    PubMed  CAS  Google Scholar 

  • Bureau MH, Khrestchatisky M, Heeren MA, Zambrowicz EB, Kim H, Grisar TM, Colombini M, Tobin AJ, Olsen RW (1992) Isolation and cloning of a voltage-dependent anion channel-like Mr 36,000 polypeptide from mammalian brain. J Biol Chem 267: 8679–8684.

    PubMed  CAS  Google Scholar 

  • Crepel V, Panenka W, Kelly ME, MacVicar BA (1998) Mitogen-activated protein and tyrosine kinases in the activation of astrocyte volume-activated chloride current. J Neurosci 18: 1196–1206.

    PubMed  CAS  Google Scholar 

  • Denker BM, Smith BL, Kuhajda FP, Agre P (1988) Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem 263: 15634–15642.

    PubMed  CAS  Google Scholar 

  • Dermietzel R, Hwang T-K, Buettner R, Hofer A, Dotzler E, Kremer M, Deutzmann R, Thinnes FP, Fishman GI, Spray DC, Siemen D (1994) Cloning and in situ localization of a brain-derived porin that constitutes a large-conductance anion channel in astrocytic plasma membranes. PNAS 91: 499–503.

    Article  PubMed  CAS  Google Scholar 

  • Duan D, Winter C, Cowley S, Hume JR, Horowitz B (1997) Molecular identification of a volume-regulated chloride channel. Nature 390: 417–421.

    Article  PubMed  CAS  Google Scholar 

  • Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415: 287–294.

    Article  PubMed  CAS  Google Scholar 

  • Elkjaer M, Vajda Z, Nejsum LN, Kwon T, Jensen UB, Amiry-Moghaddam M, Frokiaer J, Nielsen S (2000) Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem Biophys Res Commun 276: 1118–1128.

    Article  PubMed  CAS  Google Scholar 

  • Fava M, Ferroni S, Nobile M (2001) Osmosensitivity of an inwardly rectifying chloride current revealed by whole-cell and perforated-patch recordings in cultured rat cortical astrocytes. FEBS Lett 492: 78–83.

    Article  PubMed  CAS  Google Scholar 

  • Ferroni S, Marchini C, Nobile M, Rapisarda C (1997) Characterization of an inwardly rectifying chloride conductance expressed by cultured rat cortical astrocytes. Glia 21: 217–227.

    Article  PubMed  CAS  Google Scholar 

  • Ferroni S, Marchini C, Schubert P, Rapisarda C (1995) Two distinct inwardly rectifying conductances are expressed in long term dibutyryl-cyclic-AMP treated rat cultured cortical astrocytes. FEBS Lett 367: 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Ferroni S, Nobile M, Caprini M, Rapisarda C (2000) pH modulation of an inward rectifier chloride current in cultured rat cortical astrocytes. Neurosci 100: 431–438.

    Article  CAS  Google Scholar 

  • Gray PT, Ritchie JM (1986) A voltage-gated chloride conductance in rat cultured astrocytes. Proc Roy Soc Lond B: Biol Sci 228: 267–288.

    Article  CAS  Google Scholar 

  • Grunder S, Thiemann A, Pusch M, Jentsch TJ (1992) Regions involved in the opening of cic-2 chloride channel by voltage and cell volume. Nature 360: 759–62.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa H, Ma T, Skach W, Matthay MA, Verkman AS (1994) Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J Biol Chem 269: 5497–5500.

    PubMed  CAS  Google Scholar 

  • Hille B (2001) Ion Channels of Excitable Membranes. Sunderland: Sinauer.

    Google Scholar 

  • Jackson PS, Madsen JR (1997) Identification of the volume-sensitive organic osmolyte anion channel in human glial cells. Pediatr Neurosurg 27: 286–291.

    Article  PubMed  CAS  Google Scholar 

  • Jackson PS, Morrison R, Strange K (1994) The volume-sensitive organic osmolyte-anion channel VSOAC is regulated by nonhydrolytic ATP binding. Am J Physiol 267: C1203–C1209.

    Google Scholar 

  • Jackson PS, Strange K (1993) Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am J Physiol 265: t-500.

    Google Scholar 

  • Jalonen T (1993) Single-channel characteristics of the large-conductance anion channel in rat cortical astrocytes in primary culture. Glia 9: 227–237.

    Article  PubMed  CAS  Google Scholar 

  • Jalonen T, Johansson S, Holopainen I, Oja SS, Arhem P (1989) A high-conductance multi-state anion channel in cultured rat astrocytes. Acta Physiol 136: 611–612.

    Article  CAS  Google Scholar 

  • Jalonen T, Varga V, Hartikainen K, Janaky R, Oja SS (1991) Anion conductance blocked by divalent cations in cultured rat astrocytes. Ann N Y Acad Sci 633: 583–585.

    Article  PubMed  CAS  Google Scholar 

  • Jentsch TJ, Stein V, Weinreich F, Zdebik AA (2002) Molecular structure and physiological function of chloride channels. Physiol Rev 82: 503–568.

    PubMed  CAS  Google Scholar 

  • Jung JS, Bhat RV, Preston GM, Guggino WB, Baraban JM, Agre P (1994) Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci U S A 91: 13052–13056.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki M, Uchida S, Monkawa T, Miyawaki A, Mikoshiba K, Marumo F, Sasaki S (1994) Cloning and expression of a protein kinase c-rcgulated chloride channel abundantly expressed in rat brain neuronal cells. Neuron 12: 597–604.

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann H (1987) K+ and Cl- uptake by cultured oligodendrocytes. Can J Physiol & Pharmacol 65: 1033–1037.

    Article  CAS  Google Scholar 

  • Kimelberg HK (1981) Active accumulation and exchange transport of chloride in astroglial cells in culture. Biochim Biophys Acta 646: 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg HK, Frangakis MV (1985) Furosemide- and bumetanide-sensitive ion transport and volume control in primary astrocyte cultures from rat brain. Brain Res 361: 125–134.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg HK, Kettenmann H (1990) Swelling-induced changes in electrophysiological properties of cultured astrocytes and oligodendrocytes. I. Effects on membrane potentials, input impedance and cell-cell coupling. Brain Res 529: 255–261.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg HK, O’Connor E (1988) Swelling of astrocytes causes membrane potential depolarization. Glia 1: 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Knepper MA (1994) The aquaporin family of molecular water channels. Proc Natl Acad Sci U S A 91: 6255–6258.

    Article  PubMed  CAS  Google Scholar 

  • Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78: 247–306.

    PubMed  CAS  Google Scholar 

  • Lascola CD, Kraig RP (1996) Whole-cell chloride currents in rat astrocytes accompany changes in cell morphology. J Neurosci 16: 2532–2545.

    PubMed  CAS  Google Scholar 

  • Lascola CD, Nelson DJ, Kraig RP (1998) Cytoskeletal actin gates a Cl- channel in neocortical astrocytes. J Neurosci 18: 1679–1692.

    PubMed  CAS  Google Scholar 

  • Linsdell P (2001) Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Physiol 531: 51–66.

    Article  PubMed  CAS  Google Scholar 

  • Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6: 159–163.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki T, Tajika Y, Tserentsoodol N, Suzuki T, Aoki T, Hagiwara H, Takata K (2002) Aquaporins: a water channel family. Anat Sci Int 77: 85–93.

    Article  PubMed  Google Scholar 

  • McCarty NA, McDonough S, Cohen BN, Riordan JR, Davidson N, Lester HA (1993) Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl-channel by two closely related arylaminobenzoates. J Gen Physiol 102: 1–23.

    Article  PubMed  CAS  Google Scholar 

  • Miller C (1982) Open-state substructure of single chloride channels from Torpedo electroplax. Philos Trans R Soc Lond B Biol Sci 299: 401–411.

    Article  PubMed  CAS  Google Scholar 

  • Miller C, White MM (1984) Dimeric structure of single chloride channels from Torpedo electroplax. Proc Natl Acad Sci U S A 81: 2772–2775.

    Article  PubMed  CAS  Google Scholar 

  • Nagelhus EA, Horio Y, Inanobe A, Fujita A, Haug FM, Nielsen S, Kurachi Y, Ottersen OP (1999) Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 26: 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Nagelhus EA, Veruki ML, Torp R, Haug FM, Laake JH, Nielsen S, Agre P, Ottersen OP (1998) Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Muller cells and fibrous astrocytes. J Neurosci 18: 2506–2519.

    PubMed  CAS  Google Scholar 

  • Nakahama K, Nagano M, Fujioka A, Shinoda K, Sasaki H (1999) Effect of TPA on aquaporin 4 mRNA expression in cultured rat astrocytes. Glia 25: 240–246.

    Article  PubMed  CAS  Google Scholar 

  • Nicchia GP, Frigeri A, Liuzzi GM, Santacroce MP, Nico B, Procino G, Quondamatteo F, Herken R, Roncali L, Svelto M (2000) Aquaporin-4-containing astrocytes sustain a temperature- and mercury-insensitive swelling in vitro. Glia 31: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17: 171–180.

    PubMed  CAS  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI, Agre P (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A 90: 7275–7279.

    Article  PubMed  CAS  Google Scholar 

  • Niemietz CM, Tyerman SD (2002) New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett 531: 443–447.

    Article  PubMed  CAS  Google Scholar 

  • Nobile M, Pusch M, Rapisarda C, Ferroni (2000) Single-channel analysis of a ClC-2-like chloride conductance in cultured rat cortical astrocytes. Febs Letters 479: 10–14.

    Article  PubMed  CAS  Google Scholar 

  • Nowak L, Ascher P, Berwald-Netter Y (1987) Ionic channels in mouse astrocytes in culture. J Neurosci 7: 101–109.

    PubMed  CAS  Google Scholar 

  • Olsen ML, Schade S, Lyons SA, Sontheimer H (2003) Expression of voltage-gated chloride channels in human glioma cells. J Neurosci submitted.

    Google Scholar 

  • Olson JE, Sankar R, Holtzman D, James A, Fleischhacker D (1986) Energy-dependent volume regulation in primary cultured cerebral astrocytes. J Cell Physiol 128: 209–215.

    Article  PubMed  CAS  Google Scholar 

  • Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29: 788–806.

    PubMed  CAS  Google Scholar 

  • Parkerson KA, Sontheimer H (2003) Contribution of Chloride Channels to Volume Regulation of Cortical Astrocytes. Am J Physiol (Cell Physiol), in press.

    Google Scholar 

  • Pasantes-Morales H, Murray RA, Lilja L, Moran J (1994) Regulatory volume decrease in cultured astrocytes. i. potassium- and chloride-activated permeability. Am J Physiol 266: Pt 1):C165–71.

    Google Scholar 

  • Preston GM, Jung JS, Guggino WB, Agre P (1993) The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J Biol Chem 268: 17–20.

    PubMed  CAS  Google Scholar 

  • Price DL, Ludwig JW, Mi H, Schwarz TL, Ellisman MH (2002) Distribution of rSlo Ca(2+)-activated K(+) channels in rat astrocyte perivascular endfeet. Brain Res 956: 183–193.

    Article  PubMed  CAS  Google Scholar 

  • Ransom CB, O’Neal JT, Sontheimer H (2001) Volume-activated chloride currents contribute to the resting conductance and invasive migration of human glioma cells. J Neurosci 21: 7674–7683.

    PubMed  CAS  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Playsic N, Chou JL, et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245: 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  • Roy G (1995) Amino acid current through anion channels in cultured human glial cells. J Membr Biol 147: 35–44.

    PubMed  CAS  Google Scholar 

  • Saadoun S, Papadopoulos MC, Davies DC, Bell BA, Krishna S (2002a) Increased aquaporin 1 water channel expression in human brain tumours. Br J Cancer 87: 621–623.

    Article  PubMed  CAS  Google Scholar 

  • Saadoun S, Papadopoulos MC, Davies DC, Krishna S, Bell BA (2002b) Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psych 72: 262–265.

    Article  CAS  Google Scholar 

  • Sanchez-Olea R, Moran J, Martinez A, Pasantes-Morales H (1993) Volume-activated Rb+ transport in astrocytes in culture. Am J Physiol 264: C836–C842.

    Google Scholar 

  • Sheppard DN, Welsh MJ (1992) Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents. J Gen Physiol 100: 573–591.

    Article  PubMed  CAS  Google Scholar 

  • Sik A, Smith RL, Freund TF (2000) Distribution of chloride channel-2-immunoreactive neuronal and astrocytic processes in the hippocampus. Neurosci 101: 51–65.

    Article  CAS  Google Scholar 

  • Sonnhof U (1987) Single voltage-dependent K+ and Cl- channels in cultured rat astrocytes. Can J Physiol Pharmacol 65: 1043–1050.

    Article  PubMed  CAS  Google Scholar 

  • Soroceanu L, Manning TJ, Jr., Sontheimer H (1999) Modulation of glioma cell migration and invasion using Cl- and K+ ion channel blockers. J Neurosci 19: 5942–5954.

    PubMed  CAS  Google Scholar 

  • Stegen C, Matskevich I, Wagner CA, Paulmichl M, Lang F, Broer S (2000) Swelling-induced taurine release without chloride channel activity in Xenopus laevis oocytes expressing anion channels and transporters. Biochim Biophys Acta 1467: 91–100.

    Article  PubMed  CAS  Google Scholar 

  • Steinmeyer K, Schwappach B, Bens M, Vandewalle A, Jentsch TJ (1995) Cloning and functional expression of rat clc-5, a chloride channel related to kidney disease. J Biol Chem 270: 31172–31177.

    Article  PubMed  CAS  Google Scholar 

  • Stobrawa SM, Breiderhoff T, Takamori S, Engel D, Schweizer M, Zdebik AA, Bosl MR, Ruether K, Jahn H, Draguhn A, Jahn R, Jentsch TJ (2001) Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29: 185–196.

    Article  PubMed  CAS  Google Scholar 

  • Tabcharani JA, Chang XB, Riordan JR, Hanrahan JW (1992) The cystic fibrosis transmembrane conductance regulator chloride channel. Iodide block and permeation. Biophys J 62: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Thiemann A, Grunder S, Pusch M, Jentsch TJ (1992) A chloride channel widely expressed in epithelial and non- epithelial cells. Nature 356: 57–60.

    Article  PubMed  CAS  Google Scholar 

  • Thinnes FP, Gotz H, Kayser H, Benz R, Schmidt WE, Kratzin HD, Hilschmann N (1989) [Identification of human porins. I. Purification of a porin from human B-lymphocytes (Porin 31 HL) and the topochemical proof of its expression on the plasmalemma of the progenitor cell.]. Biol Chem Hoppe Seyler 370: 1253–1264.

    Article  PubMed  CAS  Google Scholar 

  • Tsukaguchi H, Shayakul C, Berger UV, Mackenzie B, Devidas S, Guggino WB, van Hoek AN, Hediger MA (1998) Molecular characterization of a broad selectivity neutral solute channel. J Biol Chem 273: 24737–24743.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich N, Sontheimer H (1996) Biophysical and pharmacological characterization of chloride currents in human astrocytoma cells. Am J Physiol (Cell Physiol) 270: C1511–C1521.

    Google Scholar 

  • Ullrich N, Sontheimer H (1997) Cell cycle-dependent expression of a glioma-specific chloride current: proposed link to cytoskeletal changes. Am J Physiol 273 (Pt 1): C1290–1297.

    Google Scholar 

  • Venero JL, Vizuete ML, Machado A, Cano J (2001) Aquaporins in the central nervous system. Prog Neurobiol 63: 321–336.

    Article  PubMed  CAS  Google Scholar 

  • Vizuete ML, Venero JL, Vargas C, Ilundain AA, Echevarria M, Machado A, Cano J (1999) Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury: potential role in brain edema. Neurobiol Dis 6: 245–258.

    Article  PubMed  CAS  Google Scholar 

  • Waldegger S, Jentsch TJ (2000) From tonus to tonicity: Physiology of CLC chloride channels. J Am Soc Nephrol 11: 1331–1339.

    PubMed  CAS  Google Scholar 

  • Walz W (1987) Swelling and potassium uptake in cultured astrocytes. Can J Physiol Pharmacol 65: 1051–1057.

    Article  PubMed  CAS  Google Scholar 

  • Walz W (2002) Chloride/anion channels in glial cell membranes. Glia 40: 1–10.

    Article  PubMed  Google Scholar 

  • Walz W, Mukerji S (1988) KCl movements during potassium-induced cytotoxic swelling of cultured astrocytes. Exp Neurol 99: 17–29.

    Article  PubMed  CAS  Google Scholar 

  • Walz W, Wuttke WA (1999) Independent mechanisms of potassium clearance by astrocytes in gliotic tissue. J Neurosci Res 56: 595–603.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N, Sobue K, Fujita M, Katsuya H, Asai K (2002) Differential regulation of aquaporin-5 and -9 expression in astrocytes by protein kinase A. Brain Res Mol Brain Res 104: 96–102.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N, Sobue K, Miyachi T, Inagaki M, Miura Y, Katsuya H, Asai K (2001a) Differential regulation of aquaporin expression in astrocytes by protein kinase C. Brain Res Mol Brain Res 95: 110–116.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N, Yoneda K, Asai K, Sobue K, Tada T, Fujita Y, Katsuya H, Fujita M, Aihara N, Mase M, Yamada K, Miura Y, Kato T (2001b) Alterations in the expression of the AQP family in cultured rat astrocytes during hypoxia and reoxygenation. Brain Res Mol Brain Res 90: 26–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Sontheimer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Parkerson, K.A., Sontheimer, H. (2004). Specialized channels in astrocytes. In: Hatton, G.I., Parpura, V. (eds) Glial ⇔ Neuronal Signaling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4020-7937-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-7937-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1069-4

  • Online ISBN: 978-1-4020-7937-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics